
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 9, No. 2, 224-243, 2024 

https://doi.org/10.33889/IJMEMS.2024.9.2.012 
 

 

224 | https://www.ijmems.in 

Enhanced Insurance Risk Assessment using Discrete Four-Variate Sarmanov 

Distributions and Generalized Linear Models 

 
Piriya Prunglerdbuathong 

Department of Mathematics, 

Khon Kaen University, Khon Kaen, Thailand. 

E-mail: pr.piriya@kkumail.com 

 

Tippatai Pongsart 
Department of Statistics, 

Khon Kaen University, Khon Kaen, Thailand. 

Corresponding author: tipppo@kku.ac.th 

 

Weenakorn Ieosanurak 
Department of Mathematics, 

Khon Kaen University, Khon Kaen, Thailand. 

E-mail: weenie@kku.ac.th  
 

Watcharin Klongdee 
Department of Mathematics, 

Khon Kaen University, Khon Kaen, Thailand. 

E-mail: kwatch@kku.ac.th  

 
(Received on August 16, 2023; Revised on November 6, 2023 & January 4, 2024 & January 26, 2024;  

Accepted on February 3, 2024) 

 

 

 

Abstract 

This research paper investigated multivariate risk assessment in insurance, focusing on four risks of a singular person and their 

interdependence. This research examined various risk indicators in non-life insurance which was under-writing for organizations 

with clients that purchase several non-life insurance policies. The risk indicators are probabilities of frequency claims and 

correlations of two risk lines. The closed forms of probability mass functions evaluated the probabilities of frequency claims. 

Three generalized linear models of four-variate Sarmanov distributions were proposed for marginals, incorporating various 

characteristics of policyholders using explanatory variables. All three models were discrete models that were a combination of 

Poisson and Gamma distributions. Some properties of four-variate Sarmanov distributions were explicitly shown in closed forms. 

The dataset spanned a decade and included the exposure of each individual to risk over an extended period. The correlations 

between the two risk types were evaluated in several statistical ways. The parameters of the three Sarmanov model distributions 

were estimated using the maximum likelihood method, while the results of the three models were compared with a simpler four-

variate negative binomial generalized linear model. The research findings showed that Model 3 was the most accurate of all three 

models since the AIC and BIC were the lowest. In terms of the correlation, it was found that the risk of claiming auto insurances 

was related to claiming home insurances. Model 1 could be used for the risk assessment of an insurance company that had 

customers who held multiple types of insurances in order to predict the risks that may occur in the future. When the insurance 

company can forecast the risks that may occur in the future, the company will be able to calculate appropriate insurance 

premiums. 

 

Keywords- Multivariate Sarmanov distribution, Negative binomial distribution, Generalized linear model, Non-life insurance, 

Claim frequency. 

 

 

 

1. Introduction 
Calculating the insurance premium requires evaluating the risk value related to an accident. Non-life 
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insurance firms usually focus on the risk associated with the policy contracted over a certain time period, 

sometimes one year. Because insurance companies have a duty to pay compensation to customers who 

purchase insurance claims, evaluating the risks posed by customers is extremely necessary. If customers 

hold many insurance policies with a single provider, then the company needs to prioritize these 

individuals. Therefore, analyzing the risk profiles of clients with multiple insurance policies from the 

same provider is both complex and intriguing. We integrate data from two distinct portfolios onto the auto 

and home insurance lines. It is a challenge to analyze the risk associated with customers who hold multi-

line contracts. However, a multivariate analysis of policyholders’ accident risks has not yet been 

developed. We can extend the work about this to many other research areas. This study analyzed the 

accident risk of policyholders across multiple insurance lines. The interdependence of accident rates 

indicated the behavior of customers holding several insurance policies in both motor and home insurance 

across these lines. This approach is relevant as insurance companies increasingly consider clients who 

have multiple policies with the same insurer. By performing a long-term analysis of clients’ risk behavior, 

insurers can develop comprehensive strategies for retaining valuable customers and adjust premiums 

according to actual risk profiles. To perform this kind of analysis, insurers must reevaluate and modify 

their data systems. This study presents a suitable mechanism to achieve this aim using a collection of 

readily available data. 

 

How to respond to the following query: What is the customer's accident risk if they have multiple 

insurance lines from their insurer? The answer might be achieved by using univariate generalized linear 

models (GLMs). Assuming that the client behaves independently for each line of insurance, we could 

estimate one model for each line. On the other hand, we used a multivariate generalized linear model 

(GLM) to create a joint distribution. That is specific to each client and takes into account the dependence 

between the accident risks covered by different insurance lines. The research team chose to adopt 

multivariate GLMs to jointly evaluate the dependence across multiple insurance lines. 

 

Previous analyses considered data that included various policies of the same policyholder. These policies 

represented several insurance coverages. The analysis focused on the policyholder's profitability and 

loyalty. It also took into account the overall perspective of a client of an insurance company. Table 1 

shows the related works, classified based on the number of variables and the distribution of random 

variables. 

 
Table 1. The related works classified according to the number of variables and the distribution of random variables. 

 

Number of 

variables 

Distribution Detail 

Bivariate 

models in 

auto 
insurance 

Other 

distributions 

Bolancé et al. (2008) demonstrated the application of the Conditional Tail Expectation (CTE) risk metric on a 

bivariate real dataset containing two categories of auto insurance claim expenses. They fitted several continuous 
bivariate distributions, including normal, lognormal, and skew-normal, along with an alternative log-skew-

normal to the data. Additionally, they introduced a bivariate nonparametric transformed kernel estimation. CTE 
formulas for all these distributions were provided, and numerical outcomes from the real data were analyzed and 

compared. 

Bermudez and Karlis (2011) introduced different multivariate Poisson regression models in order to relax the 

independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. 
These models had been largely ignored to date, mainly because of their computational difficulties. Finally, these 

models were applied to an automobile insurance claims database with three different types of claims. They 

analyzed the consequences for pure and loaded premiums when the independence assumption is relaxed by 
using different multivariate Poisson regression models together with their zero-inflated versions. 

Boucher and Inoussa (2014) introduced a novel approach to handling bonus-malus systems in the presence of 

panel data. This approach was exemplified using car insurance data, including a numerical example featuring 
both at-fault and non-at-fault claims from a Canadian insurance company. Although the model was applied to 

car insurance, they asserted that if any other line of business relies on past claim experience for premium 

setting, a similar method to the one proposed should be employed. 
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Table 1 continued… 
 

 

Sarmanov 

distribution 

Abdallah et al. (2016) suggested a bivariate dynamic model for claim counts, where the previous claims 

history of one type of claim is utilized to improve the prediction of another type of claim. This novel bivariate 

dynamic distribution for claim counts was founded on random effects originating from the Sarmanov family 
of multivariate distributions. Their proposed model offered enhanced flexibility in calculating predictive 

premiums, as closed-form expressions were readily obtainable for the predictive distribution, the moments, 

and the predictive moments. 

Bolancé and Vernic (2020) employed the Sarmanov distribution to establish a correlation between the number 

of claims and the respective severities of individual claims. The Poisson and Negative Binomial (NB) 

distributions were employed as marginal models for the claim count, while the Gamma and Lognormal 
distributions were utilized for modeling the cost of claims. They discussed their maximum likelihood 

estimation in the context of the Sarmanov framework. A real-world application using Spanish insurance data 

provided empirical validation. 

Vernic et al. (2022) presented such a model, which can link various kinds of marginals in flexible dependence 
structures, and was based on Sarmanov's bivariate distribution. More specifically, they utilized this 

distribution to combine the average severity and the frequency of claims. In addition, they proposed and 

demonstrated a maximum likelihood estimation approach for parameter estimation on both simulated and 
actual data. 

Sarmanov 

distribution 

with GLM 
marginals 

Bolancé et al. (2020) created a bivariate model using the Sarmanov distribution alongside marginal Beta 

GLMs, enabling us to effectively model two key variables within contemporary motor insurance telematics 
databases. Their proposal was the derivation of closed-form expressions for various important quantities, 

including the bivariate cumulative distribution function and conditioned moments, as well as covariance and 

correlation. These quantities were essential in the context of risk analysis. They demonstrated that their 
Sarmanov-Beta-GLM model provided superior fits compared to earlier proposals that also relied on the 

Sarmanov distribution. 

Alemany et al. (2021) suggested a bivariate Sarmanov model that depends on the parameters of the Box-Cox 
transformation and had a Normal GLM and a NB as marginals. Using explanatory telematic variables, they 

applied this model to investigate the frequency-severity bivariate distribution linked to a pay-as-you-drive car 

insurance portfolio. 

Bivariate 
models in 

entropy 

Sarmanov 

distribution 

Alawady et al. (2022) offered the marginal distributions of concomitants of k-record values based on 

Sarmanov family of bivariate distributions. Additionally, for this family, they derived the joint distribution of 

concomitants of k-record values. Furthermore, certain novel and practical characteristics of information 

measures were examined, including the cumulative entropy, cumulative residual entropy, inaccuracy measure, 
Shannon entropy, and cumulative residual Fisher information. Lastly, they provided several instances and 

numerical studies supporting the theoretical results. 

Barakat et al. (2022) presented the bivariate Sarmanov family. The Sarmanov family was one of the most 
adaptable and practical extended families of the conventional Farlie–Gumbel–Morgenstern family. They 

explored the distribution theory of order statistics concomitants within a specified family. They also 

investigated information measures such as Shannon entropy, inaccuracy measure, and Fisher information 
number, both theoretically and numerically. Two real-world bivariate datasets were analyzed and 

demonstrated satisfactory performance. 

Bivariate 
models in 

Local 

Government 
Property 

Insurance 

Other 

distributions 

Jeong et al. (2023) offered a regression model for multivariate claim frequency data that accounts for 

overdispersion from the unobserved heterogeneity caused by systematic effects in the data, as well as 
dependence structures across the claim count responses, which might vary in sign and range. The bivariate 

Poisson-lognormal regression model with different dispersion was taken into consideration. To determine the 

best values for the model's parameters, the researchers used a novel Monte Carlo method, which harnessed the 
power of randomness to make difficult computations more manageable. They demonstrated our methodology 

using Wisconsin Local Government Property Insurance Fund data. Their results were an adequate 

performance. 

