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Abstract 

Component importance analysis is to measure the effect on system reliability of component reliabilities, and is used to 

the system design from the reliability point of view. On the other hand, to guarantee high reliability of real-time 

computing systems, redundancy has been widely applied, which plays an important role in enhancing system reliability. 

One of commonly used type of redundancy is the standby redundancy. However, redundancy increases not only the 

complexity of a system but also the complexity of associated problems such as common-mode error. In this paper, we 

consider the component importance analysis of a real-time computing system with warm standby redundancy in the 

presence of Common-Cause Failures (CCFs). Although the CCFs are known as a risk factor of degradation of system 

reliability, it is difficult to evaluate the component importance measures in the presence of CCFs analytically. This 

paper introduces a Continuous-Time Markov Chain (CTMC) model for real-time computing system, and applies the 

CTMC-based component-wise sensitivity analysis which can evaluate the component importance measures without any 

structure function of system. In numerical experiments, we evaluate the effect of CCFs by the comparison of system 

performance measure and component importance in the case of system without CCF with those in the case of system 

with CCFs. Also, we compare the effect of CCFs on the system in warm and hot standby configurations. 

 

Keywords- Component importance measures, Standby redundancy, Real-time computing system, Common-cause 

failure, Markov chains. 

 

 

 

1. Introduction 
Nowadays, real-time computing systems are widely used in our daily lives, e.g., Anti-Lock 

Braking System (ABS) in cars, telephone networks, and patient care systems. A real-time 

computing system is a system in which timeliness is as important as correctness of its outputs 

(Laplante, 1997). A delayed output in real-time systems is not acceptable even if it has a correct 

value. Thus, the reliability of these systems is more important. To guarantee high reliability of 

real-time computing systems, redundancy has been widely applied, which is defined as the use of 

additional components or subsystems beyond the number actually required for the system to 

operate reliably, and plays an important role in enhancing system reliability. However, 

redundancy increases not only the complexity of a system, but also the complexity of associated 

problems such as common-mode error. In such systems, it is necessary to ensure that the critical 

components in the system are operational with high reliability. To detect the critical components 

in the system, the sensitivity analysis is effective. The sensitivity analysis is a method to estimate 

the magnitude of deviations of performance indices when system configuration changes. 

Generally, the parametric sensitivity is considered, which is the first derivatives of performance 

indices with respect to model parameters. The parametric sensitivity can also be applied to 

optimizing system performance by combining the mathematical programming as well as the 

evaluation of effects on parameters. Nevertheless, in the reliability engineering, the component 

importance analysis is more preferred than the parametric sensitivity analysis. The component 

importance analysis, called the component-wise sensitivity analysis, is to estimate the first 
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derivatives of reliability measures of system with respect to reliability measures of components. 

Thus the component importance analysis can detect the critical components from the reliability 

point of view directly. 

 

On the other hand, the system failures are always caused by the dependent failures among 

components in practice, such as the Common-Cause Failures (CCFs). The CCF is defined as any 

condition or event that affects several components inducing their simultaneous failures or 

malfunction (Fricks and Trivedi, 1997), and is synonymous with the simultaneous failures or 

multiple failures. When CCF occurs, all the components affected by the common cause event will 

fail. In fact, the dependent failure is known as a risk factor of the degradation of system reliability, 

and makes it difficult to evaluate the component importance measures analytically. In the past, 

some researches considered the real-time computing systems with failure dependencies. For 

example, Fricks and Trivedi (Fricks and Trivedi, 1997) studied the effect of failure dependencies 

in a real-time computing system using Stochastic Petri Nets (SPNs) and Continuous-Time 

Markov Chains (CTMCs). Also, they classified some different types of failure dependencies that 

can arise in the reliability model of real-time computing system, and illustrate how several of the 

failure dependencies can be incorporated in SPN model. Based on their research, it is realized that 

failure dependencies highly influence the system reliability and that failure dependencies 

therefore never should be ignored. 

 

Moreover, Fricks and Trivedi (Fricks and Trivedi, 2003) considered three kinds of component 

importance measures for Markov Reward Model (MRM), in contrast to the common method of 

computing importance measures using combinatorial models (e.g., Fault Tree (FT) and Reliability 

Block Diagram (RBD)) and structure function which represents the relationship between 

components failures and system failure. Pan and Nonaka (Pan and Nonaka, 1995) presented a 

quantitative method to evaluate the importance of each CCF event. More precisely, they divided 

the CCFs into two groups; one with a clear relationship between the causes and effects and the 

other with no such relationship. For the first group of CCFs, they evaluate the structure function 

importance and probability importance of the common root cause events modeled using FT. On 

the other hand, they considered the Birnbaum importance for the second group of CCFs which are 

achieved by using parametric model. Furthermore, Zheng et al. (Zheng et al., 2015) applied a 

novel component-wise sensitivity analysis to derive the availability upgrading functions under 

which components are statistically independent and described by general CTMCs. In their paper, 

the presented method can derive the component importance measures only from a CTMC model 

without any structure function of system. Furthermore, in Zheng et al. (Zheng et al., 2015), they 

introduced a CTMC model for a real-time computing system with a hot standby redundancy in 

the presence of CCFs, and applied the CTMC-based component-wise sensitivity analysis to 

evaluate three kinds of importance measures. 

