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Abstract 

This study investigates the effectiveness of the Firefly Optimizer (FFA), Grey Wolf Optimizer (GWO), and Moth Flame Optimizer 

(MFO) metaheuristic algorithms in estimating the kinetic parameters of a single-step coal pyrolysis model. By examining the effects 

of the algorithmic configuration, the initial parameter estimates, and the search space size on the efficacy and efficiency of the 

optimization run, the research seeks to encourage the qualified engineering application of these algorithms in the field of pyrolysis 

modeling. Four critical analyses were conducted: convergence efficiency, robustness and repeatability, parameter tuning, and 

performance on noisy data. MFO and GWO had comparable fitness scores of 1.05×10-4 and 1.04×10-4 respectively in the 

optimisation run analysis, while FireFly Algorithm (FFA) fell behind with a score of 1.09×10-4. Regarding the calculation time, 

FFA showed better results than other optimizers with an execution time of 113.75 seconds. MFO showed initial promise in 

convergence analysis with speedy convergence, whereas GWO progressively enhanced its solutions. Additionally, GWO was 

shown to be the most dependable algorithm with the lowest values for average fitness score and execution time at 1.07×10-4 and 

38.86 seconds. The combined values of standard deviation in fitness value and execution time for GWO were 1.07×10-6 and 0.35 

indicating its robustness towards initial parameters. Similar to this, investigations on repeatability emphasized the reliability of the 

GWO method. Further, the parameter tuning assessments supported the balanced performance of GWO, and the studies of noise 

handling discovered GWO to be the most robust to noisy data. Overall, GWO is recommended as a one-stop average solution for 

the general engineered application; however, algorithm choice hinges on the specific requirement. 

 
Keywords- Parameter extraction, Metaheuristic algorithm, FFA, GWO, MFO, Coal pyrolysis. 

 

 

 

1. Introduction  
Pyrolysis is an essential aspect of the thermal conversion process (Sakthivel et al., 2023; Stauffer et al., 

2008). The majority of conventional methods for producing energy from solids like coal involve a step 

called pyrolysis (Khare et al., 2011). Thus, coal pyrolysis-a complex process in which heat is used to break 

down chemicals-has long been a focal point of research in the field of energy science (Li et al., 2015; Lu et 

al., 2013; Song et al., 2016, 2017; Wang et al., 2012; Yan et al., 2020). This decomposition carried out in 

an inert environment, makes it possible for coal to be converted into various valuable derivatives, most 
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notably gas, tar, and char. The by-products highlight the importance of coal pyrolysis in current research 

with their many uses ranging from energy production to complex chemical synthesis (Schobert & Song, 

2002). Central to this process is the kinetics of coal pyrolysis, particularly emphasizing the meticulous 

evaluation of kinetic parameters. The precision in ascertaining these parameters holds profound 

implications, influencing not only the efficiency and yield but also the overarching economic viability of 

coal conversion processes. The design and operating efficiency of pyrolysis reactors are directly impacted 

by an understanding of the kinetic parameters of coal pyrolysis, including activation energy, frequency 

factor, and reaction order. These factors are crucial for a wide range of practical applications. For instance, 

these parameters define the precise temperature and duration of residence required in industrial settings to 

maximise selectivity and yield. Kinetic parameter information is used in energy production to devise 

combustion processes that maximise power generation efficiency while reducing emissions of pollutants. 

This helps to produce cleaner combustion technologies such as low-NOx burners. Furthermore, precise 

modelling of these characteristics is essential for customised syngas generation during coal gasification, 

which maximises the hydrogen-to-carbon-monoxide ratio for application in procedures like Fischer-

Tropsch synthesis. In the production of carbon-based materials, where control over the pyrolysis process 

affects the structural characteristics of final products like carbon fibres and activated carbon, these factors 

are just as important (Solomon et al., 1992; Song et al., 2017; van Heek & Hodek, 1994; Yu et al., 2023; 

Zhang et al., 2010).  

 

The study of pyrolysis attributes and reaction kinetics frequently relies on thermal analysis. Thermal 

analysis is a method for characterizing materials by tracking the changes in their physical characteristics 

(primarily weight and energy) when subjected to a controlled temperature treatment. Among the different 

techniques for thermal analysis, thermogravimetry is a successful and popular technique (Kok & Okandan, 

1995; Sauerbrunn & Gill, 1994; Skreiberg et al., 2011; Yang et al., 2007).  