Trivariate 
models in 

auto 

insurance 

Other 

distributions 

Shi and Valdez (2014) looked into different methods for building multivariate count models based on the 

negative binomial distribution in response to the peculiarities of an insurance dataset. The first used a blend of 

max-id copulas to directly work with discrete count data, allowing for flexible pair-wise association as well as 
tail and global dependence. The second used elliptical copulas to combine continuous data while keeping the 

original counts' dependent structure. The empirical analysis considered the claim frequency of three types of 

claims (third-party property damage, own damage, and third-party bodily injury) in a portfolio of motor 
insurance policies from a Singapore insurer. The results showed that copula-based techniques outperform the 

standard shock model. Finally, they put the various models to use in loss prediction applications. 

Trivariate 

models in 
auto and 

home 

insurance 

Sarmanov 

distribution 

with GLM 
marginals 

Bolancé and Vernic (2019) proposed using three trivariate GLMs based on the Sarmanov distribution to 
capture the dependence between accident rates in different insurance lines for each policyholder. Driven by a 

single dataset, they considered three different kinds of accident risks: two for motor vehicles and one for 

homes. The three models were ultimately compared in a quantitative manner with both the elliptical copula-
based models and the more straightforward trivariate negative binomial generalized linear model (NB GLM). 

The model 2 was the best fit. 
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Table 1 continued… 
 

Bivariate 

and trivariate 

models in 
auto 

insurance 

Sarmanov 
distribution 

with GLM 

marginals 

Wang (2023) presented the Sarmanov distribution and two-stage inference. First, they used GLMs to fit the 

marginals and extract the relevant residuals. Second, the Sarmanov family of bivariate distributions connected 

these marginals via the residuals' rank. The trivariate Sarmanov model with rank-based technique 
outperformed the bivariate Sarmanov model. 

Bivariate 
models in 

life 

insurance 

Sarmanov 
distribution 

with Phase-

Type marginal 

Moutanabbir and Abdelrahman (2022) used the bivariate Sarmanov distribution with Phase-Type marginal 
distributions to create the model. They provided several practical closed-form distributional and interest-

quantity formulations for multiple-life insurance contracts. They were able to increase the achievable 

correlation range with the implementation of this new kernel function. 

 
 

The Sarmanov distribution with GLM marginal is proper to the interested problem and improves a fit 

from the previous studies. The advantage of the Sarmanov distribution is its flexible dependent structure. 

The Sarmanov distribution is a mixed model combining the Poisson and Gamma distributions, which is 

suitable for the insurance claim data. We choose the GLM since the dataset includes the information of 

policyholders. This article presents three four-variate GLMs based on the Sarmanov distribution to model 

the joint accident rate of policyholders with diverse risk coverages, considering various assumptions for 

capturing the dependence between the number of claims in each coverage. The novelty of this research is 

studying a discrete four-variate Sarmanov distribution for three models and its parameter estimation. The 

discrete multivariate Sarmanov with NB GLM marginals was used for the first model. In contrast, the 

second model followed Abdallah et al. (2016) for the bivariate situation, with some modifications, by 

combining a multivariate Sarmanov distribution with Gamma distributed marginals with a multivariate 

model of separate Poisson distributions. The third model mixed Gamma distributions with a discrete 

multivariate Sarmanov distribution with Poisson marginals. A method based on conditional likelihood 

was used to estimate the parameters of the Sarmanov-based models which yielded comparable results to 

the maximum likelihood estimation, particularly for large datasets. Because this work has never been 

done previously, the constraints and scope of the study are discussed in the next paragraph. 

 

These three proposed Sarmanov-based models were illustrated using real-world aggregate data and 

artificial data that combined information from motor and home insurance lines. Three risk lines data were 

collected over a ten-year period from several national insurance companies in Spain. Data for the fourth 

risk line are created. We need to generate data due to a lack of available data. This dataset aggregation 

could lead to reduced numbers of zeros and increased over-dispersion but our models demonstrated 

flexibility in their marginals and dependency structure, making them suitable for more extensive and 

diverse datasets. The scope of the study are as follows: (i) all three studied models are four-variate 

discrete Sarmanov distributions with NB GLM marginals but different kernel functions. (ii) Obtaining 

statistics for a client who maintained four different types of insurance with the same company over a 

decade is challenging. Data on claims related to property damage (PD), bodily injury (BI), and home (H) 

were collected from 80,924 insurance providers in Spain who had both auto and home insurance 

agreements from 2006 to 2015. The third-party (TP) insurance is the fourth category. The count of claims 

in the TP insurance was determined using the negative binomial distribution. 

 

This paper presented a comprehensive analysis of accident risk for insurance customers who hold policies 

in four lines. By utilizing multivariate Sarmanov-based models, insurers can gain valuable insights into 

the joint risk behavior of policyholders, and design effective bonus and penalty strategies to optimize 

customer retention and premium adjustments. The numerical application of real insurance data 

highlighted the practicality and superiority of our three proposed models, emphasizing their potential 

applicability in actuarial settings. 
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The remainder of this article is organized as follows. Section 2 describes the mixed models that yielded 

three multivariate Sarmanov distributions with NB GLM marginals as well as the multivariate NB GLM. 

Aspects of the specificity of Sarmanov distributions were investigated and a technique for modeling 

estimation was suggested. Estimation parameter methods are described in section 3, with the dataset and 

numerical application outcomes, including a predictive analytic presented in section 4. Section 5 displays 

some conclusions, while the Appendix contains all the supporting tables. 

 

2. Multivariate Mixed Distribution 
Subsection 2.1 reviews the multivariate Sarmanov distribution and its properties. The multivariate NB is 

described in subsection 2.2, and three models based on Sarmanov distribution with different kernel 

functions are proposed. Marginal values of these models are considered as a multivariate negative 

binomial distribution. 

 

2.1 Multivariate Sarmanov Distribution 
Sarmanov (1966) initially proposed Sarmanov family of bivariate distributions. The multivariate 

Sarmanov distribution, suggested by Lee (1996), is a powerful tool to ensure that a model has a good fit. 

This distribution comprises both a continuous version and a discrete version. In the continuous case, a d-

variate random variable 𝒀 is assumed to be a continuous multivariate Sarmanov distribution. The joint 

probability density function (p.d.f.) of 𝒀 is defined for 𝑦 ∈ ℝ𝑑 by 

ℎ𝑆𝑎𝑟𝑚(𝑦) = ∏ ℎ𝑗(𝑦𝑗) (1 + ∑ ∑ 𝜔𝑗1⋯𝑗𝑘𝜙𝑗1(𝑦𝑗1)1≤𝑗1<⋯<𝑗𝑘≤𝑑
𝑑
𝑘=2 ⋯𝜙𝑗𝑘(𝑦𝑗𝑘))

𝑑
𝑗=1                                     (1) 

 

where, (ℎ𝑗)𝑗=1
𝑑

 are the marginal p.d.f.s, (𝜙𝑗)𝑗=1
𝑑

 are bounded non-constant kernel functions and 𝜔𝑗1⋯𝑗𝑘  

are real numbers such that 

{
∫ 𝜙𝑗(𝑦)ℎ𝑗(𝑦)ℝ

𝑑𝑦 = 0,    for 𝑗 = 1,… , 𝑑;                                                          

1 + ∑ ∑ 𝜔𝑗1⋯𝑗𝑘𝜙𝑗1(𝑦𝑗1)⋯𝜙𝑗𝑘(𝑦𝑗𝑘) ≥ 0,   ∀𝑦 ∈ ℝ
𝑑

1≤𝑗1<⋯<𝑗𝑘≤𝑑
𝑑
𝑘=2

                                              (2) 

 

The correlation coefficient between two marginal variables is associated with the parameters 𝜔𝑗,𝑘 and the 

kernel functions 𝜙𝑗 by: 

𝑐𝑜𝑟𝑟(𝑌𝑗 , 𝑌𝑘) = 𝜔𝑗,𝑘 
𝔼[𝑌𝑗𝜙𝑗(𝑌𝑗)]𝔼[𝑌𝑘𝜙𝑘(𝑌𝑘)]

√𝑉𝑎𝑟(𝑌𝑗)𝑉𝑎𝑟(𝑌𝑘) 
                                                                                                   (3) 

 

Several forms of the kernel function (𝜙𝑗) are satisfied by the conditions expressed in (2). This study 

considered the exponential kernel, i.e., 

𝜙𝑗(𝑦) = 𝑒
−𝑦 − ℒ𝑌𝑗(1)                                                                                                                                (4) 

 

where, ℒ𝑌𝑗  is the Laplace transform of 𝑌𝑗 ∶  ∫ 𝑒−𝑡𝑦𝑗ℎ𝑗(𝑦𝑗)𝑑𝑦𝑗
∞

0
. 