 

This paper is an extension work of Zheng et al. (Zheng et al., 2015). In Zheng et al. (Zheng et al., 

2015), we have considered the real-time computing system in a hot standby configuration. In the 

hot standby redundancy, the redundant component is working in parallel with the active 

components. Thus the redundant component is able to take over the functions of the active 

component in very short time. However one of the disadvantages of the hot standby redundancy 

configuration is that the redundant component is subject to aging to the same extent as the active 

one, that means, during operation, the redundant component accumulates life-cycle operational 

hours that ultimately lead to the failure of that component (Ayers, 2012). Absolutely, the failure of 

redundant component decreases the system reliability of real-time computing system. To address 
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this problem, we consider the warm standby redundancy configuration in which redundant 

component is partially active and can take over the functions of the active component in a short 

time. Therefore, this paper considers the real-time computing system in a warm standby 

configuration, which is represented by hybrid model consisting of RBD and CTMCs. The RBD is 

top level description for the system that illustrates how components and subsystem reliabilities 

contribute to the success or failure of a system. The RBD allow us to model the failure 

relationships of complex systems, but cannot be used to describe the dynamic reliability behavior 

of systems. On the other hand, the CTMC can well describe the dynamic behavior of system, and 

is used to model three subsystems in the real-time computing system. Based on these models, we 

evaluate three kinds of importance measures considered by Fricks and Trivedi (Fricks and Trivedi, 

2003) of system components and subsystems. Also, we evaluate the effect of CCFs by the 

comparison of system performance measure and component importance in the case of system 

without CCF with those in the case of system with CCFs, and compare the warm and hot standby 

configurations. 

 

The rest of this paper is organized as follows. Section 2 introduces the real-time computing 

system in a warm standby configuration. In particular, we model the failure relationships of 

system using RBD, and describe three subsystems modeled by CTMCs. In Section 3, we evaluate 

the system reliability from structure functions and CTMC analysis respectively. Section 4 is 

devoted to sensitivity analysis of reliability. In Section 5, we evaluate three kinds of importance 

measures based on structure functions and Markov-based component-wise sensitivity analysis. 

Section 6 is devoted to numerical experiments. Finally, we conclude this paper with some 

remarks in Section 7. 

 

 
 

Fig. 1. The architecture of real-time computing system presented by Fricks et al. (Fricks and Trivedi, 1997) 
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2. Real-Time Computing System 
Consider the real-time computing system presented by Fricks and Trivedi (Fricks and Trivedi, 

1997) as shown in Fig. 1. In the system, there are three Processing Modules (PMs), Two Shared 

Memories (SMs), and two digital switches (DSs). Each processing module consists of 

processor(s), cache and local memories, power source, interface drives, and control circuitry. The 

communication among these processing modules is performed through shared memories where 

each processing module can read and store values, and the data transfer is achieved by using a 

parallel interconnecion bus. Additionally, the I/O bus interconnects the processing modules to 

external interface devices, and the Analog-to-Digital (A/D) and Digital-to-Analog (D/A) 

converters are connected directly to a dual I/O bus to provide redundant data/control path to the 

processing modules. Digital switches broadcast all data received from the I/O bus to all 

processing modules simultaneously. 

 

Moreover, there is a control module in the system, which is responsible for selecting which of the 

online processor modules effectively controls the physical process. And the digital switches 

enforce the directives of the control module, that is, all processor modules may receive data from 

the physical process at any time, but only one can send control signals to the process. The system 

can be primarily divided into three subsystems: PM, SM, and DS subsystems, which are 

implemented by redundancy schemes. 

 

2.1 Redundancy Schemes 
Redundancy is defined as the use of additional components or subsystems beyond the number 

actually required for the system to operate reliably, and is commonly used in system design to 

enhance system reliability, especially when it is difficult to increase component or subsystem 

reliability itself (Kuo and Zhu, 2012). In general, there are two types of redundancy: (i) active 

redundancy, where all ( 2)n   components in a parallel system are used simultaneously and 

only one component needs to be functioning in order for the system to function; and (ii) passive 

(standby) redundancy, in which components are set to have two states (active and standby). In 

this case, the standby components are applied only when an active component fails. Besides, a 

sensing and switching mechanism is used to monitor the operation of the active component. 

There are three types of standby redundancy shown below (Kuo and Zhu, 2012): 

 

 Hot standby: Standby component is also called active redundant component which has the 

same failure rate as the active one. 

 

 Cold standby: Standby component does not fail while in standby state, i.e., the failure rate of 

cold standby component is zero. 

 

 Warm standby: Standby component is not an active component but may fail while in the 

standby condition due to dormant failure, i.e., the failure rate of warm standby component is 

between 0 and the failure rate of active component. 

 

In the system, the PM subsystem is implemented by a pair-and-a-spare fault-tolerant scheme 

(Johnson, 1988) with a warm standby configuration. Concretely, two processor modules operate 

online in synchrony, and a spare module runs simultaneously with the pair modules but will not 

process data or requests. However, data is mirrored in real time, thus both processor modules 

have identical data. Upon failure of the pair modules, the spare one immediately takes over, 
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replacing the pair modules. On the other hand, the parallel (active) redundancy schemes are 

adopted to operate all the other critical system components (e.g., shared memories, input/output 

(I/O) bus, and digital switches). 

 

 

 
 

Fig. 2. RBD of the real-time computing system 

 

 

Fig. 2 shows the RBD of the real-time computing system. The system is considered operational as 

long as there is one operational critical component in each subsystem: Processor Module (PM), 

Shared Memory (SM), and Digital Switch (DS). Also, we assume that there is a single infallible 

repair station for each component. 

 

2.2 Subsystem Models 
In Fricks and Trivedi (Fricks and Trivedi, 1997), the behaviors of all subsystems are described by 

CTMCs which are commonly used to represent the variations caused by failures and repairs of 

components in the system structure. In particular, we consider the CCFs occurring among the 

components in PM subsystem. 