 

Initial insights into pyrolysis modeling were obtained using conventional methods, where the reaction rate 

is calculated by differentiating or integrating the conversion data (Kök, 2002). Isoconversional models were 

developed when the intricacy of coal pyrolysis processes became more apparent. Compared to model-fitting 

techniques, these models, which predict non-isothermal kinetics for the pyrolysis of solid fuels, have proven 

to be more trustworthy and accurate (Cai et al., 2012; Vyazovkin, 2018). They provided a means of 

comprehending the kinetics without relying on a specific reaction model. Although TGA offered higher-

quality data, more complex techniques were needed to understand it. The complicated reaction processes 

and non-linear correlations inherent in coal pyrolysis posed difficulties for conventional approaches even 

after these developments (Dhyani & Bhaskar, 2018). Researchers looked at different strategies, such as 

meta-heuristic algorithms (Khan et al., 2022; Till et al., 2020). The reaction order, activation energy, and 

pre-exponential factor are three unknown variables in the Arrhenius degradation equation, which is 

frequently used to model solid-phase pyrolysis. Numerous estimating techniques have been developed to 

extract the parameters from the experimental thermal conversion data since they are model-based and not 

explicitly quantifiable. Curve fitting and optimization have been the most often utilized approaches in recent 

years. These techniques are particularly effective for multi-reaction complex problems but may take much 

computational effort. 

 

Over the last two decades, there have been considerable developments in the field of pyrolysis model 

parameter estimation, which is supported by optimization approaches. Estimating pyrolysis model 

parameters from experimental data constitutes an inverse problem, where the difficulty resides. This 

problem is frequently poorly formulated, necessitating strong optimization methods for high-dimensional 

issues. 
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The Genetic Algorithm (GA) has traditionally been the key optimization tool in the field of coal pyrolysis 

modeling (Abdelouahed et al., 2017; Ding et al., 2019; Ferreiro et al., 2016; Jain et al., 2016). The Stochastic 

Hill Climber (SHC) and the Shuffled Complex Evolution (SCE) algorithms became available for pyrolysis 

parameter estimation as the discipline developed (Ding et al., 2020; Duan et al., 1993). In an extensive 

study by Lautenberger and Fernandez-Pello, several algorithms, including GA, SHC, SCE, and Genetic 

Algorithm Simulated Annealing (GASA), were tested for their efficacy in pyrolysis model parameter 

estimation, with SCE appearing as a superior technique and being advised for a more comprehensive 

application (Lautenberger & Fernandez-Pello, 2011). Although GA has remained relevant despite criticism 

and newly developed alternatives, Webster's research claimed that the Stochastic Hill Climber algorithm 

(SHC) surpassed GA in optimizing the pyrolysis parameters (Webster, 2009). 

 

Meta-heuristic algorithms have become an appealing alternative during the past 20 years (Kumar et al., 

2022). These algorithms provide a distinctive solution to optimization issues since they are motivated by 

natural events and behaviors (Aghbashlo et al., 2019; Ullah et al., 2022; Xu et al., 2017). They are 

particularly adept at navigating vast solution spaces, avoiding local optima, and finding near-optimal 

solutions in reasonable time frames (Meng et al., 2021). Pant, Kumar, and Ram used metaheuristic 

optimization techniques, such as GWO and multi-objective particle swarm (MOPSO), to solve nonlinear 

equations in various problems, such as hydrocarbon combustion. They showed that their framework can 

find multiple and better solutions than existing methods (Pant et al., 2019). The authors Uniyal, Pant, and 

Kumar explored how nature-inspired optimization techniques such as ant colony optimization (ACO), 

particle swarm optimization (PSO), and grey wolf optimization (GWO) can solve reliability problems. They 

explained the different types and features of the optimization problems (Uniyal et al., 2020). 

 

The Moth Flame, Firefly, and Grey Wolf Optimisation algorithms were chosen on purpose for this 

investigation. The moth's celestial navigation inspired the Moth Flame Optimization algorithm, which 

balances exploration and exploitation to guarantee a thorough search for the ideal solution in the enormous 

range of kinetic parameter combinations. The Firefly Algorithm, which takes inspiration from the 

cooperative behavior of fireflies, offers flexibility, a critical quality while negotiating the shifting terrain of 

options in kinetic parameter estimation. Lastly, the Grey Wolf Optimizer guarantees a systematic and 

strategic approach to optimization, crucial for the precision required in kinetic parameter estimates by 

mimicking the leadership hierarchy and hunting mechanism of grey wolves (Kumar et al., 2017, 2019; 

Mirjalili, 2015; Mirjalili et al., 2014; Negi et al., 2021; Yang, 2009).  

 

These algorithms have been applied in a variety of settings, but more research is still needed to determine 

how well they work in coal pyrolysis. Preliminary findings indicate potential, but more investigation is 

needed to determine their efficacy in this context.  

 

This study seeks to offer a thorough assessment of the effectiveness of MFO, FA, and GWO in assessing 

kinetic parameters of coal pyrolysis, building on the groundwork established by earlier studies. We hope to 

shed light on these algorithms’ effectiveness, robustness, repeatability, and adaptability through rigorous 

research. We aim to comprehensively understand their potential and restrictions in the context of coal 

pyrolysis by introducing noise to data, examining algorithm complexity, and modifying the parameters. 