 

Equation (4) is bounded as it considers only non-negative values. Furthermore, it is decreasing, therefore 

𝑚𝑗 = 𝑖𝑛𝑓𝑦≥0𝜙𝑗(𝑦) = 𝜙𝑗(∞) = −ℒ𝑦𝑗(1), and 

𝑀𝑗 = 𝑠𝑢𝑝𝑦≥0𝜙𝑗(𝑦) = 𝜙𝑗(0) = 1 − ℒ𝑦𝑗(1), 𝑗 = 1,… , 𝑑                                                                            (5) 

 

This study focused on the four-variate dataset and considered the four-variate Sarmanov distribution, with 

joint p.d.f. described by: 
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ℎ𝑆𝑎𝑟𝑚(𝒚) = ∏ ℎ𝑗(𝑦𝑗) × {1 + ∑ 𝜔𝑗,𝑘𝜙𝑗(𝑦𝑗)𝜙𝑘(𝑦𝑘)1≤𝑗<𝑘≤4
4
𝑗=1  

+∑ ∑ ∑ 𝜔𝑗1,𝑗2,𝑗3𝜙𝑗1(𝑦𝑗1)𝜙𝑗2(𝑦𝑗2)𝜙𝑗3(𝑦𝑗3) + 𝜔1,2,3,4∏ 𝜙𝑖(𝑦𝑖)
4
𝑖=1

4
<𝑗3≤4

3
<𝑗2

2
1≤𝑗1

}                                       (6) 

 

Proposition 1. The dependent parameter 𝜔1,2,3,4 can be calculated by the following formula: 

𝜔1,2,3,4 =
𝔼[∏ (𝑌𝑗−𝔼𝑌𝑗)

4
𝑗=1 ]

∏ 𝔼[𝑌𝑗∅𝑗(𝑌𝑗)]
4
𝑗=1

                                                                                                                             (7) 

 

Therefore, the conditions (2) in the four-variate version make these restrictions: 

1 + 𝜔𝑗,𝑘𝜀𝑗𝜀𝑘 ≥ 0, 1 ≤ 𝑗 < 𝑘 ≤ 4                                                                                                                (8) 

1 + ∑ 𝜔𝑗,𝑘𝜀𝑗𝜀𝑘1≤𝑗<𝑘≤4 + 𝜔𝑗,𝑘,ℎ𝜀𝑗𝜀𝑘𝜀ℎ ≥ 0, 1 ≤ 𝑗 < 𝑘 < ℎ ≤ 4                                                                (9) 

1 + ∑ 𝜔𝑗,𝑘𝜀𝑗𝜀𝑘1≤𝑗<𝑘≤4 + ∑ ∑ ∑ 𝜔𝑗1,𝑗2,𝑗3𝜀𝑗1𝜀𝑗2𝜀𝑗3 +𝜔1,2,3,4
4
<𝑗3≤4

3
<𝑗2

2
1≤𝑗1

𝜀1𝜀2𝜀3𝜀4 ≥ 0                            (10) 

 

where, 𝜀𝑗 ∈ {𝑚𝑗, 𝑀𝑗}, 𝑗 = 1,2,3,4. 

 

In the discrete version, the joint probabilities of the multivariate Sarmanov distribution are defined at 𝒏 ∈
ℕ𝑑 by, 

Pr𝑆𝑎𝑟𝑚(𝑵 = 𝒏) = ∏ Pr(𝑁𝑗 = 𝑛𝑗)  × (1 + ∑ ∑ 𝜔𝑗1⋯𝑗2𝜙𝑗1(𝑛𝑗1)⋯𝜙𝑗𝑘(𝑛𝑗𝑘)1≤𝑗1<⋯<𝑗𝑘≤𝑑
𝑑
𝑘=2 )𝑑

𝑗=1           (11) 

 

where, (Pr(𝑁𝑗 = 𝑛𝑗))𝑗=1
𝑑

 are the marginal p.f.s. 

 

2.2 Multivariate Negative Binomial Distribution 
The multivariate negative binomial distribution is the well-known multivariate Poisson GLM mixed with 

Gamma distribution. It is beneficial to eliminate one of the Poisson properties so that its mean is equal to 

its variance. 

 

To achieve this, let the random variable (r.v.) 𝑁𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑗𝜃) with 𝜇𝑗 a fixed positive parameter, 𝑗 =

1,… , 𝑑, and 𝜃 as an unpredictability parameter which can represent the risk habit of the policyholder. 

Then, the parameter 𝜃 can be a positive continuous r.v. Θ. Further, assume that conditionally on Θ = 𝜃, 
the random variables 𝑁𝑗 are independent for each 𝑗 = 1,… , 𝑑. 

 

According to assumptions above, we let Θ~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛼) and 𝛼 > 0, be a Gamma distributed r.v., then 

the joint probability function (p.f.) of 𝐍 = (𝑁1, … , 𝑁𝑑) becomes: 

Pr(𝐍 = 𝐧) = ∫ Pr (𝐍 = 𝐧|Θ = θ)h(θ)𝑑𝜃
∞

0
  

=
𝛼𝛼

Γ(𝛼)
(∏

𝜇
𝑗

𝑛𝑗

𝑛𝑗!
𝑑
𝑗=1 )∫ 𝜃∑ 𝑛𝑗+𝛼−1

𝑑
𝑗=1

∞

0
× 𝑒

−𝜃(∑ 𝜇𝑗+𝛼
𝑑
𝑗=1 )

𝑑𝜃  

=
Γ(𝛼+∑ 𝑛𝑗

𝑑
𝑗=1 )

Γ(𝛼)∏ 𝑛𝑗!
𝑑
𝑗=1

(
𝛼

𝛼+∑ 𝜇𝑘
𝑑
𝑘=1

)
𝛼

×∏ (
𝛼

𝛼+∑ 𝜇𝑘
𝑑
𝑘=1

)
𝑛𝑗
, 𝐧 ∈ ℕ𝒅𝑑

𝑗=1                                                                     (12) 

 

where, ℎ is probability density function (p.d.f.) of Θ. The equation (12) is multivariate NB distribution 

(see, e.g., Johnson et al., 1997): 

𝑁𝐵𝑑 (𝛼;
𝛼

𝛼+∑ 𝜇𝑗
𝑑
𝑗=1

, (
𝜇𝑗

𝛼+∑ 𝜇𝑗
𝑑
𝑗=1

)
𝑗=1,…,𝑑

). 
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For convenient calculation, we give the index to specify information on the exposure of each person; that 

is, letting by 𝐼  the number of each insured under study and using the subscript 𝑖 associated with the 

individual, we have that for 𝐍𝑖 = (𝑁𝑖1, … , 𝑁𝑖𝑑), 𝑖 = 1,… , 𝐼. 

𝐍𝑖~𝑁𝐵𝑑 (𝛼;
𝛼

𝛼+∑ (𝐸𝑖𝑘𝜇𝑖𝑘)
𝑑
𝑘=1

, (
𝐸𝑖𝑗𝜇𝑖𝑗

𝛼+∑ (𝐸𝑖𝑘𝜇𝑖𝑘)
𝑑
𝑘=1

)
𝑗=1,…,𝑑

)                                                                              (13) 

 

The correlation coefficient between two marginals for each 𝑖 is: 

𝑐𝑜𝑟𝑟(𝑁𝑖𝑗 , 𝑁𝑖𝑘) = √
𝐸𝑖𝑗𝜇𝑖𝑗𝐸𝑖𝑘𝜇𝑖𝑘

(𝐸𝑖𝑗𝜇𝑖𝑗+𝛼)(𝐸𝑖𝑘𝜇𝑖𝑘+𝛼)
, 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑑                                                                         (14) 

 

2.3 Multivariate Sarmanov Distributions with GLMs Marginals 
All three models are described from Bolancé and Vernic (2019). Three Sarmanov-based four-variate 

models were proposed with identical NB GLM marginals but various dependence architectures. The 

initial model (Model 1) was a basic four-variate Sarmanov distribution with NB GLM marginals, while 

the other two models (Model 2 and Model 3) were created by combining three independent Poisson 

distributions with a Sarmanov distribution with Gamma marginals. 

 

2.3.1 Model 1 
For each 𝑖, we assume that 𝐍𝑖 is the discrete multivariate Sarmanov distribution as shown in (11) with 

Negative Binomial GLM marginals. 

 

Let 𝑿𝑖 = (1, 𝑋𝑖1, … , 𝑋𝑖𝑝)
′
 be a column vector with values of the explanatory variables of person 

𝑖 𝑎𝑛𝑑 𝜷𝑗 = (𝛽0𝑗, 𝛽1𝑗, … , 𝛽𝑝𝑗)′ be the parameter vector related to the random discrete variables 𝑁𝑖𝑗. The 

link function 𝑿𝑖
′𝜷𝑗 = ln(𝜇𝑖𝑗) or 𝜇𝑖𝑗 = exp(𝑿𝑖

′𝜷𝑗), with 𝐸𝑖𝑗 as the exposure. The 𝑗th marginal distribution 

of the 𝑖th person then becomes the mixed Poisson-Gamma distribution (or negative binomial): 

Pr(𝑁𝑖𝑗 = 𝑛) =
Γ(𝛼𝑗 + 𝑛)

𝑛! Γ(𝛼𝑗)
(

𝛼𝑗

𝛼𝑗 + 𝐸𝑖𝑗𝜇𝑖𝑗
)

𝛼𝑗

(
𝐸𝑖𝑗𝜇𝑖𝑗

𝛼𝑗 + 𝐸𝑖𝑗𝜇𝑖𝑗
)

𝑛

 

=
Γ(𝛼𝑗+𝑛)

𝑛!Γ(𝛼𝑗)
 
𝛼𝑗

𝛼𝑗exp{𝑛(ln(𝐸𝑖𝑗+𝑿𝑖
′𝜷𝑗))}

(𝛼𝑗+exp{ln(𝐸𝑖𝑗)+𝑿𝑖
′𝜷𝑗})

𝛼𝑗+𝑛
                                                                                                             (15) 

 

where, 𝛼𝑗 > 0 is the Gamma parameter. Thus 𝑁𝑖𝑗~𝑁𝐵(𝛼𝑗, 𝜏𝑖𝑗), where, 𝜏𝑖𝑗 =
𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗
. 

 

The kernel function is 𝜙𝑖𝑗(𝑛𝑗) = 𝑒
−𝑛𝑗 − ℒ𝑁𝑖𝑗(1), 𝑗 = 1,2,3,4, where, ℒ𝑁𝑖𝑗(1) = (

𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗(1−𝑒
−1)
)
𝛼𝑗

. 

 

Next proposition is described the boundary conditions of the dependent parameters 𝜔𝑗,𝑘  

where, 1 ≤ 𝑗 < 𝑘 ≤ 4, 𝜔𝑗,𝑘,ℎ where 1 ≤ 𝑗 < 𝑘 < ℎ ≤ 4, and 𝜔1,2,3,4. 