 

2.2.1 Common-Cause Failure 
As mentioned before, the Common-Cause Failure (CCF) is defined as any condition or event that 

affects several components inducing their simultaneous failure or malfunction. Generally, there 

are three types of common-cause failures, that is (i) human errors, which can result in damage to 

equipment and property or disruption of scheduled operations of the system; (ii) system 

environment, including the characteristics of the environment where the system operates and the 

natural factors such as earthquake, fire, and flood; and (iii) intercomponent, which means that the 

failure of a component may affect adversely other components as a result of a chain reaction or 

domino effect. 

 

Since it is difficult to measure the probability of common cause event accurately, the parametric 

approach such as 𝛽-factor model (Fleming, 1975; Hughes, 1987; Rausand and Høyland, 2004), 

α-factor model (Mosleh et al., 1994), has been widely used to quantitatively analyze the failure 

dependency model. These parameter values are given based on engineering experience and the 

published statistics of common cause failures. In this paper, the 𝛽-factor model is applied to 

describe the intercomponent failure dependency, due to its simplicity. 
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2.2.2 𝛽-Factor Model 
The 𝛽-factor model was first introduced by Fleming (Fleming, 1975) and is still the most popular 

CCF model because of its simplicity, requiring only one extra parameter, 𝛽. The factor 𝛽 gives 

the probability that a failure in a specific component causes all components to fail, and 1 − 𝛽 

gives the probability that the failure will involve just the component. Suppose that 𝜆𝑖 is the 

independent failure rate which will not cause other component’ s failure, and 𝜆𝑐 is the common 

cause failure rate which denotes all the component' s failures caused by a shared cause event. 

Then the total failure rate 𝜆 of a particular component can be written as the sum of independent 

and common cause failure contributions: 

 

.i c                                                                      (1) 

 

Thus 𝛽 is defined as the fraction of the total failure rate attributable to common cause failure: 

 

.c


                                                                     (2) 

 

It then follows 

 

(1 ) ,i                                                                    (3) 

 

.c                                                                      (4) 

 

For example, consider two redundant components A and B. It is clear that, 𝛽𝐴 = 𝛽𝐵 in the case 

that components A and B are identical. However, dissimilar components may have different 

failure rates and different beta factors. 

 

2.2.3 PM Subsystem 
The CTMCs of PM subsystem are depicted in Fig. 3 and 4. More precisely, Fig. 3 illustrates the 

Markov model for PM subsystem without CCF. For the system with CCFs, the Markov model is 

shown in Fig. 4. In these figures, white and gray nodes represent active and failure states 

respectively. Table 1 shows the state notations which based on the current conditions of 

components. Concretely, each state is indicated by 3 characters. The first character means the 

state of component PM1. When PM1 is active, the character is given by `A', if failed, it is `F'. The 

second character represents the state of component PM2 in the same manner as the first character. 

The third character gives the state of standby component PM3, when PM3 is in standby state, the 

character is given by `S', when in active state, it is `A', if failed, it becomes `F''. In particular, we 

also define the states of simultaneous failures of components for the case that CCFs occur in the 

PM subsystem shown in Table 1. 

 

The model parameters are represented in Table 2. For example, 1/𝜆𝑎 is Mean Time to Failure 

(MTTF) of an active component PM, and then 𝜆𝑎 is a failure rate which is a transition rate in the 

CTMC. For components PMs, we assume that they have the same beta factor 𝛽 which gives the 

probability that a failure in one component causes all components to fail. As seen in Fig. 4, the 

transitions of simultaneous failures of all PMs and two PMs are highlighted by dashed lines. 
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Fig. 3. CTMC for PM subsystem without CCF 

 

 

 
 

Fig. 4. CTMC for PM subsystem in presence of CCFs 

 

 

Table 1. The states of PM subsystem 
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Table 2. Model parameters 

 

 
 

 

2.2.4 SM and DS Subsystems 
Assume that there is no CCF occurring in the SM and DS subsystems. Then we have the 4-state 

CTMC models represented in Fig. 5 for SM and DS subsystems. In this figure, the state notations 

are given in the same manner as the PM subsystem, and shown in Table 3. The parameters of the 

4-state CTMC models are also given in Table 2. 

 

 
 

Fig. 5. CTMC of SM/DS subsystem. 

 

 

 

Table 3. The states of SM/DS subsystem 

 

 
 

 

3. Reliability Function 

3.1. Structure Function 
The structure function is a binary function that indicates the state of the system (success or 

failure) given the state of each component (Jensen and Bard, 2003). Given the structure function 

of a system, we can compute its reliability. Generally, the structure function can be derived from 

FT and RBD. 

 

Let 
1 2 3 1 2 1 2( , , , , , , )PM PM PM SM SM DS DSx x x x x x xx  be the state vector of real-time computing 

system, and the 𝑘-th element of x  is a binary variable which represents the condition of 

component 𝑘, 𝑘 ∈ {𝑃𝑀1, 𝑃𝑀2, 𝑃𝑀3, 𝑆𝑀1, 𝑆𝑀2, 𝐷𝑆1, 𝐷𝑆2}: 
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1, if component is operational,

0, if component is fail d .

 

e
k

k
x

k


 


                                       (5) 

 

The structure function represents the relationship between component failures and system failure. 

In general, the structure function is defined by 

 

1, if system is operational,
( )

0, if system is failed.



 


x                                             (6) 

 

For example, consider a system consisting of 𝐾 components. If the system is a series system, 

namely, the system failure occurs when any component fails, the structure function is given by 

 

1 2( ) .Kx x x x                                                             (7) 

 

If the system failure occurs only when all the components fail, so-called parallel system, then the 

structure function is given below, 

 

1 2( ) 1 (1 )(1 ) (1 ).Kx x x     x                                              (8) 

 

According to the RBD in Fig. 2, we obtain the structure function of real-time computing system 

as follow,  

 

))1)(1(1))(1)(1(1))(1)(1)(1(1()( 2121321 DSDSSMSMPMPMPM xxxxxxxx  . (9) 

 

Let  P tx  be a certain probability mass function of the system being in state x  at time t. Then 

the reliability function of system can be computed by 

 

( ) [ ( )] ( ) ( ),R t E P t 


  x

x

x x                                                 (10) 

 

where   is the state space of the system as shown in Table 4. Note that in this table, ( )kR t  

indicates the reliability of component 𝑘 at time 𝑡. 

