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Abstract 

Periodic replacement models with minimal repairs have been studied extensively. In order to prevent high repair costs 

after failures, this paper considers the number of failures as another decision variable for replacement policies. We begin 

with the standard periodic replacement model, and then summarize several extended replacement models with number of 

failures, using the respective assumptions of whichever occurs first and last, and replacing over planned measure, 

respectively. Optimum policies of replacement times T, number of periodic times N, and number of failures K are 

discussed analytically. From the optimization of the integrated models of T, N and K, comparisons among these policies 

are made in analytical ways to determine which policy should be more economical. 

 

Keywords- Minimal repair, Periodic replacement, Replacement last, Random failure, Cumulative hazard rate. 

 

 

 

1. Introduction 
Maintenance policies are commonly performed at periodic times in applications. For example, 

maintenance in total productive maintenance (TPM) consists of periodical inspection, cleaning and 

servicing equipment and replacing deteriorated units to prevent serious breakdown problems 

(Venkatesh, 2007). The original model of periodic replacement was formulated by using the 

cumulative hazard rate, in which minimal repairs can fix failures without disturbing the failure rate 

(Barlow and Proschan, 1996; Nakagawa, 2005). Other theoretical research works on periodic 

patterns in maintenance plans have been studied extensively (Taghipour et al., 2010; Huynh et al., 

2011; Taghipour and Banjevic, 2012; Golmakani and Moakedi, 2012; Wang and Banjevic, 2012; 

Taghipour and Kassaei, 2015; Kim et al., 2015). 

 

Minimal repairs that cost less are always considered at minor failures for the large and complex 

systems with many kinds of units (Barlow and Proschan, 1996). Models for repairable system 

subjected to minimal repair (Pulcini, 2003), imperfect repair considering time-dependent repair 

effectiveness (Fuqing and Kumar, 2012), age-based replacement with repair for shocks and 

https://dx.doi.org/
mailto:xz.cem@nuaa.edu.cn


International Journal of Mathematical, Engineering and Management Sciences                      

Vol. 3, No. 2, 136–150, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.2-011 

137 

degradation (Huynh et al., 2012), post-warranty maintenance with repair time threshold (Park et al., 

2013), etc., have been studied extensively. Most recently, random working models with replacement 

and minimal repair (Zhao et al., 2016), and a case study of periodic maintenance policies for 

off-road engines has been surveyed (Toledo et al., 2016). 

 

In order to minimize the repair and replacement cost for a long run and maximize the utilization of 

the operating unit, this paper begins with the standard periodic replacement model with minimal 

repairs (Nakagawa, 2005) and then summarizes several extended replacement policies with failures, 

using the assumptions of replacement first (Nakagawa, 2005), replacement last (Zhao and 

Nakagawa, 2012), and replacement overtime (Nakagawa and Zhao, 2015; Zhao et al., 2015). That is, 

assumptions of whichever occurs first and last, and replacing over planned measure will be taken 

into considerations for replacement policies, respectively. It will show that the extended models 

include the standard periodic replacement with minimal repairs. It has been indicated in (Zhao and 

Nakagawa, 2012; Nakagawa and Zhao, 2015; Zhao et al., 2015) that the last and overtime modes in 

replacement policies could let the unit operate for longer time with minimum replacement cost rates, 

which will also be discussed and compared with replacement first in this paper. 

 

Throughout the paper, we assume that failures occur randomly at a non-homogeneous Poisson 

process with a hazard rate H(t), then the probability that a number j of failures occur during time 

interval [0, t] is 

 

𝑝𝑗(𝑡) ≡
𝐻(𝑡)𝑗

𝑗!
𝑒−𝐻(𝑡)     (𝑗 = 0, 1, 2, … ). 

 

Denote that 𝑃𝑗(𝑡) ≡ ∑ 𝑝𝑖(𝑡)∞
𝑖=𝑗 , 𝑃̅𝑗(𝑡) ≡ 1 − 𝑃𝑗(𝑡) = ∑ 𝑝𝑖(𝑡)

𝑗−1
𝑖=0 , then 𝑃0(𝑡) ≡ 1 and 𝑃̅0(𝑡) =

0. 

 

In addition, the failure distribution is obtained as 𝐹(𝑡) ≡ ∑ 𝑝𝑗(𝑡) = 1 −∞
𝑗=1 𝑝0(𝑡) = 1 − 𝑒−𝐻(𝑡) 

with mean time 𝜇 ≡ ∫ 𝐹̅(𝑡)𝑑𝑡
∞

0
, and the failure rate is denoted as ℎ(𝑡) ≡ 𝑑𝐻(𝑡)/𝑑𝑡, where ℎ(𝑡) 

increases with 𝑡 from 0 to ℎ(∞) ≡ lim
𝑡→∞

ℎ(𝑡). We suppose the failures are fixed by minimal repairs 

without disturbing the failure rate. In order to prevent high repair costs after failures, we begin with 

the standard periodic model with minimal repairs in Section 2, and then summarize several extended 

replacement models with number of failures from Section 3. 

 

2. Standard Periodic Model 
Suppose the unit is replaced at periodic times 𝑛𝑇 (𝑛 = 1, 2, … ; 0 < 𝑇 < ∞). Then (Nakagawa, 

2005) 

 

T

THcc
TC MT

T

)(
)(


 ,                                                                      (1) 

 

where 𝑐𝑇 = replacement cost at each periodic time and 𝑐𝑀 = cost of minimal repair at each failure. 

Clearly, 

 

).()(lim)(,)(lim)0( 0   hcTCCTCC MTTTTTT                              (2) 
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Optimum 𝑇∗ to minimize 𝐶𝑇(𝑇) satisfies 

 

.)(.,.,)()(
0 M

T

T

M

T

c

c
ttdhei

c

c
THTTh                                                      (3) 

 

The resulting cost rate is 

 

).()( ** ThcTC MT                                                                             (4) 

 

This optimum policy indicates that minimal repairs are made if some failures occur during (0, 𝑇∗), 

and the unit is replaced at time 𝑇∗. 

 

When 𝐻(𝑡) = 𝑡𝑚 (𝑚 > 1), optimum 𝑇∗ is given by a solution of (𝑚 − 1)𝑇𝑚 = 𝑐𝑇/𝑐𝑀 . Table 1 

presents optimum 𝑇∗  and its cost rate for 𝑚  and 𝑐𝑇/𝑐𝑀 . This shows that 𝑇∗  increases with 

𝑐𝑇/𝑐𝑀 and decreases with 𝑚, and its cost rate 𝐶𝑇( 𝑇∗ ) increases with replacement cost 𝑐𝑇 and 

the failure numbers for repairs. 