 

Proposition 2. The following conditions must be fulfilled for all 𝑖 = 1,… , 𝑛: 

max
1≤𝑗<𝑘≤4

{
−1

𝑀𝑖𝑗𝑀𝑖𝑘
,
−1

𝑚𝑗𝑚𝑘
} ≤ 𝜔𝑗,𝑘 ≤ min

1≤𝑗<𝑘≤4
{
−1

𝑀𝑖𝑗𝑚𝑘
,
−1

𝑚𝑗𝑀𝑖𝑘
}, 

max
1≤𝑗<𝑘<ℎ≤4

{
−1

∏ 𝑀𝑖𝑙𝑛
3
𝑛=1

−
𝜔𝑗,𝑘

𝑀𝑖ℎ
−
𝜔𝑗,ℎ

𝑀𝑖𝑘
−
𝜔ℎ,𝑘
𝑀𝑖𝑗

,
−1

𝑚𝑗𝑚𝑘𝑀𝑖ℎ
−
𝜔𝑗,𝑘

𝑀𝑖ℎ
−
𝜔𝑗,ℎ

𝑚𝑘
−
𝜔𝑘,ℎ
𝑚𝑗

} ≤ 𝜔𝑗,𝑘,ℎ, 
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𝜔𝑗,𝑘,ℎ ≤ min
1≤𝑗<𝑘<ℎ≤4

{
−1

∏ 𝑚𝑙𝑛
3
𝑛=1

−
𝜔𝑗,𝑘

𝑀𝑖ℎ
−
𝜔𝑗,ℎ

𝑀𝑖𝑘
−
𝜔ℎ,𝑘
𝑀𝑖𝑗

,
−1

𝑀𝑖𝑗𝑀𝑖𝑘𝑚ℎ
−
𝜔𝑗,𝑘

𝑚ℎ
−
𝜔𝑗,ℎ

𝑀𝑖𝑘
−
𝜔𝑘,ℎ
𝑀𝑖𝑗

}, 

max
1≤𝑗<𝑘<𝑝≤4
ℎ=10−𝑗−𝑘−𝑝

{
 
 

 
 

−1

∏ 𝑚𝑙
4
𝑙=1

− ∑
𝜔𝑗,𝑘

𝑚𝑝𝑚ℎ1≤𝑗<𝑘≤4
𝑝,ℎ≠𝑗,𝑘

− ∑
𝜔𝑗,𝑘,𝑝

𝑚ℎ1≤𝑗<𝑘<𝑝≤4
ℎ=10−𝑗−𝑘−𝑝

,
−1

∏ 𝑀𝑖𝑙
4
𝑙=1

− ∑
𝜔𝑗,𝑘

𝑀𝑖𝑝𝑀𝑖ℎ1≤𝑗<𝑘≤4
𝑝,ℎ≠𝑗,𝑘

− ∑
𝜔𝑗,𝑘,𝑝

𝑀𝑖ℎ1≤𝑗<𝑘<𝑝≤4
ℎ=10−𝑗−𝑘−𝑝

,
−1

𝑚𝑗𝑚𝑘𝑀𝑖𝑝𝑀𝑖ℎ
−

𝜔𝑗,𝑘

𝑀𝑖𝑝𝑀𝑖ℎ
−

𝜔𝑗,𝑝

𝑚𝑘𝑀𝑖ℎ
−

𝜔𝑗,ℎ

𝑚𝑘𝑀𝑖𝑝
−

𝜔𝑘,𝑝
𝑚𝑗𝑀𝑖ℎ

−
𝜔𝑘,ℎ
𝑚𝑗𝑀𝑖𝑝

−
𝜔𝑝,ℎ

𝑚𝑗𝑚𝑘
−
𝜔𝑗,𝑘,𝑝

𝑀𝑖ℎ
−
𝜔𝑗,𝑘,ℎ

𝑀𝑖𝑝
−
𝜔𝑗,𝑝,ℎ

𝑚𝑘
−
𝜔𝑘,𝑝,ℎ

𝑚𝑗

}
 
 

 
 

≤ 𝜔1,2,3,4, 

𝜔1,2,3,4 ≤ min
1≤𝑗<𝑘<𝑝≤4
ℎ=10−𝑗−𝑘−𝑝

{
−1

𝑚𝑗𝑀𝑖𝑘𝑀𝑖𝑝𝑀𝑖ℎ
−

𝜔𝑗,𝑘

𝑀𝑖𝑝𝑀𝑖ℎ
−

𝜔𝑗,𝑝

𝑀𝑖𝑘𝑀𝑖ℎ
−

𝜔𝑗,ℎ

𝑀𝑖𝑘𝑀𝑖𝑝
−

𝜔𝑘,𝑝

𝑚𝑗𝑀𝑖ℎ
−

𝜔𝑘,ℎ
𝑚𝑗𝑀𝑖𝑝

−
𝜔𝑝,ℎ

𝑚𝑗𝑀𝑖𝑘

−
𝜔𝑗,𝑘,𝑝

𝑀𝑖ℎ
 −
𝜔𝑗,𝑘,ℎ

𝑀𝑖𝑝
−
𝜔𝑗,𝑝,ℎ

𝑀𝑖𝑘
−
𝜔𝑘,𝑝,ℎ

𝑚𝑗
,

−1

𝑀𝑖𝑗𝑚𝑘𝑚𝑝𝑚ℎ
 −

𝜔𝑗,𝑘

𝑚𝑝𝑚ℎ
−

𝜔𝑗,𝑝

𝑚𝑘𝑚ℎ
−

𝜔𝑗,ℎ

𝑚𝑘𝑚𝑝
−

𝜔𝑘,𝑝

𝑀𝑖𝑗𝑚ℎ

−
𝜔𝑘,ℎ
𝑀𝑖𝑗𝑚𝑝

−
𝜔𝑝,ℎ

𝑀𝑖𝑗𝑚𝑘
−
𝜔𝑗,𝑘,𝑝

𝑚ℎ
−
𝜔𝑗,𝑘,ℎ

𝑚𝑝
−
𝜔𝑗,𝑝,ℎ

𝑚𝑘
−
𝜔𝑘,𝑝,ℎ

𝑀𝑖𝑗
} , 

where, 𝑚𝑗 = −(
𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗(1−𝑒
−1)
)
𝛼𝑗
, 𝑀𝑖𝑗 = 1 − (

𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗(1−𝑒
−1)
)
𝛼𝑗
, 𝑗 = 1,2,3,4, 𝑖 = 1,… , 𝑛,  and, 

𝜔𝑗,𝑘 = 𝜔𝑘,𝑗. 

 

2.3.2 Model 2 
First, let 𝑁𝑖  be a d-variate Poisson distribution with independent marginal, which is mixed with a d-

variate Sarmanov distribution with Gamma marginal. This model is a form of that proposed by Abdallah 

et al. (2016) in the bivariate version with a distinct parameterization. Then, Gamma (𝛼𝑗 , 𝛼𝑗) marginals are 

used for the Sarmanov distribution, and the p.f. of the mixed distribution exposure is given by solving the 

following equation: 

P(𝑁𝑖 = 𝑛) = ∫ …
∞

0 ∫ (∏ 𝑒−𝐸𝑖𝑗𝜇𝑖𝑗𝜃𝑗
(𝐸𝑖𝑗𝜇𝑖𝑗𝜃𝑗)

𝑛𝑗

𝑛𝑗!
𝑑
𝑗=1 ) ×

∞

0
ℎ𝑆𝑎𝑟𝑚(𝜃1, … , 𝜃𝑑)𝑑𝜃1, … , 𝑑𝜃𝑑                            (16) 

 

where, ℎ𝑆𝑎𝑟𝑚 is obtained in (1), and ℎ𝑗 is the p.d.f. of the mixing marginal r.v. Θ𝑗~𝐺𝑎𝑚𝑚𝑎 (𝛼𝑗, 𝛼𝑗), 𝑗 =

1,… , 𝑑, and the kernel function 𝜙𝑗(𝜃𝑗) = 𝑒
−𝜃𝑗 − ℒΘ𝑗(1), where, ℒΘ𝑗 is the Laplace transform of Θ𝑗. The 

formula p.f. Pr(𝑁𝑖 = 𝑛) is also of the Sarmanov form, while the kernel functions are more complicated, 

as shown in the next proposition. 

 

Proposition 3. Assume that 𝚴  is a multivariate random count variable. If the multivariate Poisson 

distribution is blended via the means of the 𝜃𝑗𝑠 with the independent marginal 𝛮𝑗 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑗𝜃𝑗) , 𝑗 =

1,… , 𝑑,  together with a multivariate Sarmanov distribution with Gamma (𝛼𝑗, 𝛼𝑗)  marginals and 

exponential kernels, then the mixed distribution of 𝑁 has the p.f.: 
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Pr(N=n) = ∏ Pr(𝑁𝑗 = 𝑛𝑗)
𝑑
𝑗=1 × [1 + ∑ ∑ 𝜔𝑗1…𝑗𝑘 1≤𝑗1<⋯<𝑗𝑘≤𝑑

𝑑
𝑘=2 ×∏ ((

𝛼𝑗ℓ+𝜇𝑗ℓ

𝛼𝑗ℓ+𝜇𝑗ℓ+1
)
𝛼𝑗ℓ+𝑛𝑗ℓ

−𝑘
ℓ=1

(
𝛼𝑗ℓ

𝛼𝑗ℓ+1
)
𝛼𝑗ℓ
)]                                                                                                                                               (17) 

 

with marginals 𝑁𝑗  ~ 𝑁𝐵 (𝛼𝑗, 𝜏𝑗) and 𝜏𝑗 =
𝛼𝑗

𝛼𝑗+𝜇𝑗
 , 𝑗 = 1,… , 𝑑. 

 

In the four-variate case, the p.f. with the exposure for Model 2 becomes: 

Pr(Ni=n) = ∏ Pr(𝑁𝑖𝑗 = 𝑛𝑗)
4
𝑖=1 [1 + ∑ 𝜔𝑗1,𝑗2 ∏ ((

𝛼𝑗𝑘+𝐸𝑖𝑗𝑘𝜇𝑖𝑗𝑘
𝛼𝑗𝑘+𝐸𝑖𝑗𝑘𝜇𝑖𝑗𝑘+1

)
𝛼𝑗𝑘+𝑛𝑗𝑘

− (
𝛼𝑗𝑘
𝛼𝑗𝑘+1

)
𝛼𝑗𝑘
)2

𝑘=11≤𝑗1<𝑗2≤4 +

∑ ∑ ∑ 𝜔𝑗1,𝑗2,𝑗3∏ ((
𝛼ℓ+𝐸𝑖ℓ𝜇𝑖ℓ

𝛼ℓ+𝐸𝑖ℓ𝜇𝑖ℓ+1
)
𝛼ℓ+𝑛ℓ

− (
𝛼ℓ

𝛼ℓ+1
)
𝛼ℓ
) 3

ℓ=1
4
<𝑗3≤4

3
<𝑗2

2
1≤𝑗1

+𝜔1,2,3,4∏ ((
𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗+1
)
𝛼𝑗+𝑛𝑗

−4
𝑗=1

(
𝛼𝑗

𝛼𝑗+1
)
𝛼𝑗
)]                                                                                                                                                 (18) 

 

where, as before, the marginal 𝑁𝑖𝑗  ~ 𝑁𝐵(𝛼𝑗 , 𝜏𝑖𝑗) with 𝜏𝑖𝑗 =
𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗
 , 𝑗 = 1,2,3,4. 