 

Using Eq. (10), we have the system reliability function ( )SR t : 

 

1 2 3 1 2 1 2( ) 1 ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ,( )( )( )S PM PM PM SM SM DS DSR t R t R t R t R t R t R t R t            (11) 
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Table 4. Parallel-series reliability function 

 

 
 

 

where, in general ( ) 1 ( )k kR t R t  . In practice, the above equation is often called the structure 

function which represents the effect of components reliabilities on the system reliability. 

 

3.2 CTMC Analysis 
Suppose two components A and B connected in a series configuration shown in Fig. 6, and the 

CTMC generator matrices of them are given as follows: 

 

11 12

21 22

a a
A

a a

 
  
 

and
11 12

21 22

  .
b b

B
b b

 
  
 

                                           (12) 

 

 

 
 

Fig. 6. RBD of components A and B in series configuration 

 

 

Then the tensor product C A B   is given by 

 

11 12

21 22

.
a B a B

C A B
a B a B

 
    

 
                                                  (13) 

 

In the case of CTMC, the tensor sum of matrices A and B is defined in terms of tensor products 

(Plateau and Stewart, 2000) as 

 

2 1
,n nA B A B    I I                                                     (14) 

 

where 𝑛1 is the order of A, 𝑛2 is the order of B, and 𝐈𝑛𝑖
 is the identity matrix of order 𝑛𝑖. 
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Let ,  ,  PM SM DSQ Q Q  be the CTMC generator matrices for PM, SM, and DS subsystems, 

respectively. Then we have the composite CTMC generator for the real-time computing system 

by using the tensor sum of matrices 

 

.S PM SM DS  Q Q Q Q                                                     (15) 

 

Generally, in the availability modeling of CTMC, the states of system can be classified into two 

sets; U , the set of up (operational) states in which the system is available; and D , the set of 

down (failed) states in which the system is unavailable. We define 𝑈𝑘 and 𝐷𝑘 as the sets of 

states where the component 𝑘 is up or down, respectively. Also, 𝑈𝑆 and 𝐷𝑆 are the sets of 

states where the system is up or down. Then the reward vectors for component 𝑘 and system can 

be defined by 

 

 

1, ,
[ ]

0

 

,  ,

k

k i

k

Ui

i D


 


r  and 

1, ,
[ ]

0

 

,  ,

S

S i

S

Ui

i D


 


r                                   (16) 

 

respectively, where [∙]𝑖 means the 𝑖-th element of a vector. Using the reward vectors, the 

reliability functions for component 𝑘 and system are given by 

 

( ) ( )   , ( ) ( ) ,S S k kR t t R t t π r π r                                              (17) 

 

where ( )tπ  is the state probability vector which can be computed by solving the following 

Kolmogorov differential equation (Trivedi, 2001) 

 

   ( ) ( ) ;  given (0) ,S

d
t t

dt
π π Q π                                               (18) 

 

in above equation, (0)π  is a given initial probability vector. 

 

The solution of Eq. (18) at any time point 𝑡 is a transient solution of CTMC, and can also be 

represented by 

 

( ) (0)exp( ) .St t π Qπ                                                        (19) 

 

 

4. Sensitivity Analysis of Reliability 
Sensitivity analysis is an important tool for the system design, and regularly defined as the first 

partial derivative of reliability with respect to model parameters. Thus, the sensitivity of 

reliability indicates the rate of variation of outcome measure with respect to input factor. This 

section deals with the sensitivity analysis of reliability function for the Markov model. 
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Let 𝜃 be a model parameter of CTMC model. In general, the variation of 𝜃 will affect the 

transient solution ( )tπ  and the associated transient reward. Thus, the parametric sensitivity is 

given by the first derivative of ( )tπ  with respect to 𝜃 and the sensitivity function follows that 

 

( . , ) ( )t t






s π                                                            (20) 

 

Then the sensitivity of reliability function, 𝑅𝑆(𝑡), with instantaneous reward, 
Sr , is given by 

 

( ) ( , ) ( ) .S S SR t t t
 

 
 

 
r π rs                                               (21) 

 

Note that the above sensitivity function of reliability becomes simple when the reward vector is 

not sensitive to the parameter 𝜃. By taking account of the first derivative of sensitivity function 

as in Eq. (20) with respect to 𝑡, then using Eq. (18), the following ordinary differential equation 

(ODE) is obtained, 

 

( , ) ( , ) ( ) , (0, ) (0        ) .S S

d
t t t

dt
  

 

 
   

 
s s Q π Q s π 0                    (22) 

 

We then integrate Eq. (18) into the above ODE, and obtain 

 

( , ) ( , ) ( ),
d

t t
dt

  π π Q                                                      (23) 

 

 ( , ) ( ), ( , ) , ( ) .
 

 

 

S S

S

t t t   

 
   
  
 

Q Q
π s Q

Q

π                                (24) 

 

Since the diagonal elements of ( )Q  are same as those of ,SQ  we can apply the 

uniformization (Zheng et al., 2013) to the following matrix exponential form: 

 

 ( , ) (0, )exp ( ) .t t  π π Q                                                   

(25) 

 

Likewise, the sensitivities of subsystem reliability functions with respect to model parameters can 

also be computed by using the above method. 

 

5. Component Importance Analysis 

5.1. Birnbaum Importance Measure 
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Birnbaum (Birnbaum, 1968) defined the component importance from the reliability point of view. 