 

 
Table 1. Optimum 𝑇∗ and its cost rate when 𝐻(𝑡) = 𝑡𝑚 

 

𝑐𝑇/𝑐𝑀 
𝑚 = 2.0 𝑚 = 3.0 

𝑇∗ 𝐶𝑇( 𝑇∗ )/𝑐𝑀 𝑇∗ 𝐶𝑇( 𝑇∗ )/𝑐𝑀 

2.0 1.41 2.83 1.00 3.00 

3.0 1.73 3.46 1.14 3.93 

4.0 2.00 4.00 1.26 4.76 

5.0 2.24 4.47 1.36 5.53 

6.0 2.45 4.90 1.44 6.24 

7.0 2.65 5.29 1.52 6.91 

8.0 2.83 5.66 1.59 7.56 

9.0 3.00 6.00 1.65 8.18 

10.0 3.16 6.32 1.71 8.77 

 

 

 

3. Failure Over Periodic Time 
As the first extension of the standard periodic replacement model in Section 2, we suppose the unit 

cannot be replaced strictly at periodic times, but is replaced at the first failure over the above each 

periodic time 𝑛𝑇 (𝑛 = 1, 2, … ; 0 < 𝑇 < ∞). Now the problem become to reconsider the periodic 

interval 𝑇 with over time mode. Then (Nakagawa and Zhao, 2015) 

 

 
)(/1

1)(
)(

TQT

THcc
TC MO

O



                                                                   (5) 

 

where 𝑐𝑂 = replacement cost over each time 𝑇, and 

 

𝑄(𝑇) ≡
1

∫ 𝑒−[𝐻(𝑡)−𝐻(𝑇)]𝑑𝑡
∞

𝑇

=
𝐹̅(𝑇)

∫ 𝐹̅(𝑡)𝑑𝑡
∞

𝑇

≥ ℎ(𝑇). 
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Clearly, (5) and (1) have similar forms. 

 

When 𝑇 → ∞, 

 

𝐶𝑂(∞) ≡ lim
𝑇→∞

𝐶𝑂(𝑇) = 𝑐𝑀ℎ(∞), 

and when 𝑇 → 0, 

 


MO

OO

cc
TC

T
C





 )(

0

lim
)0( .                                                            (6) 

 

Differentiating 𝐶𝑂(𝑇) with respect to 𝑇 and setting it equal to zero, 

 

  .)()(.,.,)()(
0 M

o

T

M

o

c

c
dtthTQei

c

c
THTTQ                                            (7) 

 

Therefore, the following optimum policies are given: 

 

a) If ∫ 𝑡𝑑ℎ(𝑡)
∞

0
> 𝑐𝑂/𝑐𝑀 , then there exists a unique 𝑇𝑂

∗ (0 < 𝑇𝑂
∗ < ∞)  in (7) to minimize 

𝐶𝑂(𝑇), and 

 

.
(

)()(
*

*
**

O

OMO
oMOO

T

THcc
TQcTC


                                                          (8) 

 

b) If ∫ 𝑡𝑑ℎ(𝑡)
∞

0
≤ 𝑐𝑂/𝑐𝑀, 𝑇𝑂

∗ = ∞, and the cost rate has been given in (2). 

 

Further, it can be found that 𝑇𝑂
∗ ≤ 𝑇 as 𝑄(𝑇)  ≥  ℎ(𝑇) in (3) and (7). Thus, comparing of (1) and 

(8), when 𝑐𝑂 = 𝑐𝑇, the standard periodic replacement is more economical. 

 

When 𝐻(𝑡) = 𝑡𝑚, Table 2 presents optimum optimum 𝑇𝑂
∗ and its cost rate for 𝑚 and 𝑐𝑂/𝑐𝑀. This 

indicates that 𝑇𝑂
∗ < 𝑇 and 𝐶𝑂(𝑇𝑂

∗) > 𝐶𝑇(𝑇∗) when 𝑐𝑂 = 𝑐𝑇. However, the differences between 

two expected cost rates become smaller as 𝑐𝑂/𝑐𝑀 are larger. 

 

 
Table 2. Optimum 𝑇𝑂

∗ and its cost rate when 𝐻(𝑡) = 𝑡𝑚 

 

𝑐𝑂/𝑐𝑀 
𝑚 = 2.0 𝑚 = 3.0 

𝑇𝑂
∗ 𝐶𝑂(𝑇𝑂

∗)/𝑐𝑀 𝑇𝑂
∗ 𝐶𝑂(𝑇𝑂

∗)/𝑐𝑀 

2.0 1.15 2.89 0.78 3.18 

3.0 1.51 3.50 0.96 4.05 

4.0 1.81 4.02 1.10 4.84 

5.0 2.07 4.49 1.22 5.58 

6.0 2.31 4.91 1.33 6.28 

7.0 2.53 5.30 1.42 6.94 

8.0 2.74 5.66 1.51 7.58 

9.0 2.93 6.00 1.59 8.19 

10.0 3.12 6.33 1.66 8.78 
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4. Failure Number 
In order to extend the following replacement policies with failures, we firstly in this section consider 

the case when only failure number is used for replacement decision. That is, the unit is replaced at a 

number 𝐾 (𝐾 = 1, 2, … ) of failures. Then (Nakagawa, 2005; Nakagawa and Zhao, 2015) 

 

...),,2,1(

)(

)(

0







 

K

dttP

Kcc
KC

K

MK
N                                                           (9) 

 

where 𝑐𝐾 = replacement cost at failure 𝐾. Clearly, 

 

𝐶𝑁(∞) ≡ lim
𝐾→∞

𝐶𝑁(𝐾) = 𝑐𝑀ℎ(∞), 

 

in (2), and 

 

𝐶𝑁(1) = 𝐶𝑂(0) =
𝑐𝐾 + 𝑐𝑀

𝜇
 

 

in (6) when 𝑐𝑂 = 𝑐𝐾. Forming the inequality 𝐶𝑁(𝐾 + 1) − 𝐶𝑁(𝐾) ≥ 0, 

.
)(

)(

0

0

M

K

K

K

c

c
K

dttp

dttP







 

                                                       (10) 

 

The left-hand side of (10) increases with 𝐾  (Nakagawa, 2005; Nakagawa, and Zhao, 2015). 

Letting 𝐿1(𝐾)  be the left-hand side of (10), if 𝐿1(∞) > 𝑐𝐾/𝑐𝑀 , then there exists a unique 

𝐾∗ (1 ≤ 𝐾∗ < ∞) in (10) to minimize 𝐶𝑁(𝐾), and the resulting cost rate is 

dttp

c
KC

dttp

c

K

M
N

K

M

)(
)(

)(
0

*

0 1 ** 




 .                                         (11) 

 

When 𝐻(𝑡) = 𝑡𝑚, Table 3 presents optimum optimum 𝐾∗ and its cost rate for 𝑚 and 𝑐𝐾/𝑐𝑀. In 

this case, optimum 𝐾∗  is given by 𝐾∗ = [(𝑐𝐾 − 𝑐𝑀)/(𝑚 − 1)𝑐𝑀] + 1 , where [𝑥]  means the 

greatest integer contained in 𝑥. It is nature that 𝐾∗ can be increasing when the repair cost 𝑐𝑀 

decrease and the cost rate 𝐶𝑁(𝐾∗) increases with the number of failures. 