 

The limitations of dependent parameters are the same as those given in Proposition 2, with the maxima: 

𝑀𝑖𝑗 = (
𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗+1
)
𝛼𝑗
− (

𝛼𝑗

𝛼𝑗+1
)
𝛼𝑗

, while in the minimum case 𝑚𝑗 = −(
𝛼𝑗

𝛼𝑗+1
)
𝛼𝑗
. 

 

2.3.3 Model 3 

In the third model, 𝚴𝑗 is assumed to follow a discrete multivariate Sarmanov distribution with Poisson 

marginals mixed with independent Gamma distributions as: 

Pr (𝐍i = 𝐧) = ∫ …∫ Pr𝑆𝑎𝑟𝑚(Ni=n)
∞

0

∞

0
(∏ ℎ𝑗(𝜃𝑗)

𝑑
𝑗=1 )𝑑𝜃1, … , 𝑑𝜃𝑑                                                          (19) 

 

where, Pr𝑆𝑎𝑟𝑚(Ni=n) is the discrete multivariate Sarmanov distribution (11) with Poisson marginals 

defined by 

Pr𝑆𝑎𝑟𝑚(Ni=n) = (∏ 𝑒−𝐸𝑖𝑗𝜇𝑖𝑗𝜃𝑗
(𝐸𝑖𝑗𝜇𝑖𝑗𝜃𝑗)

𝑛𝑗

𝑛𝑗!

𝑑
𝑗=1 )  × (1 + ∑ ∑ 𝜔𝑗1…𝑗𝑘𝜙𝑗1(𝑛𝑗1)1≤𝑗1<⋯<𝑗𝑘≤𝑑

𝑑
𝑘=2 …𝜙𝑗𝑘(𝑛𝑗𝑘))      (20) 

 

with the kernel function 𝜙𝑖𝑗(𝑛𝑖𝑗) = 𝑒
−𝑛𝑖𝑗 − ℒ𝑁𝑖𝑗(1) , where, ℒ𝑁𝑖𝑗  is the Laplace transformation of a 

Poisson distribution with mean 𝐸𝑖𝑗𝜇𝑖𝑗𝜃𝑗. The mixing distributions ℎ𝑗 have Gamma (𝛼𝑗, 𝛼𝑗) distributions. 

The explicit formula of this model is shown in Proposition 4. 

 

Proposition 4. Let 𝐍 be a multivariate discrete random variable. The discrete multivariate Sarmanov 

distribution comprises Poisson marginals mixed with Gamma distribution and exponential kernels. The 

means of Poisson marginals are assumed as 𝜇𝑗𝜃𝑗, 𝑗 = 1,… , 𝑑. Then the distribution of 𝐍 has the p.f.: 

Pr(N=n) = ∏ Pr (𝑁𝑗 = 𝑛𝑗)
𝑑
𝑗=1 × [1 + ∑ ∑ 𝜔𝑗1⋯𝑗𝑘1≤𝑗1<⋯<𝑗𝑘≤𝑑

𝑑
𝑘=2 ∏ (𝑒−𝑛𝑗𝑙 −𝑘

𝑙=1

(
𝛼𝑗𝑙+𝜇𝑗𝑙

𝛼𝑗𝑙+𝜇𝑗𝑙
(2−𝑒−1)

)
𝛼𝑗𝑙+𝑛𝑗𝑙

)]                                                                                                                             (21) 

 

where, the marginals 𝑁𝑖𝑗  ~ 𝑁𝐵(𝛼𝑗, 𝜏𝑖𝑗) with 𝜏𝑖𝑗 =
𝛼𝑗

𝛼𝑗+𝜇𝑖𝑗
, 𝑗 = 1,… , 𝑑. 



Prunglerdbuathong et al.: Enhanced Insurance Risk Assessment using Discrete Four-Variate Sarmanov … 
 

 

233 | Vol. 9, No. 2, 2024 

In the four-variate case, the p.f. with the exposure for Model 3 is: 

Pr(Ni=n) = ∏ Pr (𝑁𝑖𝑗 = 𝑛𝑗)
4
𝑖=1  × [1 + ∑ 𝜔𝑗1,𝑗2∏ ((𝑒−𝑛𝑗𝑙 − (

𝛼𝑗𝑙+𝐸𝑖𝑗𝜇𝑗𝑙
𝛼𝑗𝑙+𝐸𝑖𝑗𝜇𝑗𝑙

(2−𝑒−1)
)
𝛼𝑗𝑙+𝑛𝑗𝑙

))2
𝑙=11≤𝑗1<𝑗2≤4 ] +

∑ ∑ ∑ 𝜔𝑗1,𝑗2,𝑗3∏ ((𝑒−𝑛𝑗𝑙 − (
𝛼𝑗𝑙+𝐸𝑖𝑗𝜇𝑗𝑙

𝛼𝑗𝑙+𝐸𝑖𝑗𝜇𝑗𝑙
(2−𝑒−1)

)
𝛼𝑗𝑙+𝑛𝑗𝑙

))3
𝑙=1

4
<𝑗3≤4

3
<𝑗2

2
1≤𝑗1

+𝜔1,2,3,4∏ ((𝑒−𝑛𝑗 −4
𝑗=1

(
𝛼𝑗+𝐸𝑖𝑗𝜇𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑗(2−𝑒
−1)
)
𝛼𝑗+𝑛𝑗

))                                                                                                                            (22) 

where, as above, the marginals 𝑁𝑖𝑗  ~ 𝑁𝐵(𝛼𝑗, 𝜏𝑖𝑗) with 𝜏𝑖𝑗 =
𝛼𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑖𝑗
, 𝑗 = 1,2,3,4. 

 

The ranges of dependent parameters are the same as those given in Proposition 2 with the maxima: 

𝑀𝑖𝑗 = 1 − (
𝛼𝑗+𝐸𝑖𝑗𝜇𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑗(2−𝑒
−1)
)
𝛼𝑗

, while for the minimum case 𝑚𝑗 = 𝑒
−𝑛𝑗 − (

𝛼𝑗+𝐸𝑖𝑗𝜇𝑗

𝛼𝑗+𝐸𝑖𝑗𝜇𝑗(2−𝑒
−1)
)
𝛼𝑗+𝑛𝑗

. 

 

All three ranges also rely on each customer 𝑖, with 𝑚𝑖𝑗  acquiring some value in ℕ and not by letting 

𝑛𝑖𝑗 → ∞ as before. 

 

3. Parameter Estimation for the Model 1, 2 and 3 
All three models based on the Sarmanov distribution are complicated, making the estimation of all 

parameters of the three models difficult. Therefore, estimating all parameters of the model based on the 

Sarmanov distribution requires splitting it into two parts as the marginal distribution and the dependence 

structure. Suppose the NB GLM used for marginals is the accurate model. In such a situation, the 

variance-covariance structure of the dependent variables should not impact the point estimators of the 𝛽 

parameters, which are responsible for estimating the expected claims frequency. The point estimators of 

the 𝛽  parameters produced from independent Poisson GLM, independent NB GLM, and multivariate 

Sarmanov-based models with NB GLM marginals should, thus, be substantially equal with a sufficiently 

large sample. The parameter estimation method was from Bolancé and Vernic (2019). They considered 

the trivariate Sarmanov models. 

 

Assuming these assertions, the following strategy was proposed: 

(i) The parameters 𝛽𝑗, 𝑗 = 1,2,3,4, of the marginal distribution were estimated and represented by 𝜷̂ =

(𝛽̂1, 𝛽̂2, 𝛽̂3, 𝛽̂4). 
(ii) The parameters of the dependent structure were also estimated as: 

𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝜔1,2, 𝜔1,3, 𝜔1,4, 𝜔2,3, 𝜔2,4, 𝜔3,4, 𝜔1,2,3, 𝜔1,2,4, 𝜔1,3,4, 𝜔2,3,4 and 𝜔1,2,3,4. 

 

The maximum likelihood estimation (MLE) was applied to estimating the parameters 𝛽𝑗, 𝑗 = 1,2,3,4, for 

each univariate marginal distribution. If the NB GLM model is accurate, the estimations will be without 

bias. The initial estimated vector 𝜶̂0 = (𝛼̂1
0, 𝛼̂2

0, 𝛼̂3
0, 𝛼̂4

0) , which serve as the starting points for the 

subsequent iterative algorithm and is also derived from the MLE of the univariate NB GLM.  

 

The following two conditional likelihoods: 𝐿(𝝎̂|𝜶̂, 𝜷̂) and 𝐿(𝜶̂|𝝎̂, 𝜷̂), where, 𝜶̂ = (𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4) and 

𝝎̂ = (𝜔̂1,2, 𝜔̂1,3, 𝜔̂1,4, 𝜔̂2,3, 𝜔̂2,4, 𝜔̂3,4, 𝜔̂1,2,3, 𝜔̂1,2,4, 𝜔̂1,3,4, 𝜔̂2,3,4, 𝜔̂1,2,3,4) are two vectors that provide us 

an estimates for the variance and covariance matrices, with calculated parameters established to estimate 

the dependent parameters. 
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By maximizing the conditional likelihood with the supplied parameters 𝜷̂ and 𝜶̂0, the initial values for the 

dependency parameters 𝝎̂0 = (𝜔̂1,2
0 , 𝜔̂1,3

0 , 𝜔̂1,4
0 , 𝜔̂2,3

0 , 𝜔̂2,4
0 , 𝜔̂3,4

0 , 𝜔̂1,2,3
0 , 𝜔̂1,2,4

0 , 𝜔̂1,3,4
0 , 𝜔̂2,3,4

0 , 𝜔̂1,2,3,4
0 )  are 

produced. The parameter space must also be established for the existing constraints on the 𝜔 values by 

identifying the signs of the parameters within 𝝎̂0 and their corresponding ranges. It is crucial that the 

procedure works for any iteration 𝑙. Sample estimators based on (8) - (10) were used to determine the 

signs and establish the range of variation by utilizing Proposition 2. The remaining steps of the method 

were split into two steps and beginning with 𝑙 = 0: 

 

Step 1: Find 𝑙 by maximizing the conditional likelihood 𝐿(𝝎̂𝑙|𝜶̂𝑙 , 𝜷̂) within the parameter space derived 

from the estimated signs and intervals (refer to the procedure outlined above). 