In Birnbaum (Birnbaum, 1968), the component importance is defined by the first derivative of 

system reliability function with respect to the component reliability: 

 

( )
( ) .

( )

S
k

k

R t
RIB t

R t





                                                           (26) 

 

Let ( )k x  be the first derivative of structure function with respect to the state condition of 

component 𝑘: 

 

( )
( ) .k

kx









x
x                                                              (27) 

 

By integrating Eqs. (10) and (27) into Eq. (26), then Birnbaum importance becomes 

 

( ) [ ( )] ( ) ( ).k k kRIB t E P t 


  x

x

x x                                             (28) 

 

In general, we compute the RIB by using the first derivative of system reliability with respect to 

the component reliability after obtaining the system reliability structure function as in Eq. (11). 

 

5.1.1 Case I: There is no CCF Occurring in the System 
Suppose that there is no CCF in the real-time computing system, that is, all components are 

statistically independent, and the CTMC of PM subsystem is shown as in Fig. 3. Thus the 

sensitivities of system performance index with respect to component performance indices can be 

obtained from the structure function analytically. For example, for the component PM1 in the 

system without CCFs, then using Eq. (11), the Birnbaum reliability importance of component 

PM1 is given by 
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



     

    (29) 

 

where the reliability of each component can computed from Markov analysis. 

 

5.1.2 Case II: CCFs Occur Among Components in the PM Subsystem 
However, in practice, the system failure often occurs due to the CCFs. For example, the real-time 

computing system where the intercomponent dependent failures occur among the components in 

PM subsystem as seen in Fig. 4. In such case, we cannot obtain the above sensitivities from 

structure function analytically. Then we consider the Markov-based component-wise sensitivity 

analysis (Zheng et al., 2015), which can be used to compute ( ) /S kR t R   directly based on 

Markov chains. Concretely, for the real-time computing system with components PM1, PM2, 
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PM3, SM1, SM2, DS1, and DS2, and model parameter vector 
1( , , )m  θ , we compute 

21

1 1 1

21
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        

z J                           (30) 

 

where the sensitivities of reliabilities of components (or subsystems) and system are obtained by 

using the sensitivity analysis described in Section 4. 

 

Then the estimate of 1 2( ) ( ( ), , ( ))T

PM DSt RIB t RIB t RIB  is given by 

 

 
1

( ) ( )    ( ) ( ) ( ).T T

R R R Rt t t t t


 J J J zRIB                                        (31) 

 

5.2 Criticality Importance Measure 
The criticality measure was proposed by Henley and Kumamoto (1981) which means the 

probability that, when the system fails, the failure of component 𝑘 becomes a cause of the 

system failure. They defined the criticality importance of component 𝑘 as a fractional sensitivity 

given by 

 

( ) ( )
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                                                    (32) 

 

where ( )kF t  and ( )SF t  are the unreliability functions of component 𝑘 and system at time 𝑡 

respectively, and follows 

 

( ) 1 ( ), ( ) 1 ( ).k k S SF t R t F t R t                                                (33) 

 

Similarly, according to Frank (1978), the Eq. (32) can also be represented by the reliability 

functions of system and component, i.e., 
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Essentially, these measures can be computed from  kRIB t , i.e., 
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( ) ( ), ( ) ( ).
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5.3 Upgrading Function 
The upgrading function is the parametric sensitivity function with respect to a failure rate (Fricks 

and Trivedi, 2003). According to the definition, we have the reliability upgrading function (RIU) 

for component 𝑘: 
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k S
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



                                                    (36) 

 

where 
k  is the failure rate of component 𝑘. 

 

In fact, the failure rates of components in the system where CCFs occur change as time increases. 

Thus, we use the time-dependent failure rate, i.e.,  ( ) ( ) / / ( )k k kt dR t dt R t   . Generally, the 

relationship between reliability function and failure rate is given by 
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Also, the sensitivity of 𝑅𝑘(𝑡) with respect to 𝜆𝑘(𝑡) is 
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Based on the time-dependent failure rate, RIU can be obtained by 

 

 ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ).

( ) ( )

k S k S k k S
k k

S k S k k S k

k S
k k k

S k

t R t t R t R t t R t
RIU tR t

R t t R t R t t R t R t

R t R t
t t t t RICR t

R t R t



  

 

 

   
   

   


   



              (39) 

 

In the Markov chain, the failure rate of component 𝑘 is 
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( ) .

( )

k
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t
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t
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π Qr
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                                                          (40) 

 

6. Numerical Illustration 
In this section, we illustrate the quantitative component analysis of real-time computing system in 

a warm standby configuration. Concretely, we consider two cases as mentioned in Section 5.1, 

which are shown below: 

 Case I: There is no CCF occurring in the system. 
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 Case II: CCFs occur among components in the PM subsystem. 

For the systems in which components are statistically independent, the common method using 

combinatorial models (e.g., FT and RBD) and structure function, as well as the Markov-based 

component-wise sensitivity analysis method, can be applied to compute the importance measures 

(Zheng et al., 2015). For the systems with CCFs case, the Markov-based component-wise 

sensitivity analysis is applied. Moreover, based on the numerical results, we evaluate the effect of 

CCFs on system performance and component importance, in contrast to the effect of CCFs on the 

system in a hot standby configuration in Zheng et al. (Zheng et al., 2015). The model parameters 

are given in Table 5. 
 

 

Table 5. Model parameters 

 

 
 

 

 

 

6.1 Reliability Evaluation 

6.1.1 Reliability for Warm Standby Assumption 

 

 
(a) For components                   (b) For subsystems and system 

 

Fig. 7. Reliabilities of all components, subsystems, and system with warm standby as a function of time 

under two cases 

 

 

In Fig. 7, we plot the time-dependent reliability curves for all components, subsystems, and 

system with warm standby redundancy under both cases I (no CCF) and II (CCFs occur). 