 
Table 3. Optimum 𝐾∗ and its cost rate when 𝐻(𝑡) = 𝑡𝑚 

 

𝑐𝐾/𝑐𝑀 
𝑚 = 2.0 𝑚 = 3.0 

𝐾∗ 𝐶𝑁(𝐾∗)/𝑐𝑀 𝐾∗ 𝐶𝑁(𝐾∗)/𝑐𝑀 

2.0 2 2.89 2 3.36 

3.0 3 3.50 2 4.20 

4.0 5 4.02 3 5.04 

5.0 5 4.49 3 5.76 

6.0 6 4.91 3 6.48 

7.0 7 5.30 4 7.13 

8.0 8 5.66 4 7.77 

9.0 10 6.00 5 8.37 

10.0 10 6.33 6 8.97 
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5. Next Periodic Time 
Suppose the unit is replaced at the next periodic time (𝑛 + 1) 𝑇 over periodic time 𝑛𝑇 (𝑛 =
0, 1, 2, … ; 0 < 𝑇 < ∞) when more than 𝐾 (𝐾 = 1, 2, … ) failures have arrived, and we obtain an 

optimum 𝐾 for given. Then (Nakagawa, 2005) 

 

𝐶𝑃(𝐾, 𝑇) =
𝑐𝑇+𝑐𝑀 ∑ [𝐻((𝑛+1)𝑇)−𝐻(𝑛𝑇)]𝑃̅𝐾(𝑛𝑇)∞

𝑛=0

𝑇 ∑ 𝑃̅𝐾(𝑛𝑇)∞
𝑛=0

   (𝐾 = 1, 2, … ).                            (12) 

 

Forming the inequality 𝐶𝑃(𝐾 + 1, 𝑇) − 𝐶𝑃(𝐾, 𝑇) ≥ 0, 

 

𝑄1(𝐾, 𝑇) ∑ 𝑃̅𝐾(𝑛𝑇)∞
𝑛=0 − ∑ [𝐻((𝑛 + 1)𝑇) − 𝐻(𝑛𝑇)]𝑃̅𝐾(𝑛𝑇)∞

𝑛=0 ≥
𝑐𝑇

𝑐𝑀
,                       (13) 

 

where 

𝑄1(𝐾, 𝑇) ≡
∑ [𝐻((𝑛+1)𝑇)−𝐻(𝑛𝑇)]𝑝𝐾(𝑛𝑇)∞

𝑛=0

∑ 𝑃̅𝐾(𝑛𝑇)∞
𝑛=0

. 

 

Thus, the left-hand side 𝐿2(𝐾, 𝑇) of (13) increases strictly with 𝐾. If 𝐿2(𝐾, 𝑇) > 𝑐𝑇/𝑐𝑀 , then 

there exists a unique and minimum 𝐾𝑃
∗ (1 ≤ 𝐾𝑃

∗ < ∞) in (13) to minimize 𝐶𝑃(𝐾, 𝑇), and 

 

𝑐𝑀𝑄1(𝐾𝑃
∗ − 1, 𝑇) < 𝐶𝑃(𝐾𝑃

∗, 𝑇) ≤ 𝑐𝑀𝑄1(𝐾𝑃
∗, 𝑇).                                               (14) 

 

When 𝐻(𝑡) = 𝑡𝑚, Table 4 presents optimum 𝐾𝑃
∗ and its cost rate for 𝑚 and 𝑐𝑇/𝑐𝑀, and it shows 

the same tendencies with Table 4. 

 

 
Table 4. Optimum 𝐾𝑃

∗ and its cost rate when 𝐻(𝑡) = 𝑡𝑚 and 𝑇 =  0.1 

 

𝑐𝑇/𝑐𝑀 
𝑚 = 2.0 𝑚 = 3.0 

𝐾𝑃
∗ 𝐶𝑃(𝐾𝑃

∗, 𝑇)/𝑐𝑀 𝐾𝑃
∗ 𝐶𝑃(𝐾𝑃

∗, 𝑇)/𝑐𝑀 

2.0 2 3.00 1 3.42 

3.0 3 3.60 1 4.40 

4.0 4 4.12 2 5.03 

5.0 5 4.58 3 5.78 

6.0 6 5.00 3 6.47 

7.0 7 5.38 4 7.14 

8.0 8 5.74 4 7.77 

9.0 19 6.08 5 8.39 

10.0 10 6.40 6 9.00 

 

 

 

6. Time and Failure Number 

6.1 Replacement First 
Suppose the unit is replaced at planned time 𝑇 (0 <  𝑇 ≤ ∞) or at failure number 𝐾 (1 ≤
 𝐾 ≤ ∞), whichever occurs first. Then 

 

𝐶𝐹(𝑇, 𝐾) =
𝑐𝑇𝑃̅𝐾(𝑇)+𝑐𝐾𝑃𝐾(𝑇)+𝑐𝑀 ∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

𝑇

0

∫ 𝑃̅𝐾(𝑡)𝑑𝑡
𝑇

0

,                                                 (15) 

 

clearly, 𝐶𝐹(𝑇, ∞) = 𝐶𝑇(𝑇) in (1) and 𝐶𝐹(∞, 𝐾) = 𝐶𝑁(𝐾)  in (9). 
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When 𝑐𝑇 = 𝑐𝐾, differentiating 𝐶𝐹(𝑇, 𝐾) with respect to 𝑇 and setting it equal to zero, 

 

∫ 𝑃̅𝐾(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
=

𝑐𝑇

𝑐𝑀
.                                                              (16) 

 

Letting 𝐿3(𝑇, 𝐾) be the left-hand side of (16), 𝐿3(𝑇, 𝐾) increases strictly with 𝑇 from 0. Thus, if 

𝐿3(∞, 𝐾) > 𝑐𝑇/𝑐𝑀, then there exists a unique 𝑇𝐹
∗ (0 < 𝑇𝐹

∗ < ∞) which satisfies (16), and 

 

𝐶𝐹(𝑇𝐹
∗, 𝐾) = 𝑐𝑀ℎ(𝑇𝐹

∗).                                                                        (17) 

 

The optimum policy to minimize 𝐶𝐹(𝑇, 𝐾) is (𝑇𝐹
∗ = 𝑇∗, 𝐾𝐹

∗ = ∞). The optimum policy indicates 

that replacement done at time 𝑇 is more economical than that at failure 𝐾. 