 

Step 2: Get 𝜶̂𝑙+1 from maximizing the conditional likelihood 𝐿(𝜶̂𝑙+1|𝝎̂𝑙, 𝜷̂). In Step 2 if this inequality 

𝐿(𝜶̂𝑙+1|𝝎̂𝑙 , 𝜷̂) ≤ 𝐿(𝝎̂𝑙|𝜶̂𝑙 , 𝜷̂) is true, the solution is analyzed from the previous iteration; otherwise, 

continue to Step 1 for the following iteration. 

 

The estimated parameters gained through this suggested two-step procedure as start values were used to 

carry out the complete log-likelihood maximization for the models based on the Sarmanov distribution 

using a finite-difference approximation of the “optim()” function in R. As previously mentioned, during 

the optimization process the estimated dependency parameters from the 𝝎̂ vector must fall within the 

boundaries defined by equations (8) - (10). These boundaries shift with each iteration of the optimization 

algorithm, along with the values of the estimated coefficients 𝜷̂ and the estimated scale parameters 𝜶̂.  

 

4. Numerical Application 

4.1 Data Set 
This research studied the claim frequencies of four insurance policyholder types. Four dependent 

variables were assessed as the number of auto insurance claims involving only property damage (PD), 

bodily injury (BI), and third-party (TP), and home insurance (H). All the claims concerned mandatory 

legal liability. 

 

Claim data for the three risk categories PD, BI, and H were sourced from numerous national companies in 

Spain, consisting of 80,924 insurers who held both auto and home contracts between 2006 and 2015. This 

duration of 10 years represented the maximum available for each portfolio of the corporation. Results 

gave a 10-year snapshot of auto and house insurance portfolios, even though only some of the customers 

had policies for the whole 10-year period at the time of data extraction. Customers that moved between 

insurance companies during the period examined were tagged with the same identity in the database, 

allowing claims to be counted on all their vehicle and house policies. The number of third-party claims 

was generated using the negative binomial distribution (Bülbül and Baykal, 2016). Claim frequencies of 

TP were not greater than the claim frequencies of PD for each contract. When PD claims were zero, TP 

claims were also zero. Data characteristics are presented in Table 2. 
 

Data collected over a 10-year period contained a wide range of alterations owing to shifts in product or 

coverage offerings, consumer habits, and political-social-economic environments. Therefore, to ensure 

the consistency of a specific sort of aggregate accident rate across all policies in an insurance line 

purchased by a consumer, the legal culpability for both vehicle and home lines was examined for 

consistency across the 10-year period. Customer exposure was computed as the number of days the 

contract was valid for each insurance of the same kind during the observed time. For customers with 

many policies in the same insurance line, the contract lengths were summed without considering whether 
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or not the policies were concurrently valid (i.e. holding more than one policy at the same time). 

 
Table 2. Frequency of claims. 

 

Number of claims 0 1 2 3 4 5 ≥ 6 

Auto property damage 68,679 7,850 2,581 941 422 184 267 

Auto bodily injury 78,427 2,249 215 24 6 0 3 

Auto third party 75,875 4,558 435 52 3 1 0 

Home 69,109 8,707 2,099 647 208 88 66 

 

Results in Table 2 show the frequency of claims for each category of risk. For BI and TP, policyholders 

reported a maximum of six and five claims, respectively with the highest values for PD and H at 40 and 

23, respectively. The total number of active days for all policies contracted during the examined period 

was adjusted by the exposure for each client in each insurance line during the full 10-year period. The 

maximum potential exposure in each category was equal to the number of signed policies multiplied by 

the number of days from January 1, 2006 to December 31, 2015. In practical terms, relative exposure was 

derived by dividing the overall exposure by the total number of days during the study period, with 

exposures for the auto and home insurance lines differing. 
 

Table 3. Dependence analysis (p-values). 
 

Chi-Squared Statistic (p-value) 

 PD BI TP H 

PD  64090(0.000) 378784(0.000) 233.67(0.239) 

BI 64090(0.000)  35049(0.000) 38.523(0.375) 

TP 378784(0.000) 35049(0.000)  121.94(0.001) 

H 233.67(0.239) 38.523(0.375) 121.94(0.001)  

Pearson (p-value) 

 PD BI TP H 

PD  0.452(0.000) 0.865(0.000) 0.016(0.000) 

BI 0.452(0.000)  0.531(0.000) 0.012(0.001) 

TP 0.865(0.000) 0.531(0.000)  0.026(0.000) 

H 0.016(0.000) 0.012(0.001) 0.026(0.000)  

Kendall (p-value) 

 PD BI TP H 

PD  0.395(0.000) 0.653(0.000) 0.011(0.001) 

BI 0.395(0.000)  0.512(0.000) 0.013(0.000) 

TP 0.653(0.000) 0.512(0.000)  0.029(0.000) 

H 0.011(0.001) 0.013(0.000) 0.029(0.000)  

Spearman (p-value) 

 PD BI TP H 

PD  0.403(0.000) 0.665(0.000) 0.011(0.001) 

BI 0.403(0.000)  0.513(0.000) 0.013(0.000) 

TP 0.665(0.000) 0.513(0.000)  0.029(0.000) 

H 0.011(0.001) 0.013(0.000) 0.029(0.000)  

 

The relationship between the number of claims for each risk type, calculated using four distinct statistics 

is shown in Table 3, with the p-value showing the significance for each statistic also provided. The 

statistics employed included Chi-Squared (top) to test for dependency between two categorical variables, 

the Kendall and Spearman coefficients (third and fourth, respectively) to test for non-linear correlation, 

and the Pearson coefficient (second) to test for linear dependence. As shown in Table 3, all the statistics 

suggested dependency among the different types of accident rates, with the sole exception being the Chi-

Squared statistic for two pairs: (PD, H) and (BI, H). A positive and significant correlation suggested that 

the likelihood of filing claims in one insurance category, given that claims had already been recorded in 

another category, differed from the likelihood that no claims had been filed in the other category. This 

must be considered when calculating the client’s risk. The predictive analysis, described later, examined 
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how the joint and conditional probabilities associated with various customer profiles varied when taking 

into account the various dependence structures represented by the three alternative Sarmanov-based 

models. 

 

Results in Table 4 show the explanatory factors (covariates) used, along with their means and variances. 

These variables were based on the latest available information for each client and were used consistently 

across the three dependent variables. The covariates were chosen based on customer characteristics and 

consisted of 
 

(i) Gender (𝑋1): This variable is not used for calculating insurance premiums in the Spanish market but 

included in the risk analysis, (Gender of the policyholder: X1=1 if woman, X1= 0 if man).  

(ii)  Area of residence: There are two variables defined as  

• The size of cities (𝑋2), big cities (Barcelona and Madrid), and others, 

(Area of residence: X2 =1 if big city, X2= 0 if other),  

• The specific weather (𝑋3), the north of Spain and other,  

(Area of residence: X3=1 if north, X3= 0 if other).  

(iii) Age (𝑋4): The policyholder’s age is considered as a whole number.  

(iv) Other policies (𝑋5): The policyholder had contracted policies in other lines, e.g., accident insurance, 

life insurance, pension plans, etc., (Client has other policies in the same company: X5=1 if yes, X5= 0 

if no).  
 

The changes in covariates over the 10 years were mostly irrelevant. For instance, gender did not change, 

and most policyholders had other policies throughout the period. The only variables with significant 

changes were those related to the area of residence. However, after analyzing migration figures between 

Spanish provinces during the study period, the probability of an individual changing regions (and thus 

areas) was around 0.007 and considered insignificant. 

 
Table 4. Explanatory variables of the three proposed models (values represent the most recent information available 

for each policyholder). 
 

Variable Description Mean Variance 

𝑋1 Gender of the policyholder: =1 if woman, = 0 if man 0.237 0.181 

𝑋2 Area of residence: =1 if big city, = 0 if other 0.197 0.158 

𝑋3 Area of residence: =1 if north, = 0 if other 0.289 0.205 

𝑋4 Age of policyholder 53.242 172.123 

𝑋5 Client has other polices in the same company: =1 if yes, = 0 if no 0.219 0.430 

 

4.2 Parameter Estimation Results 
Table 5 displays the estimated parameter outcomes of the four-variate NB GLM, incorporating the 

relationship between the numbers of claims in various kinds of insurance policies. The model had 

independent marginals, and the estimated parameters obtained by fitting three independent univariate NB 

GLMs are also shown in Table 5. For both models, the estimated parameter values in the vectors 𝛽̂1, 𝛽̂2, 

𝛽̂3 and 𝛽̂4 corresponding to the covariates were comparable. Both the Akaike information criterion (AIC) 

and the Bayesian information criterion (BIC) of the estimated four-variate model with dependent 

marginals were lower, indicating that the inclusion of dependency between marginals improved the fit. 

 

The estimated parameters of the three models based on the four-variate Sarmanov distributions with NB 

GLM marginals are shown in Table 6. Table 10 in the Appendix also displays the boundaries for the 
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parameters 𝜔1,2, 𝜔1,3, 𝜔1,4, 𝜔2,3, 𝜔2,4, 𝜔3,4, 𝜔1,2,3, 𝜔1,2,4, 𝜔1,3,4, 𝜔2,3,4  and 𝜔1,2,3,4 , as well as the linear 

correlation coefficients. In Table 10, the experimental linear correlations fell within these bounds. 