According to the reliability curves in Fig. 7(a), component PM3 is the most reliable component, 

and component SM is the least reliable one. The curves of component SM (DS) under two cases 

are the same. In either case, 𝑅𝑆𝑀1(2)(𝑡) < 𝑅𝐷𝑆1(2)(𝑡) < 𝑅𝑃𝑀1(2)(𝑡) < 𝑅𝑃𝑀3(𝑡), 𝑡 ≠ 0, due to 
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𝜆𝑚 > 𝜆𝑑 > 𝜆𝑎 > 𝜆𝑠. For subsystems, obviously, the PM subsystem has higher reliability than 

others, thus it is the most reliable one because of pair-and-a-spare fault-tolerant scheme, e.g., in 

the case of system without CCF, the reliability of PM subsystem is quite high and approximately 

equal to 1 before 4200t   hours. However, the SM subsystem is more prone to failures due to 

the unreliable SM components. More precisely, the reliabilities of components, subsystems, and 

system decrease as time increases under both two cases. In either of the cases, the reliability of 

component SM decreases sharply with increasing time, because of the highest failure rate, and the 

reliability of component PM3 decreases relatively slowly which is a warm spare having low 

failure rate. 

 

In addition, we see that, the reliabilities of components PMs among which CCFs occur become 

smaller, compared to the reliabilities of PMs under the case of no CCF at the same time. This is 

due to the fact that, CCFs increase the risk of failure of all PMs, thereby decreasing their 

reliabilities. Therefore, the reliabilities of PM subsystem and whole system are also affected by 

the CCFs, and decrease (see Fig. 7(b)). 

 

Moreover, since there is no CCF occurring in the SM subsystem, the variation in reliability of 

component SM under the two cases are the same, regardless of whether CCFs occur in the system 

or not. The same conclusion can be obtained when considering the DS subsystem. 

 

For instance, Tables 6 and 7 show the reliabilities of components, subsystems and system with 

warm standby redundancy at time 8000t   hours under different cases, respectively. From 

these tables, we see that, in either case, the warm standby component PM3 has the highest 

reliability due to the lowest failure rate in inactive state, and the PM subsystem is the most 

reliable subsystem. In addition, the reliabilities of components PMs among which CCFs occur 

become smaller, compared to the reliabilities of PMs in the case of system without CCF. For 

example, the CCFs drop the reliability of component PM3 from 0.8636083  to 0.8430424 , 

with a decrease of 2.38%  which is larger than the decrease ratio of component PM1 (2) 

reliability (1.86% ). The reasons are twofold; (i) the risk of failure becomes higher due to CCFs; 

(ii) the warm standby component has a dormant failure rate, may fail while in inactive state, and 

the failure rate will increase when becoming active. In addition, the CCFs drops the system 

reliability from 0.8248021  to 0.7997196 , with a decrease of 3.04% . As mentioned earlier, 

since the CCFs are assumed to occur only in the PM subsystem, the reliabilities of SM and DS 

subsystems are not affected by the CCFs. 

 

6.1.2 Reliability for Hot Standby Assumption 
On the other hand, the reliabilities of components, subsystems and system with hot standby 

 

 
Table 6. Reliabilities of components at time 𝑡 = 8000 hours (warm standby) 
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Table 7. Reliabilities of subsystems and system at time 𝑡 = 8000 hours (warm standby) 

 

 
 

 

 

Table 8. Reliabilities of components at time 𝑡 = 8000 hours (hot standby) 

 

 
 

 

 

Table 9. Reliabilities of subsystems and system at time 𝑡 = 8000 hours (hot standby) 

 

 
 

 

 

 

redundancy at time 8000t   hours under different cases are shown in Tables 8 and 9. In the hot 

standby redundancy, the standby component is also called active redundant component which has 

the same failure rate as active component. Also, in the real-time computing system, the 

components in the same subsystem are considered to be identical, thus, for each subsystem, we 

only consider one component in the hot standby case. In comparison with the reliability of PM 

subsystem with warm standby in Table 7, the reliability of PM subsystem with hot standby at 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                 

Vol. 3, No. 2, 64–89, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.2-007 

82 

8000t   hours is lower (see Table 9), because the standby component in the hot standby is 

active even in standby state and has the same failure rate as active component. In addition, 

compared to the values in Tables 6 and 7, we see that the effect of CCFs on decreasing the 

reliability of component PM and system is larger in the hot standby case. For example, in the 

system with hot standby, the CCFs drops the system reliability from 0.8222639  to 

0.7926480 , with a decrease of 3.60% . 

 
Table 10. Failure rates of components at time 𝑡 = 8000 hours (warm standby) 

 

 
 

 

 

Table 11. Failure rates of components at time 𝑡 = 8000 hours (hot standby) 

 

 
 

 

 

6.1.3 Effect of CCFs on Failure Rates 
Furthermore, to investigate how CCFs affect the reliabilities of components, we evaluate the 

time-dependent failure rates of components shown in Tables 10 and 11. Concretely, Table 10 

presents the failure rates of components in the system with warm standby redundancy at time 

8000t   hours, and Table 11 gives the results for hot standby case. From Table 10, we find that 

the failure rate of component PM3 in the case of system without CCF at 8000t   hours 

increases due to the characteristic of warm standby, whereas the failure rates of other components 

remain the same, since the lifetime of each one of them follows an exponential distribution with a 

constant failure rate, in another words, these components' failure rates are time-independent. The 

failure rates of components PMs in the system with CCFs are higher than those in the case that 

there is no CCF in the system. This helps to confirm that the CCFs can increase the risk of failure 

of relevant components thereby increasing their failure rates. For example, the CCFs bring the 

failure rate of component PM3 from 2.281302e-05  to 2.530558e-05 , with an increase of 