 

Next, we find optimum 𝐾𝐹
∗ to minimize 𝐶𝐹(𝑇, 𝐾) for given 𝑇. Forming the inequality 𝐶𝐹(𝑇, 𝐾 +

1) − 𝐶𝐹(𝑇, 𝐾) ≥ 0, 

 

𝐻1(𝑇, 𝐾) ∫ 𝑃̅𝐾(𝑡)𝑑𝑡
𝑇

0
− ∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

𝑇

0
≥

𝑐𝑇

𝑐𝑀
 ,                                              (18) 

 

where 

 

𝐻1(𝑇, 𝐾) =
∫ 𝐻(𝑡)𝐾𝑑𝐹(𝑡)

𝑇

0

∫ 𝐻(𝑡)𝐾𝐹̅(𝑡)𝑑𝑡
𝑇

0

. 

 

Therefore, if 𝑇 ≤ 𝑇∗, then 𝐾𝐹
∗ = ∞, and conversely, if 𝑇 > 𝑇∗, then optimum 𝐾𝐹

∗ (1 ≤ 𝐾𝐹
∗ <

∞) which satisfies (18) exists. 

 

6.2 Replacement Last 
Suppose the unit is replaced at planned time 𝑇 (0 ≤ 𝑇 ≤ ∞) or at failure number 𝐾 (0 ≤ 𝐾 ≤
∞), whichever occurs last. The mean time to replacement is 

 

𝑇𝑃𝐾(𝑇) + ∫ 𝑡𝑑𝑃𝐾(𝑡)
∞

𝑇
= 𝑇 + ∫ 𝑃̅𝐾(𝑡)𝑑𝑡

∞

𝑇
.                                        (19) 

 

The expected number of failures until replacement is 

 

𝐻(𝑇) + ∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡
∞

𝑇
,                                                                    (20) 

 

which agrees with (19) when ℎ(𝑡)  =  1. Thus 

 

𝐶𝐿(𝑇, 𝐾) =
𝑐𝑇𝑃𝐾(𝑇)+𝑐𝐾𝑃̅𝐾(𝑇)+𝑐𝑀[𝐻(𝑇)+∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

∞

𝑇
]

𝑇+∫ 𝑃̅𝐾(𝑡)𝑑𝑡
∞

𝑇

.                                         (21) 

 

Clearly, 𝐶𝐿(0, 𝐾) = 𝐶𝐹(∞, 𝐾) = 𝐶𝑁(𝐾) and 𝐶𝐿(𝑇, 0) = 𝐶𝐹(𝑇, ∞) = 𝐶𝑇(𝑇). 

 

When 𝑐𝑇 = 𝑐𝐾, differentiating 𝐶𝐿(𝑇, 𝐾) with respect to 𝑇 and setting it equal to zero, 

 

∫ [ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡 − ∫ 𝑃̅𝐾(𝑡)[ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡
∞

𝑇

𝑇

0
=

𝑐𝑇

𝑐𝑀
.                               (22) 
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There exists a unique 𝑇𝐿
∗ (0 < 𝑇𝐿

∗ < ∞) which satisfies (22), and the resulting cost rate is 

 

𝐶𝐿(𝑇𝐿
∗, 𝐾) = 𝑐𝑀ℎ(𝑇𝐿

∗).                                                                      (23) 

 

The optimum policy to minimize 𝐶𝐿(𝑇, 𝐾) is (𝑇𝐿
∗ = 𝑇∗, 𝐾𝐿

∗ = ∞). The optimum policy indicates 

that replacement done at time 𝑇 is more economical than that at failure 𝐾. 

 

Next, we find optimum 𝐾𝐿
∗  to minimize 𝐶𝐿(𝑇, 𝐾)  for given 𝑇 . Forming the inequality 

𝐶𝐿(𝑇, 𝐾 + 1) − 𝐶𝐿(𝑇, 𝐾) ≥ 0, 

 

∫ [𝐻̃1(𝑇, 𝐾) − ℎ(𝑡)]𝑑𝑡
𝑇

0
− ∫ 𝑃̅𝐾(𝑡)[ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡

∞

𝑇
≥

𝑐𝑇

𝑐𝑀
,                           (24) 

 

where 

𝐻̃1(𝑇, 𝐾) ≡
∫ 𝐻(𝑡)𝐾𝑑𝐹(𝑡)

∞

𝑇

∫ 𝐻(𝑡)𝐾𝐹̅(𝑡)𝑑𝑡
∞

𝑇

. 

 

Thus, the left-hand side of (24) increases strictly from that of (7). Therefore, if 𝑇 ≥ 𝑇𝑂
∗, then 

𝐾𝐿
∗ = 0, and conversely, if 𝑇 < 𝑇𝑂

∗, then optimum 𝐾𝐿
∗ (1 ≤ 𝐾𝐿

∗ < ∞) exists. 

 

The following results are obtained by comparing the policies of periodic replacement, 

replacement first and last in Sections 2 and 6: 

a) If 𝑇 < 𝑇𝑂
∗, then replacement last should be adopted. 

b) If 𝑇𝑂
∗ ≤ 𝑇 ≤ 𝑇∗, then standard periodic replacement should be adopted. 

c) If 𝑇 > 𝑇∗, then replacement first should be adopted. 

 

6.3 Numerical Examples 
Table 5 presents optimum 𝑇𝐹

∗ and 𝑇𝐿
∗
 
and their cost rates for given 𝐾 when 𝐻(𝑡) = 𝑡2.0. Table 

6 presents optimum 𝐾𝐹
∗ and 𝐾𝐿

∗
 
and their cost rates for given 𝑇 when 𝐻(𝑡) = 𝑡2.0. In Table 5, 

when 𝐾 = 5, it shows that 𝑇𝐹
∗ < 𝑇𝐿

∗ and 𝐶𝐹(𝑇𝐹
∗, 𝐾) < 𝐶𝐿(𝑇𝐿

∗, 𝐾) for 𝑐𝑇/𝑐𝑀 ≤ 4.0. In Table 6, 

it shows that 𝐶𝐹(𝑇, 𝐾𝐹
∗) > 𝐶𝐿(𝑇, 𝐾𝐿

∗) for 𝐾𝐹
∗ = ∞ and 𝐶𝐹(𝑇, 𝐾𝐹

∗) < 𝐶𝐿(𝑇, 𝐾𝐿
∗) for 0. 