 
Table 5. Estimation results of the four-variate negative binomial generalized linear model assuming dependence 

(top) and independence (bottom). 
 

 

Dependent marginal distributions 

Estimated parameters Standard errors 

PD BI TP H PD BI TP H 

Intercept -7.2230 -9.6112 -9.4368 -7.5229 0.0439 0.0925 0.0638 0.0448 

𝑋1 1.3267 -1.6637 0.4475 -0.3395 0.0210 0.0775 0.0310 0.0238 

𝑋2 0.9506 0.1851 0.7340 1.4707 0.0245 0.0697 0.0340 0.0231 

𝑋3 0.7997 1.7734 0.0594 -1.9351 0.0214 0.0454 0.0337 0.0316 

𝑋4 -0.0684 -0.0554 -0.0344 -0.0423 0.0008 0.0018 0.0012 0.0008 

𝑋5 0.2413 -0.3287 -1.2759 0.3803 0.0121 0.0327 0.0442 0.0143 

𝛼 0.6754 

 
Log-Likelihood = -121,197.8 

AIC = 242,407.6 

BIC = 242,366.2 

 

Independent marginal distributions 

Estimated parameters Standard errors 

PD BI TP H PD BI TP H 

Intercept -6.4529 -7.2500 -10.5004 -7.0337 0.0464 0.0941 0.0715 0.0460 

𝑋1 -0.2508 -0.9589 0.5307 -0.8099 0.0237 0.0582 0.0339 0.0253 

𝑋2 0.4941 -4.1915 1.2174 -1.9984 0.0247 0.2297 0.0380 0.0336 

𝑋3 -1.3444 -1.5011 0.7942 -0.8453 0.0243 0.0569 0.0352 0.0231 

𝑋4 -0.0557 -0.0762 -0.0302 -0.0386 0.0008 0.0019 0.0013 0.0008 

𝑋5 -0.6976 -0.3015 0.3884 0.0931 0.0158 0.0324 0.0173 0.0141 

𝛼 0.5060 0.5066 0.5000 0.4675 

 
Log-Likelihood = -160,869.2 

AIC = 321,750.4 

BIC = 321,709.0 

 

In Table 6, Model 3 had the best fit, according to AIC and BIC. According to Bolancé and Vernic (2019), 

the best-fit model was Model 2. Therefore, the trivariate Sarmanov models improved the trivariate NB 

GLM model. Furthermore, Models 2 and 3 improved Model 1. It was similar to four-variate models. All 

three models, derived from the Sarmanov distribution, produced comparable outcomes in terms of the 

significance of the parameters 𝛽̂1, 𝛽̂2, 𝛽̂3 and 𝛽̂4. These findings suggest that the kind of coverage affects 

the variables' impact. For instance, the impact of gender is negative and significant when it comes to 

property damage claims, bodily injury, and home, meaning that women tend to file fewer claims of this 

nature. Residing in big cities has a positive impact on the quantity of property damage and third-party 

claims, but it negatively influences the number of bodily injury and home claims. On the other hand, 

residing in the northern part of the country adversely affects both types of claims. As age increases, the 

number of claims in the auto and home line decreases. At last, purchasing additional products from the 

same company impacts both the auto line and the home line, resulting in a positive effect on third-party 

and home claims and a negative effect on property damage and bodily injury claims. 

 

The expected dependence between the examined coverages was an additional distinction between the four 

estimated multivariate models. Each Sarmanov model was linked to a different dependency structure, 

with the relevance of dependence parameter values 𝜔𝑗,𝑘 , 1 ≤ 𝑗 < 𝑘 ≤ 4,𝜔𝑗,𝑘,ℎ, 1 ≤ 𝑗 < 𝑘 < ℎ ≤ 4 and 

𝜔1,2,3,4 varying among the models. For each individual 𝑖, Model 1 suggested direct dependency between 

the NB random variables 𝑁𝑖𝑗~𝑁𝐵(𝛼𝑗 , 𝜏𝑖𝑗), 𝑗 = 1,2,3,4 with 𝜏𝑖𝑗 =
𝛼𝑗

𝛼𝑗+𝜇𝑖𝑗
, while Model 2 considered the 

dependence of the unobserved Gamma random variable Θ𝑗~𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝛼𝑗). Finally, in Model 3, the 
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relationship between the Poisson random variables was presupposed as 𝑁̃𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗), where, 𝑁𝑖𝑗 =

𝑁̃𝑖𝑗Θ𝑖𝑗. 
 

Table 6. Results of the three model estimations using the NB GLM for marginals of the Sarmanov distributions. 
 

 

Model 1 

Estimated parameters Standard errors 

PD BI TP H PD BI TP H 

Intercept -6.4529 -7.2500 -10.5004 -7.0337 0.0464 0.0941 0.0715 0.0460 

𝑋1 -0.2508 -0.9589 0.5307 -0.8099 0.0237 0.0582 0.0339 0.0253 

𝑋2 0.4941 -4.1915 1.2174 -1.9984 0.0247 0.2297 0.0380 0.0336 

𝑋3 -1.3444 -1.5011 0.7942 -0.8453 0.0243 0.0569 0.0352 0.0231 

𝑋4 -0.0557 -0.0762 -0.0302 -0.0386 0.0008 0.0019 0.0013 0.0008 

𝑋5 -0.6976 -0.3015 0.3884 0.0931 0.0158 0.0324 0.0173 0.0141 

𝜔1,2 = −0.6425,𝜔1,3 = 2.6397,𝜔1,4 = −0.1943,𝜔2,3 = 0.6801,𝜔2,4 = 0.5968,𝜔3,4 = 0.0857, 
𝜔1,2,3 = 1.3866,𝜔1,2,4 = −1.0895,𝜔1,3,4 = −1.0538,𝜔2,3,4 = −0.8753,𝜔1,2,3,4 = 2.2396 

Log-Likelihood = -160,869.2, AIC = 321,750.4, BIC = 321,709.0 

 

Model 2 

Estimated parameters Standard errors 

PD BI TP H PD BI TP H 

Intercept -6.4530 -7.2500 -10.5005 -7.0336 0.0461 0.0942 0.0716 0.0459 

𝑋1 -0.2507 -0.9589 0.5307 -0.8100 0.0236 0.0581 0.0338 0.0254 

𝑋2 0.4941 -4.1916 1.2173 -1.9983 0.0248 0.2298 0.0380 0.0337 

𝑋3 -1.3445 -1.5012 0.7942 -0.8454 0.0245 0.0568 0.0353 0.0232 

𝑋4 -0.0558 -0.0762 -0.0302 -0.0386 0.0008 0.0018 0.0011 0.0007 

𝑋5 -0.6976 -0.3015 0.3885 0.0931 0.0156 0.0325 0.0175 0.0142 

𝜔1,2 = −0.8003,𝜔1,3 = 5.0473,𝜔1,4 = −0.3813,𝜔2,3 = 0.7640,𝜔2,4 = 1.0752,𝜔3,4 = 0.4318, 
𝜔1,2,3 = 2.0763,𝜔1,2,4 = 1.7522,𝜔1,3,4 = 0.6192,𝜔2,3,4 = −2.5218,𝜔1,2,3,4 = −1.1423 

Log-Likelihood = -161,809.1, AIC = 323,630.2, BIC = 323,588.8 

 

Model 3 

Estimated parameters Standard errors 

PD BI TP H PD BI TP H 

Intercept -6.4530 -7.2500 -10.5005 -7.0336 0.0462 0.0941 0.0715 0.0460 

𝑋1 -0.2507 -0.9589 0.5307 -0.8100 0.0238 0.0582 0.0338 0.0254 

𝑋2 0.4941 -4.1916 1.2173 -1.9983 0.0247 0.2298 0.0380 0.0336 

𝑋3 -1.3445 -1.5012 0.7942 -0.8454 0.0244 0.0568 0.0352 0.0231 

𝑋4 -0.0558 -0.0762 -0.0302 -0.0386 0.0008 0.0019 0.0013 0.0008 

𝑋5 -0.6976 -0.3015 0.3885 0.0931 0.0157 0.0324 0.0173 0.0141 

𝜔1,2 = 0.5989,𝜔1,3 = 7.4883,𝜔1,4 = −0.7965,𝜔2,3 = 2.2689,𝜔2,4 = −2.7598,𝜔3,4 = 0.1943, 
𝜔1,2,3 = −2.6922,𝜔1,2,4 = −0.8146,𝜔1,3,4 = 1.1925,𝜔2,3,4 = 0.0764,𝜔1,2,3,4 = −2.3407 

Log-Likelihood = -160,104, AIC = 320,220, BIC = 320,178.6 

 

To examine the dependence patterns across the models, the mean of each individual correlation value was 

determined using formula (14) for the four-variate NB model and formula (3) for the Sarmanov models 

(Table 7). All three models showed the lowest dependent relationships between TP and H. 
 

Table 7. Correlations derived from the three estimated models with four variables. 
 

 Model 1 

PD BI TP H 

PD 1.0000 -0.0111 0.0904 -0.0096 

BI -0.0111 1.0000 0.0071 0.0090 

TP 0.0904 0.0071 1.0000 0.0025 

H -0.0096 0.0090 0.0025 1.0000 

 Model 2 

PD BI TP H 

PD 1.0000 -0.0568 0.0787 0.1619 

BI -0.0568 1.0000 0.2495 -0.0276 

TP 0.0787 0.2495 1.0000 0.0453 

H 0.1619 -0.0276 0.0453 1.0000 
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Table 7 continued… 
 

 Model 3 

PD BI TP H 

PD 1.0000 0.0081 0.2459 -0.0357 

BI 0.0081 1.0000 0.0181 -0.0300 

TP 0.2459 0.0181 1.0000 0.0052 

H -0.0357 -0.0300 0.0052 1.0000 

 

4.3 Predictive Analytic 
A predictive analytic was performed by splitting the dataset into two parts as the training sample and the 

test sample to test the accuracy of the models. This procedure was implemented to determine the best 

model according to the provided dataset and performed by dividing 80% of the data into training data and 

the remaining 20% of the data into test data. Then, the probability obtained from the test data was 

analyzed against the accident rates of the training data. In the training sample, policyholders with (0,0,0,0) 

had a probability of around 0.73 (Table 9 in the Appendix). If a model predicted a probability equal to or 

greater than 0.73 for policyholders with (0,0,0,0), these policyholders were considered as being well 

classified. This analysis was consistently applied to each group of policyholders to determine the 

percentage of accurate classifications within each group according to their respective accident rates. In 

every instance, a frequency of well-classified predictions closer to 1 indicated a more accurate prediction. 