9.85% . Compared to the failure rate of active component PM in the system with warm standby 

redundancy, we see that, the CCFs have a larger effect on the failure rate of active component PM 

in the hot standby case (see Table 11). Obviously, the failure rates of components SM and DS 

remain the same regardless of whether the CCF occurs. 
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6.2 Importance Measures 
This section considers the three types of importance measures (i.e., Birnbaum Importance (RIB), 

criticality importance (RICR and RICF), upgrading function (RIU)) of all components in the 

system with warm standby configuration under cases I (no CCF) and II (CCFs occur). In 

particular, these importance measures of components in the system with hot standby 

configuration are also taken into account. Based on numerical results, we compare the importance 

of components in the warm and hot standby configurations. Note that, RIB, RICR, and RIU are 

defined by the reliability functions of components and system, whereas RICF is another criticality 

measure defined by the unreliability functions that quantifies the probability of a component 

being responsible for system failure before a given time instant, that is, 𝑅𝐼𝐶𝐹𝑘(𝑡) gives the 

probability of component 𝑘 being responsible for system failure before 𝑡 hours. 

 

6.2.1 Importance Measures for Warm Standby Assumption 
Tables 12 and 13 separately illustrate the importance measures of components and subsystems in 

the system with warm standby at time 8000t   hours in Case I. For Case II, the importance 

measures are given in Tables 15 and 16. As seen in Table 12, 𝑅𝐼𝐶𝐹𝑆𝑀(8000) says that there is a 

48.64%  probability of component SM being responsible for system failure before 8000  hours. 

However, 𝑅𝐼𝐶𝐹𝑃𝑀3(8000) indicates that the probability of component PM3 being responsible 

for system failure before 8000  hours is only 2.38% . This implies that component SM is more 

important than component PM3, since a component that is frequently critical should be 

considered important. In addition, based on the values of RICF, we rank the components in order 

of importance (smaller number represents higher importance) shown in Table 14(a), that is, 

component SM is the most important one, followed by the component DS, then the component 

PM1 (2), and finally the component PM3. This means that, the component SM is the reliability 

bottleneck. Thus the efforts in the improvement of failure rate of component SM are more 

efficient to enhance the system reliability, because the component most susceptible to failure is 

the natural candidate for improvement. Moreover, the same conclusion appears among other 

importance measures, and the importance ranking according to other measures are also given in 

Table 14(a). 

 

 

 

 
Table 12. Importance measures of components at time 𝑡 = 8000 hours (Case I, warm standby) 

 

 
 

 

 

 

Table 13. Importance measures of subsystems at time 𝑡 = 8000 hours (Case I, warm standby) 
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Table 14. Importance ranking of components and subsystems at time 𝑡 = 8000 hours  

(Case I, warm standby) 

 

 
 

 

 

 

Table 15. Importance measures of components at time 𝑡 = 8000 hours (Case II, warm standby) 

 

 
 

 

 

 

Table 16. Importance measures of subsystems at time 𝑡 = 8000 hours (Case II, warm standby) 

 

 
 

 

 

 

Table 14(b) illustrates the importance ranking of subsystems according to the distinct measures 

shown in Table 13. From this table, we find that, there is consistency in the ranking of 

components for RIB, RICF, and RIU. From the viewpoint of RIB, RICF, and RIU, we can say 
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that, SM subsystem is the most critical one, because component SM is the most important 

component which has the highest failure rate. In contrast to the SM subsystem, PM subsystem is 

the least critical subsystem, due to the highest reliability benefiting from the pair-and-a-spare 

fault-tolerant scheme, for example, the probability of PM subsystem being responsible for system 

failure before 8000 hours is only 6.48% , which is much smaller than the probability of SM 

subsystem given by 48.64% . However, from the viewpoint of RICR, it is found that PM 

subsystem as well as DS subsystem, is as important as SM subsystem. This is explained by the 

fact that, the three subsystems are connected in the series configuration (see Fig. 2), namely, the 

system failure occurs when any subsystem fails. 

Tables 15 and 16 show the importance measures of components and subsystems in the system 

with warm standby at time 8000t   hours for the case that CCFs occur in the system. 

Compared to the importance measures of components in the case of system without CCF shown 

in Table 12, the importance of components PMs among which  CCFs occur become larger 

according to all importance measures, for example, the probability of component PM3 being 

responsible for system failure before 8000  hours is increased from 2.38%  (under Case I) to 

4.86%  (under Case II), with an increase of 50.99%  due to CCFs. However, the importance of 

components SM and DS regarding to RIB and RICF decrease in the CCFs case. For instance, the 

CCFs drop the probability of component SM being responsible for system failure from 48.64%  

to 41.25% , with a decrease of 15.18% . In addition, the importance of components SM and DS 

regarding to RICR and RIU do not change. 

 

From Table 16, we find that the importance of PM subsystem with respect to RIB remains the 

same in Case II as that in Case I. This is due to two reasons; (i) all subsystems are connected in a 

series configuration, thus the RIB of PM subsystem is defined by the product of reliabilities of 

SM and DS subsystems, according to the definition of Birnbaum importance; (ii) the reliabilities 

of SM and DS subsystems cannot affected by the CCFs. However, the importance of PM 

subsystem regarding to RICF increases largely, that is, the probability of PM subsystem being 

responsible for system failure before 8000  hours is increased from 6.48%  (under Case I) to 

18.19%  (under Case II), with an increase of 64.38%  due to CCFs. Moreover, the importance 

of SM and DS subsystems regarding to RIB and RICF decrease in the CCFs case. Furthermore, 

the importance ranking of components and subsystems remains the same as that in the case of 

system without CCF shown in Table 14. 