 

 

 
Table 5. Optimum  𝑇𝐹

∗ and 𝑇𝐿
∗ and their cost rates for given 𝐾 when 𝐻(𝑡) = 𝑡2.0 

 

𝑐𝑇/𝑐𝑀 
𝐾 = 1 𝐾 = 5 

𝑇𝐹
∗ 𝐶𝐹(𝑇𝐹

∗, 𝐾)/𝑐𝑀 𝑇𝐿
∗ 𝐶𝐿(𝑇𝐿

∗, 𝐾)/𝑐𝑀 𝑇𝐹
∗ 𝐶𝐹(𝑇𝐹

∗, 𝐾)/𝑐𝑀 𝑇𝐿
∗ 𝐶𝐿(𝑇𝐿

∗, 𝐾)/𝑐𝑀 

2.0 1.69 3.38 1.42 2.84 1.42 2.83 1.60 3.20 

3.0 2.26 4.51 1.73 3.47 1.74 3.47 1.83 3.65 

4.0 2.82 5.64 2.00 4.00 2.02 4.03 2.05 4.09 

5.0 3.39 6.77 2.24 4.47 2.27 4.54 2.26 4.52 

6.0 3.95 7.90 2.45 4.90 2.51 5.02 2.46 4.92 

7.0 4.51 9.03 2.65 5.29 2.75 5.49 2.65 5.30 

8.0 5.08 10.16 2.83 5.66 2.98 5.96 2.83 5.66 

9.0 5.64 11.28 3.00 6.00 3.21 6.42 3.00 6.00 

10.0 6.21 12.41 3.16 6.32 3.44 6.88 3.16 6.33 
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Table 6. Optimum 𝐾𝐹
∗ and 𝐾𝐿

∗ and their cost rates for given 𝑇 when 𝐻(𝑡) = 𝑡2.0 

 
 

𝑐𝑇/𝑐𝑀 

𝑇 = 1.0 𝑇 = 5.0 

𝐾𝐹
∗ 𝐶𝐹(𝑇, 𝐾𝐹

∗)/𝑐𝑀 𝐾𝐿
∗ 𝐶𝐿(𝑇, 𝐾𝐿

∗)/𝑐𝑀 𝐾𝐹
∗ 𝐶𝐹(𝑇, 𝐾𝐹

∗)/𝑐𝑀 𝐾𝐿
∗ 𝐶𝐿(𝑇, 𝐾𝐿

∗)/𝑐𝑀 

2.0 ∞ 3.00 2 2.94 3 3.01 0 5.40 

3.0 ∞ 4.00 3 3.59 4 3.61 0 5.60 

4.0 ∞ 5.00 5 4.12 5 4.13 0 5.80 

5.0 ∞ 6.00 6 4.58 6 4.59 0 6.00 

6.0 ∞ 7.00 7 5.00 7 5.00 0 6.20 

7.0 ∞ 8.00 8 5.38 8 5.39 0 6.40 

8.0 ∞ 9.00 9 5.74 9 5.75 0 6.60 

9.0 ∞ 10.00 10 6.08 10 6.08 0 6.80 

10.0 ∞ 11.00 11 6.40 11 6.40 0 7.00 

 

 

 

 

7. Periodic Times and Failure Number 

7.1 Replacement First 
Suppose the unit is replaced at 𝑁𝑇 (𝑁 = 1, 2, … ; 0 < 𝑇 < ∞) or at failure 𝐾 (1 ≤ 𝐾 < ∞), 

whichever occurs first. Then, replacing formally 𝑇 with 𝑁𝑇 in (15), the expected cost rate is 

 

𝐶𝐹(𝑁, 𝐾) =
𝑐𝑇𝑃̅𝐾(𝑁𝑇)+𝑐𝐾𝑃𝐾(𝑁𝑇)+𝑐𝑀 ∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

𝑁𝑇

0

∫ 𝑃̅𝐾(𝑡)𝑑𝑡
𝑁𝑇

0

.                                   (25) 

 

When 𝑐𝑇 = 𝑐𝐾, forming the inequality 𝐶𝐹(𝑁 + 1, 𝐾) − 𝐶𝐹(𝑁, 𝐾) ≥ 0, 

 

∫ 𝑃̅𝐾(𝑡)[𝐻1(𝑁, 𝐾) − ℎ(𝑡)]𝑑𝑡
𝑁𝑇

0
≥

𝑐𝑇

𝑐𝑀
 ,                                                       (26) 

 

where 

 

𝐻1(𝑁, 𝐾) ≡
∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

(𝑁+1)𝑇

𝑁𝑇

∫ 𝑃̅𝐾(𝑡)𝑑𝑡
(𝑁+1)𝑇

𝑁𝑇

. 

 

Therefore, if ∫ 𝑃̅𝐾(𝑡)[ℎ(∞) − ℎ(𝑡)]𝑑𝑡
∞

0
> 𝑐𝑇/𝑐𝑀, then there exists a finite and unique 𝑁𝐹

∗ (1 ≤

𝑁𝐹
∗ < ∞) which satisfies (26), and the resulting cost rate is 

 

𝑐𝑀𝐻1(𝑁𝐹
∗ − 1, 𝐾) < 𝐶𝐹(𝑁𝐹

∗, 𝐾) ≤ 𝑐𝑀𝐻1(𝑁𝐹
∗, 𝐾).                                    (27) 

 

Furthermore, (26) becomes 

 

𝑁{𝐻[(𝑁 + 1)𝑇] − 𝐻(𝑁𝑇)} − 𝐻(𝑁𝑇) ≥
𝑐𝑇

𝑐𝑀
 ,                                      (28) 

 

as 𝐾 → ∞. Thus, if ∫ 𝑡𝑑ℎ(𝑡)
∞

0
> 𝑐𝑇/𝑐𝑀, then a unique and minimum 𝑁𝐹

∗ which satisfies (28) 

exists. Therefore, because 𝑁𝐹
∗ decreases strictly with 𝐾 to 𝑁∗, from (27), optimum policy to 

minimize 𝐶𝐹(𝑁, 𝐾) is (𝑁𝐹
∗ = 𝑁∗, 𝐾𝐹

∗ = ∞), where 𝑁∗ is given in (28). 
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7.2 Replacement Last 
Suppose the unit is replaced at time 𝑁𝑇 (𝑁 = 0, 1, 2, … ; 0 < 𝑇 < ∞) or at failure 𝐾 (0 ≤ 𝐾 <
∞), whichever occurs last. Then, replacing formally 𝑇 with 𝑁𝑇 in (21), the expected cost rate 

is 

 

𝐶𝐿(𝑁, 𝐾) =
𝑐𝑇𝑃𝐾(𝑁𝑇)+𝑐𝐾𝑃̅𝐾(𝑁𝑇)+𝑐𝑀[𝐻(𝑁𝑇)+∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

∞

𝑁𝑇
]

𝑁𝑇+∫ 𝑃̅𝐾(𝑡)𝑑𝑡
∞

𝑁𝑇

.                                    (29) 

 

When 𝑐𝑇 = 𝑐𝐾, forming the inequality 𝐶𝐿(𝑁 + 1, 𝐾) − 𝐶𝐿(𝑁, 𝐾) ≥ 0, 

 