Results in Table 8 show the frequency of the successes obtained for each calculated Sarmanov four-

variate model, taking into account the circumstances where the predicted probability was higher than the 

corresponding relative frequency. The success percentage of reported claims (PD, BI, H, PD) = (>0,0,0,0) 

of Model 2 was zero (Table 8), indicating that no customer had predicted probability equal to or greater 

than 0.00175 (Table 9). The weighted mean of all frequencies for each model was given as the total row, 

while the annual exposure (365 days) given by the number contracted in each line was also considered 

when arriving at these results. When considering the total row, the best results were obtained for Model 1.  
 

Table 8. Success percentage attained by the three Sarmanov four-variate models. 
 

Reported claims (PD, BI, H, TP) Sample frequency Model 1 Model 2 Model 3 

(0,0,0,0) 58,611 0.99974 1 0.99957 

(>0,0,0,0) 142 0.14286 0 0 

(0,>0,0,0) 5,796 0 0 0 

(0,0,>0,0) 0 0 0 0 

(0,0,0,>0) 9,906 0 0 0 

(>0,>0,0,0) 449 0 0 0 

(>0,0,>0,0) 0 0 0 0 

(>0,0,0,>0) 20 0 0 0 

(0,>0,>0,0) 2,635 0 0 0 

(0,>0,0,>0) 951 0 0 0 

(>0,>0,>0,0) 0 0 0 0 

(>0,0,>0,>0) 1,476 0 0 0 

(0,>0,>0,>0) 0 0 0 0 

(>0,>0,>0,>0) 0 0 0 0 

Total 80,924 0.72434 0.72427 0.72396 

 

The result of this section can be applied to indicate the relation of the four risk types. The risk of claiming 

home insurance is related to claiming car insurance. The amount of risk for insurance can be calculated 

from the proposed model. Furthermore, the risk prediction can also be applied. 

 

5. Conclusions 
This research was studied about a risk assessment from a customer who held many policies of the same 

company. The way to assess the risk was to evaluate probability of claim frequencies of occurred 
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accidents. The accident insurances that we were interested were a motor insurance (property damage, 

bodily injury, and third-party) and a home insurance. Therefore, the discrete four-variate Sarmanov 

distributions with NB GLM were utilized to indicate the probability of four types of claim frequencies for 

accidents. The research findings can be summarized as follows: Proposition 1 formulated the closed form 

of the discrete four-variate Sarmanov distribution for the dependent parameters (𝜔1,2,3,4); Proposition 2 

determined the restrictions on dependent parameters; Propositions 3 and 4 presented the explicit forms of 

Model 2 and Model 3, respectively. According to the Chi-Squared statistics, it was found that the number 

of claims in property damage (PD) was dependent on the number of claims in the home (H), and the 

number of claims in the bodily injury (BI) was related to the number of claims in the home (H). The 

maximum likelihood results indicated that the two mixed models incorporating the Sarmanov distribution 

(Models 3) significantly improved the fit. All three models showed the lowest dependent relationships 

between TP and H by calculating the mean of correlation. Additionally, Model 1 demonstrated the most 

effective predictive performance among the three models.  

 

The advantage of closed forms of the discrete four-variate Sarmanov distributions was comfortable to 

calculate the probability of the frequency claims in the accident coverages. In comparison to simpler 

models such as the multivariate discrete Sarmanov distribution with NB GLM marginals, the numerical 

application revealed that the multivariate Sarmanov distribution-based mixing models substantially 

enhanced the model fit and the flexibility. The advantage of this model was that it could evaluate all four 

risks without having to evaluate each risk separately. In addition, these models were used to assess the 

number of claims produced by four different risk types. The experimental results displayed the risk of 

claiming car insurances depended on the claims of the home insurances. The behavior of the customers 

who have claimed the home insurances affects the claims of the car insurances.  

 

Given the limitations of finding out the real data of customers who had four types of insurances with the 

same insurance company, the data needed to be generated in one risk line. Using a mixed dataset between 

the real reported claims from Spanish insurance and the generated data, the three suggested models were 

compared with the four-variate NB GLM.  

 

For quantitative risk, the relationship between the auto and the home claims reported by customers was 

significant and positive, supporting the proposed models. The risk assessment by the insurers must 

consider the likelihood of both motor and home reported claims by each policyholder because customers 

who reported claims for the auto insurances also had the right to make claims for their home insurances. 

Thus, if an insurer intends to pursue a customer-focused strategy that includes an integrated premium, the 

total prospective risk premium will be higher than the premium earned assuming independence. The 

company must carefully verify whether the total sum of annual risk premiums falls below or exceeds the 

overall risk premium for the entire period, while the interrelation between certain aspects over a short-

term (one year) might go unnoticed. 

 

Insurance providers can leverage research effectively. The proposed model can be utilized to assess the 

probability of customers maintaining insurance coverage for up to four risks with the same company. 

Based on this assessment, the company can make informed decisions to raise or lower insurance 

premiums for individual customers. Modifying insurance premiums to align with the needs of the insured 

is an effective strategy to retain customers and prevent them from purchasing insurance policies from 

competing companies. Insurers should consider the risks of purchasing multiple insurance types with the 

same company. Moreover, if the customer has a good background, they can get various forms of 

insurance from the same company. If customers have a history of claims, they should purchase insurance 

from several companies. 



Prunglerdbuathong et al.: Enhanced Insurance Risk Assessment using Discrete Four-Variate Sarmanov … 
 

 

241 | Vol. 9, No. 2, 2024 

The Sarmanov distribution can be used to solve problems in many fields of science, such as hydrology 

(Sarmanov, 1974) and entropy (Alawady et al., 2022). 

 

Future works will consider a different kernel function of the Sarmanov distribution and apply it to the 

continuous Sarmanov distributions for claim severity problems. Another kernel function is 𝜙(𝑦) = 𝑦 −
𝔼[𝑌]. The interesting continuous distributions are the Pareto and Weibull distribution because they are 

used in insurance claims.  
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Appendix 
List of abbreviations 
 

BI bodily injury  
GLM generalized linear model 

GLMs generalized linear models 

H home 
NB Negative binomial 

NB GLM Negative binomial generalized linear model 

p.d.f. probability density function  
p.f. probability function  

p.f.s. probability functions  

p.m.f. probability mass function 
PD property damage 

r.v. random variable 

r.v.s. random variables 
TP third-party 

vs. vice versa 
 

 

 

Table 9. Customer counts for each combined accident rate in training, test, and overall samples. 
 

(BI,PD,TP,H) 
Training sample Test sample Full sample 

Number Frequency Number Frequency Number Frequency 

(0,0,0,0) 46,889 0.72428 11,722 0.72425 58,611 0.72427 

(>0,0,0,0) 114 0.00176 28 0.00173 142 0.00175 

(0,>0,0,0) 4,637 0.07163 1,159 0.07161 5,796 0.07162 

(0,0,>0,0) 0 0 0 0 0 0 

(0,0,0,>0) 7,925 0.12241 1,981 0.12240 9,906 0.12241 

(>0,>0,0,0) 359 0.00555 90 0.00556 449 0.00555 

(>0,0,>0,0) 0 0 0 0 0 0 

(>0,0,0,>0) 16 0.00025 4 0.00025 20 0.00025 

(0,>0,>0,0) 2,108 0.03256 527 0.03256 2,635 0.03256 

(0>,0,>0,0) 761 0.01175 190 0.01174 951 0.01175 

(0,>0,0,>0) 0 0 0 0 0 0 

(0,0,>0,>0) 1,181 0.01824 295 0.01823 1,476 0.01824 

(>0,>0,>0,0) 0 0 0 0 0 0 

(>0,>0,0,>0) 0 0 0 0 0 0 

(0,>0,>0,>0) 422 0.00652 106 0.00655 528 0.00652 

(>0,>0,>0,>0) 328 0.00507 82 0.00507 410 0.00507 

Total 64,739 1 16,185 1 80,924 1 
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Table 10. Limits of dependent parameters and linear correlations in Sarmanov distribution-based models. 
 

 Model 1 Model 2 Model 3 

𝜔12 -0.9997 4.3378 -0.9997 4.3378 -0.9231 4.6911 

𝜌12 -0.1596 0.6926 -0.0774 0.3359 -0.1162 0.5903 

𝜔13 -1.0026 4.1177 -1.0026 4.1177 -0.7828 4.6036 

𝜌13 -0.0863 0.3545 -0.0528 0.2167 -0.0321 0.1886 

𝜔14 -1.0172 4.2632 -1.0172 4.2632 -0.8105 4.7663 

𝜌14 -0.0277 0.1161 -0.0247 0.1035 -0.0564 0.3320 

𝜔23 -1.0028 4.1188 -1.0028 4.1188 -0.7831 4.6056 

𝜌23 -0.0254 0.1042 -0.01116 0.04585 -0.0632 0.3718 

𝜔24 -1.0175 4.3047 -1.0175 4.3047 -0.8129 5.2926 

𝜌24 -0.0814 0.3445 -0.0522 0.2210 -0.1116 0.7264 

𝜔34 -1.0146 4.0479 -1.0146 4.0479 -0.9946 4.7291 

𝜌34 -0.0438 0.1747 -0.0354 0.1412 -0.0444 0.2113 

𝜔123 -1.0944 2.4174 -1.0944 2.4174 3.0196 4.7502 

𝜔124 -0.5704 1.6293 -0.5704 1.6293 -1.2067 0.6787 

𝜔134 -3.7222 1.4844 -3.7222 1.4844 -3.4517 4.7477 

𝜔234 -12.1990 14.1847 -12.1990 14.1847 -27.0343 8.2993 

𝜔1234 -24.7270 18.7063 -14.0164 25.8349 -10.9654 37.7003 
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