 

6.2.2 Importance Measures for Hot Standby Assumption 
We next consider the importance measures for system with hot standby redundancy. In such case, 

we also evaluate the effect of CCFs on component importance. The importance measures of 

components and subsystems at time 8000t   hours in the case of system without CCF are 

respectively illustrated in Tables 17 and 18. For the case of system with CCFs, we give the results 

in Tables 20 and 21. As seen in Table 17, component SM is also the most important component in 

the system with hot standby redundancy, similar to that in the warm standby case. In contrast to 

the values in Table 12, we see that the importance of components SM and DS regarding to RIB 

and RICR become smaller in the hot standby case, whereas the importance of active component 

PM with respect to each measure is higher than that in the warm standby case. From Table 18, the 

importance of SM and DS subsystems regarding to RIB and RICF also decrease slightly in the 

system with hot standby, compared to the importance measures in Table 13. However, the 

Birnbaum importance of PM subsystem with hot standby is almost the same as that of PM 

subsystem with warm standby. In addition, the probability of PM subsystem being responsible for 
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system failure before 8000  hours is increased from 6.48%  (under warm standby case) to 

7.82%  (under hot standby case), with an increase of 17.09%  due to the hot standby 

configuration. This indicates that, the PM subsystem becomes more critical in the system with hot 

standby redundancy. Besides, the importance ranking of components and subsystems are given in 

Table 19. 

 

Moreover, for the case that CCFs occur in the system, the importance measures of components 

and subsystems at time 8000t   hours are shown in Tables 20 and 21, respectively. From these 

tables, under the effects of CCFs, the importance of component PM increases largely, and the 

importance of components SM and DS decrease slightly according to the smaller values of RIB 

and RICF, compared to the values in Table 17. For example, the probability of component PM 

being responsible for system failure before 8000  hours is increased from 7.82%  (under Case 

I) to 11.02%  (under Case II), with an increase of 29.10%  due to CCFs. In addition, the CCFs 

bring the probability of PM subsystem being responsible for system failure from 7.82%  (under 

Case I) to 20.98%  (under Case II), with an increase of 62.75% . 

 

6.3 Effects of 𝜷-Factor 
In general, it is significant to investigate the change in the importance ranking of components 

resulting from the change of the value of 𝛽. Thus we consider the case that 𝛽 = 15%. The 

importance measures of components and subsystems with warm standby redundancy at time

8000t   hours are illustrated in Tables 22 and 23, respectively. Also, Table 24 presents the 

importance ranking of components and subsystems. 

 

 

 
Table 17. Importance measures of components at time 𝑡 = 8000 hours (Case I, hot standby) 

 

 
 
 

 

 

Table 18. Importance measures of subsystems at time 𝑡 = 8000 hours (Case I, hot standby) 

 

 
 

 

 

 

Table 19. Importance ranking of components and subsystems at time 𝑡 = 8000 hours (Case I, hot standby) 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                 

Vol. 3, No. 2, 64–89, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.2-007 

87 

 

 
 

 

 

Table 20. Importance measures of components at time 𝑡 = 8000 hours (Case II, hot standby) 

 

 
 

 
Table 21. Importance measures of subsystems at time 𝑡 = 8000 hours (Case II, hot standby) 

 

 
 

 
Table 22. Importance measures of components at time 𝑡 = 8000 hours (𝛽 = 15%) 

 

 
 

 
Table 23. Importance measures of subsystems at time 𝑡 = 8000 hours (𝛽 = 15%) 

 

 
 

 
Table 24. Importance ranking of components and subsystems (β=15%) 
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As has already been discussed in Section 6.2.1, the importance ranking of components and 

subsystems in the case that 𝛽 = 5% are given in Table 14. Obviously, the importance ranking of 

components and subsystems are changed in the case that 𝛽 = 15%, compared to the importance 

ranking shown in Table 14. For example, in the case that 𝛽 = 15%, the component PM3 

becomes more important than PM1 (2) according to RICR. Additionally, the PM subsystem 

becomes the most critical subsystem according to RIB and RICF. This is due to the fact that, the 

PM subsystem is more prone to failures than others caused by the CCFs with a big 𝛽 factor. It is 

thereby concluding that, the CCFs affect not only the reliabilities of components and subsystems, 

but also the importance ranking of components and subsystems. 

 

7. Conclusions 
In this paper, a Markov-based component-wise sensitivity analysis method is applied to evaluate 

the importance measures of components and subsystems thereby ranking them in order of 

importance according to distinct measures of a real-time computing system in a warm standby 

configuration. The relative importance ranking of components and subsystems helps suggest the 

most efficient way to optimize the system reliability by upgrading the weak components, and to 

diagnose system failure by generating a repair checklist for an operator to follow. In this system, 

component SM is the reliability bottleneck, thus the efforts in the improvement of failure rate of 

component SM is more efficient to enhance the system reliability. PM subsystem is the most 

reliable subsystem due to the pair-and-a-spare fault-tolerant scheme. Our numerical experiments 

show that the effect of CCFs on decreasing the reliability of component PM and system is larger 

in the hot standby case, in contrast to that in the warm standby case. In addition, the CCFs affect 

not only the reliabilities of components and subsystems, but also the importance ranking of 

components and subsystems. 

 

It is worth noting that there are still some challenges to be addressed in our future work. That is; 

(i) Investigating the importance of Common Root Cause Event (CRCE) in the real-time 

computing system where CCFs occur to find efficient defense strategies against CCFs will be 

considered; (ii) the optimization policies for maximizing the system reliability improvements 

based on the obtained importance and relative ranking of components will be studied in our future 

work. 
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