∫ [𝐻̃1(𝑁, 𝐾) − ℎ(𝑡)]𝑑𝑡
𝑁𝑇

0
− ∫ 𝑃̅𝐾(𝑡)[ℎ(𝑡) − 𝐻̃1(𝑁, 𝐾)]𝑑𝑡

∞

𝑁𝑇
≥

𝑐𝑇

𝑐𝑀
, 

 

where 

 

𝐻̃1(𝑁, 𝐾) ≡
∫ 𝑃𝐾(𝑡)ℎ(𝑡)𝑑𝑡

(𝑁+1)𝑇

𝑁𝑇

∫ 𝑃𝐾(𝑡)𝑑𝑡
(𝑁+1)𝑇

𝑁𝑇

.                                                  (30) 

 

Therefore, if ∫ 𝑡𝑑ℎ(𝑡) > 𝑐𝑇/𝑐𝑀
∞

0
, then there exists a finite and unique minimum 𝑁𝐿

∗ (0 ≤ 𝑁𝐿
∗ <

∞) which satisfies (30), and the resulting cost rate is 

 

𝑐𝑀𝐻̃1(𝑁𝐿
∗ − 1, 𝐾) < 𝐶𝐿(𝑁𝐿

∗, 𝐾) ≤ 𝑐𝑀𝐻̃1(𝑁𝐿
∗, 𝐾).                                    (31) 

 

Furthermore, noting that the left-hand side of (30) increases strictly with 𝐾, (30) becomes 

(28).Therefore, because 𝑁𝐿
∗ increases strictly with 𝐾 from 𝑁∗, from (31), optimum policy to 

minimize 𝐶𝐿(𝑁, 𝐾) is (𝑁𝐿
∗ = 𝑁∗, 𝐾𝐿

∗ = 0), where 𝑁∗ is given in (28). 

 

 

7.3 Numerical Examples 
Table 7 presents optimum 𝑁𝐹

∗ and 𝑁𝐿
∗ and their cost rates for given 𝐾 when  𝐻(𝑡) = 𝑡2.0 and 

𝑇 = 0.1 . This shows that when 𝐾 =  1 , 𝐶𝐿(𝑁𝐿
∗, 𝐾) < 𝐶𝐹(𝑁𝐹

∗, 𝐾) , and for 𝐾 =  5 , 

𝐶𝐹(𝑁𝐹
∗, 𝐾) < 𝐶𝐿(𝑁𝐿

∗, 𝐾) when 𝑐𝑇/𝑐𝑀 < 5.0. 

 

 

 
Table 7. Optimum 𝑁𝐹

∗ and 𝑁𝐿
∗ and their cost rates for given T when 𝐻(𝑡) = 𝑡2.0 and 𝑇 = 0.1 

 

𝑐𝑇/𝑐𝑀 
𝐾 = 1 𝐾 = 5 

𝑁𝐹
∗ 𝐶𝐹(𝑁𝐹

∗, 𝐾) 𝑁𝐿
∗ 𝐶𝐿(𝑁𝐿

∗, 𝐾) 𝑁𝐹
∗ 𝐶𝐹(𝑁𝐹

∗, 𝐾) 𝑁𝐿
∗ 𝐶𝐿(𝑁𝐿

∗, 𝐾) 

2.0 15 3.38 14 2.84 14 2.83 16 3.20 

3.0 20 4.51 17 3.47 17 3.47 18 3.65 

4.0 21 5.64 20 4.00 20 4.03 20 4.09 

5.0 22 6.77 22 4.47 22 4.54 21 5.52 

6.0 22 7.90 24 4.90 25 5.02 24 4.92 

7.0 22 9.03 26 5.29 27 5.49 26 5.30 

8.0 23 10.16 27 5.66 27 5.96 28 5.66 

9.0 27 11.28 29 6.00 28 6.42 30 6.00 

10.0 27 12.41 30 6.33 29 6.88 30 6.33 
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8. Over Time and Failure Number 

8.1 Replacement First 
Suppose the unit is replaced at failure 𝐾  or at the first failure over 𝑇 , whichever occurs first 

(Nakagawa and Zhao, 2015). Then, the mean time to replacement is 

 

∫ 𝑡𝑑𝑃𝐾(𝑡)
𝑇

0
+ ∑ ∫ [

1

𝐹̅(𝑡)
∫ 𝑢𝑑𝐹(𝑢)

∞

𝑇
] 𝑑

𝑇

0
𝐾−1
𝑗=0 𝑃𝑗(𝑡) = ∫ 𝑃̅𝐾(𝑡)𝑑𝑡

𝑇

0
+

𝑃̅𝐾(𝑇)

𝑄(𝑇)
.                 (32) 

 

The expected number of failures until replacement is 

 

𝐾𝑃𝐾(𝑇) + ∑ (𝑗 + 1)𝑝𝑗(𝑇)𝐾−1
𝑗=0 = ∫ 𝑃̅𝐾(𝑡)ℎ(𝑡)𝑑𝑡

𝑇

0
+ 𝑃̅𝐾(𝑇) = ∑ 𝑃𝑗(𝑇)𝐾−1

𝑗=0 .               (33) 

 

which agrees with (32) when ℎ(𝑡) + 𝑄(𝑡) = 1. Then 

 

𝐶𝑂𝐹(𝑇, 𝐾) =
𝑐𝑂𝑃̅𝐾(𝑇)+𝑐𝐾𝑃𝐾(𝑇)+𝑐𝑀 ∑ 𝑃𝑗(𝑇)𝐾−1

𝑗=0

∫ 𝑃̅𝐾(𝑡)𝑑𝑡
𝑇

0
+𝑃̅𝐾(𝑇)/𝑄(𝑇)

,                                        (34) 

 

which agrees with 𝐶𝑂(𝑇) in (5) as 𝐾 → ∞ and agrees with 𝐶𝑁(𝐾) in (9) as 𝑇 → ∞. 

 

When 𝑐𝑂 = 𝑐𝐾, differentiating 𝐶𝑂𝐹(𝑇, 𝐾) with respect to 𝑇 and setting it equal to zero, 

 

∫ 𝑃̅𝐾(𝑡)[𝑄(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
=

𝑐𝑂

𝑐𝑀
.                                                             (35) 

 

Thus, if ∫ 𝑃̅𝐾(𝑡)[ℎ(∞) − ℎ(𝑡)]𝑑𝑡
∞

0
> 𝑐𝑂/𝑐𝑀, there exists a finite and unique 𝑇𝑂𝐹

∗  (0 < 𝑇𝑂𝐹
∗ <

∞) which satisfies (35), and the resulting cost rate is 

 

𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝐾) = 𝑐𝑀𝑄(𝑇𝑂𝐹

∗ ).                                                                  (36) 

 

Therefore, optimum policy to minimize 𝐶𝑂𝐹(𝑇, 𝐾) is (𝑇𝑂𝐹
∗ = 𝑇𝑂

∗, 𝐾𝑂𝐹
∗ = ∞), where 𝑇𝑂

∗ is given 

in (7). This optimum policy indicates that replacement done over time 𝑇 is more economical 

than that at failure 𝐾. 

 

Next, we find optimum 𝐾𝑂𝐹
∗  to minimize 𝐶𝑂𝐹(𝑇, 𝐾)  for given 𝑇 . Forming the inequality 

𝐶𝑂𝐹(𝑇, 𝐾 + 1) − 𝐶𝑂𝐹(𝑇, 𝐾) ≥ 0, 

 

𝐻2(𝑇, 𝐾) [∫ 𝑃̅𝐾(𝑡)𝑑𝑡
𝑇

0
+

𝑃̅𝐾(𝑇)

𝑄(𝑇)
] − ∑ 𝑃𝑗(𝑇)𝐾−1

𝑗=0 ≥
𝑐𝑂

𝑐𝑀
,                                          (37) 

 

where 

 

𝐻2(𝑇, 𝐾) ≡
∫ 𝐻(𝑡)𝐾−1𝑑𝐹(𝑡)

𝑇

0

∫ 𝐻(𝑡)𝐾−1𝑇

0
{∫ 𝑒−[𝐻(𝑢)−𝐻(𝑡)]∞

𝑡
𝑑𝑢}𝐹(𝑡)

. 

 

Thus, the left-hand side of (37) increases with 𝐾 to that of (7). Therefore, if 𝑇 ≤ 𝑇𝑂
∗, then 

𝐾𝑂𝐹
∗ = ∞, and conversely, if 𝑇 > 𝑇𝑂

∗, then optimum 𝐾𝑂𝐹
∗  (1 ≤ 𝐾𝑂𝐹

∗ < ∞) exists. 
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8.2 Replacement Last 
Suppose that the unit is replaced at failure 𝐾 or at the first failure over  𝑇, whichever occurs 

last (Nakagawa and Zhao, 2015). Thus, the mean time to replacement is 

 

𝑇 + ∫ 𝑃̅𝐾(𝑡)𝑑𝑡
∞

𝑇
+

𝑃𝐾(𝑇)

𝑄(𝑇)
.                                                       (38) 

 

The expected number of failures is 

 

𝐾𝑃̅𝐾(𝑇) + ∑ (𝑗 + 1)∞
𝑗=𝐾+1 𝑝𝑗(𝑇) = 𝐻(𝑇) + 1 + ∑ 𝑃̅𝑗(𝑇)𝐾−1

𝑗=1 .                                 (39) 

 

Eq. (39) agrees with (38) when ℎ(𝑡) = 𝑄(𝑡) = 1. Then 

 

𝐶𝑂𝐿(𝑇, 𝐾) =
𝑐𝑂𝑃𝐾(𝑇)+𝑐𝐾𝑃̅𝐾(𝑇)+𝑐𝑀[𝐻(𝑇)+1+∑ 𝑃̅𝑗(𝑇)𝐾−1

𝑗=1 ]

𝑇+∫ 𝑃̅𝐾(𝑡)𝑑𝑡
∞

𝑇
+

𝑃𝐾(𝑇)

𝑄(𝑇)

.                                 (40) 

 

which agrees with 𝐶𝑂(𝑇) in (5) as 𝐾 = 0 and agrees with 𝐶𝑁(𝐾) in (9) as 𝑇 → 0. 

 

When 𝑐𝑂 = 𝑐𝐾, differentiating 𝐶𝑂𝐿(𝑇, 𝐾) with respect to 𝑇 and setting it equal to zero, 

 

∫ [𝑄(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
− ∫ 𝑃̅𝐾(𝑡)[ℎ(𝑡) − 𝑄(𝑇)]𝑑𝑡

∞

𝑇
=

𝑐𝑂

𝑐𝑀
.                              (41) 

 

Thus, if ∫ 𝑡𝑑ℎ(𝑡)
𝑇

0
> 𝑐𝑂/𝑐𝑀, there exists a unique 𝑇𝑂𝐿

∗  (0 < 𝑇𝑂𝐿
∗ < ∞) which satisfies (41), and 

the resulting cost rate is 

 

𝐶𝑂𝐿(𝑇𝑂𝐿
∗ , 𝐾) = 𝑐𝑀𝑄(𝑇𝑂𝐿

∗ ).                                                                   (42) 

 

Furthermore, letting 𝐿1(𝐾; 𝑇)  be the left-hand side of (41), 𝐿1(𝐾; 𝑇) − 𝐿1(𝐾 + 1; 𝑇) > 0 , 

𝐿1(𝐾; 𝑇) decreases strictly with K from the left-hand side of (7). Thus, 𝑇𝑂𝐿
∗  increases with 𝐾 to 

𝑇𝑂
∗  given in (7). Therefore, optimum policy to minimize 𝐶𝑂𝐿(𝑇, 𝐾) is (𝑇𝑂𝐿

∗ = 𝑇𝑂
∗, 𝐾𝑂𝐿

∗ = 0), 

where 𝑇𝑂
∗ is given in (7). This optimum policy indicates that replacement done over time 𝑇 is 

more economical than that at failure 𝐾. 

 

Next, we find optimum 𝐾𝑂𝐿
∗  to minimize 𝐶𝑂𝐿(𝑇, 𝐾)  for given 𝑇 . Forming the inequality 

𝐶𝑂𝐿(𝑇, 𝐾 + 1) − 𝐶𝑂𝐿(𝑇, 𝐾) ≥ 0, 

 

𝐻̃2(𝑇, 𝐾) [𝑇 + ∫ 𝑃̅𝐾(𝑡)𝑑𝑡
∞

𝑇
+

𝑃𝐾(𝑇)

𝑄(𝑇)
] − [𝐻(𝑇) + 1 + ∑ 𝑃𝑗(𝑇)𝐾−1

𝑗=1 ] ≥
𝑐𝑂

𝑐𝑀
 ,                (43) 

 

where 

 

𝐻̃2(𝑇, 𝐾) ≡
∫ 𝐻(𝑡)𝐾−1𝑑𝐹(𝑡)

∞

𝑇

∫ 𝐻(𝑡)𝐾−1{∫ 𝑒−[𝐻(𝑢)−𝐻(𝑡)]∞

𝑡
}𝑑𝐹(𝑡)

∞

𝑇

.                                        (44) 

 

Thus, the left-hand side of (43) increases with K from 
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𝐻̃2(𝑇, 1) [𝑇 +
1

𝑄(𝑇)
] − 𝐻(𝑇) − 1 > 𝑇𝑄(𝑇) − 𝐻(𝑇), 

 

which agrees with (7). Letting 𝑇̃𝑂 be a solution of 

 

𝐻̃2(𝑇, 1) [𝑇 +
1

𝑄(𝑇)
] − 𝐻(𝑇) − 1 =

𝑐𝑂

𝑐𝑀
,                                            (45) 

 

then 𝑇̃𝑂 < 𝑇𝑂
∗ . Therefore, if 𝑇 ≥ 𝑇̃𝑂 , then 𝐾𝑂𝐿

∗ = 0, and conversely, if 𝑇 < 𝑇̃𝑂 , then optimum 

𝐾𝑂𝐿
∗  (1 ≤ 𝐾𝑂𝐿

∗ < ∞) exists. 

 

8.3 Numerical Examples 
Table 8 presents optimum 𝑇𝑂𝐹

∗  and 𝑇𝑂𝐿
∗  and their cost rates for given 𝐾 when 𝐻(𝑡) = 𝑡2.0, This 

shows that when 𝐾 = 5 , 𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝐾) < 𝐶𝑂𝐿(𝑇𝑂𝐿

∗ , 𝐾)  for 𝑐𝑂/𝑐𝑀 ≤ 4.0 , and 𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝐾) >

𝐶𝑂𝐿(𝑇𝑂𝐿
∗ , 𝐾) for 𝑐𝑂/𝑐𝑀 ≥ 5.0. 

 

 
Table 8. Optimum 𝑇𝑂𝐹

∗  and 𝑇𝑂𝐿
∗  and their cost rates for given 𝐾 when 𝐻(𝑡) = 𝑡2.0 

 

𝑐𝑂

/𝑐𝑀 

𝐾 = 1 𝐾 = 5 

𝑇𝑂𝐹
∗  

𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝐾)

/𝑐𝑀 
𝑇𝑂𝐿

∗  
𝐶𝑂𝐿(𝑇𝑂𝐿

∗ , 𝐾)
/𝑐𝑀 

𝑇𝑂𝐹
∗  

𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝐾)

/𝑐𝑀 
𝑇𝑂𝐿

∗  
𝐶𝑂𝐿(𝑇𝑂𝐿

∗ , 𝐾)
/𝑐𝑀 

2.0 1.45 3.38 1.16 2.89 1.16 2.89 1.35 3.21 

3.0 2.11 4.51 1.52 3.50 1.52 3.50 1.61 3.66 

4.0 2.76 5.64 1.82 4.02 1.83 4.04 1.87 4.10 

5.0 3.44 6.77 2.09 4.48 2.12 4.55 2.11 4.52 

6.0 4.14 7.90 2.33 4.90 2.40 5.03 2.34 4.92 

7.0 4.89 9.03 2.56 5.29 2.68 5.49 2.56 5.30 

8.0 5.70 10.16 2.77 5.66 2.95 5.96 2.77 5.66 

9.0 6.59 11.28 2.97 6.00 3.22 6.42 2.97 6.00 

10.0 7.59 12.41 3.17 6.32 3.50 6.88 3.17 6.33 

 

 

 

Table 9 presents optimum 𝐾𝑂𝐹
∗  and 𝐾𝑂𝐿

∗  and their cost rates for given 𝑇  when 𝐻(𝑡) = 𝑡2.0 . 

Noting that 1 ≤ 𝑇∗ ≤ 3.16 in Table 9 for 𝑚 = 2, when 𝑐𝑂/𝑐𝑀 = 10.0, 𝐾𝑂𝐹
∗ = ∞  and 𝐾𝑂𝐿

∗ = 0, 

and for 2 ≤ 𝑐𝑂/𝑐𝑀 ≤ 10.0, when 𝑇 =  1.0, 𝐾𝑂𝐹
∗ = ∞, and when 𝑇 =  5, 𝐾𝑂𝐿

∗ = 0. 

 

 
Table 9. Optimum 𝐾𝑂𝐹

∗  and 𝐾𝑂𝐿
∗  and their cost rates for given 𝑇 when 𝐻(𝑡) = 𝑡2.0 

 

𝑐𝑂

/𝑐𝑀 

𝑇 = 1.0 𝑇 = 5.0 

𝐾𝑂𝐹
∗  

𝐶𝑂𝐹(𝑇, 𝐾𝑂𝐹
∗ )

/𝑐𝑀 
𝐾𝑂𝐿

∗  
𝐶𝑂𝐿(𝑇, 𝐾𝑂𝐿

∗ )
/𝑐𝑀 

𝐾𝑂𝐹
∗  

𝐶𝑂𝐹(𝑇, 𝐾𝑂𝐹
∗ )

/𝑐𝑀 
𝐾𝑂𝐿

∗  
𝐶𝑂𝐿(𝑇, 𝐾𝑂𝐿

∗ )
/𝑐𝑀 

2.0 ∞ 2.89 0 2.89 2 3.01 0 5.48 

3.0 ∞ 3.62 3 3.58 3 3.61 0 5.68 

4.0 ∞ 4.34 4 4.12 4 4.13 0 5.87 

5.0 ∞ 5.07 5 4.58 5 4.59 0 6.07 

6.0 ∞ 5.79 6 5.00 6 5.00 0 6.26 

7.0 ∞ 6.52 7 5.39 7 5.39 0 6.46 

8.0 ∞ 7.24 8 5.75 8 5.75 0 6.66 

9.0 ∞ 7.96 9 6.08 9 6.08 0 6.85 

10.0 ∞ 8.69 10 6.40 10 6.40 0 7.05 
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9. Conclusions 
We have summarized several extended replacement models with number of failures in this paper: 

(i) The standard periodic replacement model with times 𝑛𝑇 in (Barlow and Proschan, 1965; 

Nakagawa, 2005); (ii) Replacement is done at the first failure over 𝑇. (iii) Replacement is done at 

failure number 𝐾. (iv) Replacement is done at the next periodic time overt periodic times 𝑛𝑇 

when more than 𝐾 failures have arrived. (v) Replacement is done at time 𝑇 or at failure number 

𝐾, whichever occurs first, or whichever occurs last. (vi) Replacement is done at time 𝑁𝑇 or at 

failure number 𝐾, whichever occurs first, or whichever occurs last. (vii) Replacement is done at 

failure number 𝐾 or at the first failure over 𝑇, whichever occurs first, and whichever occurs last. 

Decision variables 𝑇, 𝑁 and 𝐾 of replacement policies have been optimized analytically and 

computed numerically. 

 

It has been shown that optimum time in (ii) is less than or equal to that in (i) and the policy in (i) 

is more economical than that in (ii). When the number of failures 𝐾 has been considered in (iii), 

its comparison with (i) is discussed from the optimization in (v), which indicates that replacement 

done at 𝑇 is more economical than that at 𝐾. The overtime replacement in (vii) also shows that 

replacement done at failure 𝐾  is not so economical. Comparisons of the approaches of 

whichever occurs first and last in (v), (vi) and (vii) indicates that both have advantage and 

disadvantage in cost, and the analytical discussions show that we can compare the replacement 

policies from the optimizations of their integrated models. 
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