The study aims to promote the qualified use of these metaheuristic algorithms in pyrolysis modeling by 

testing their initial values, search space sizes, and overall algorithm settings on the effectiveness of the 

optimization. 

 

This comparative analysis of metaheuristic algorithms—Firefly Optimizer (FFA), Grey Wolf Optimizer 

(GWO), and Moth Flame Optimizer (MFO)—serves the practical application of identifying the most 
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effective method for estimating kinetic parameters in coal pyrolysis. Such a comparison is essential because 

it makes it possible to choose an algorithm that guarantees precision, computational efficiency, and 

adaptability under a variety of operating conditions. As an indirect result of this study, the pyrolysis process 

is optimised, which may result in increased energy efficiency, lower emissions, and financial savings. 

Understanding the advantages and disadvantages of each algorithm also enables a customised approach to 

process optimisation, which is essential for sectors looking to maximise output while reducing their 

environmental effect. 

 

2. Optimization 

2.1 Moth Flame Optimization Algorithm 

The celestial navigation of moths serves as the basis for Moth Flame Optimisation (MFO). Moths use 

celestial cues, primarily the moon, to navigate during their nocturnal forays. The algorithm operates by 

taking into account a population of moths that are represented by the X matrix. D stands for the solution 

vector's dimensionality, which a moth depicts. The Flame matrix, denoted by the letter F, is another matrix 

of moths that the method employs. The Flame matrix represents the ideal solutions up to this point.  

 

To converge to ideal solutions, the algorithm adopts the use of moths' spiraling movement towards flames. 

The flying behavior of moths makes it seem as if they converge on a flame, and this behavior is used to 

design the algorithm. 

 

Emulating this, the MFO algorithm captures the spiral movement of moths towards light sources. 

Mathematically, the distance of the moth from the light source at a given time is represented by the 

following equations, Equations (1)-(3): 

Dt = |Fbest − Xi|                                                                                                                                         (1) 

 

The spiral function, St, is then defined as 

St = Dt ∗ e
b.l ∗ cos(2πl)                                                                                                                            (2) 

 

Consequently, the position of the moth in the subsequent time step is given by 

Xt+1 =Fbest − St                                                                                                                                       (3) 

 

where, 

• Dt is the distance of the moth from the light source at time t. 

• Fbest is the position of the best solution (brightest light source). 

• Xi is the position of the moth. 

• St is the spiral function, with e being the base of natural logarithms, b being a constant, and l being a 

random number in [-1,1]. 

• Xt+1 is the position of the moth at the next time step. 

 

This mathematical representation ensures a balance between exploration and exploitation, making MFO a 

preferred choice for diverse optimization challenges. 

 

Algorithm Implementation 

The algorithm starts by randomly initializing all the moths' positions within the lower bounds (lb), and 

upper bounds (ub), using a uniform distribution. In each iteration t, the number of flames is dynamically 

calculated. Each moth's fitness is evaluated using the objective function. The moths are sorted by their 

fitness values, and the best flames are updated. The distance 𝐷𝑡 between each moth and the flames is 

calculated. Each moth's position is updated based on this distance and a random component, following an 
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attractiveness model. The best fitness value achieved in each iteration is stored in a variable. The algorithm 

terminates after reaching the maximum number of iterations or after meeting convergence criteria. The 

flowchart of the algorithm is shown in Figure 1. 

 

 
 

Figure 1. Flowchart of the moth flame algorithm. 

 

 

2.2 Firefly Algorithm 

The Firefly Algorithm (FFA) is rooted in the bioluminescent communication behavior of fireflies. Fireflies 

emit light of varying intensities to attract potential mates. In the algorithm, the attractiveness of a firefly is 

determined by its brightness, which diminishes as its distance from other fireflies increases. The 

attractiveness of a firefly is determined by its brightness, which decreases as its distance from other fireflies 

increases. The brightness or the attractiveness can be represented as Equation (4): 

β(r) = β0 ∗ e
−γr2                                                                                                                                                   (4) 

 

where, 

• β0 = Attractivenessatr = 0 or initial brightness. 

• γ is the light absorption coefficient. 

• r is the distance between two fireflies. 
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If a firefly is less bright than another, it will move towards the brighter one. This movement is 

mathematically represented by considering the initial brightness, light absorption coefficient, and the 

distance between two fireflies. The movement is given by Equation (5):  

xi =xi + β(rij). (xj − xi) + α(rand() − 0.5)                                                                                                       (5) 

 

where, 

• Xi and Xj are the positions of the two fireflies. 

• rij is the Euclidian distance between fireflies i and j. 

• α is a randomization parameter. 

• Rand() is a random number in [0,1]. 

 

The adaptability of the Firefly Algorithm, stemming from its dynamic attractiveness based on brightness, 

makes it a versatile tool for optimization problems, especially in scenarios with dynamic conditions. 

 

Algorithm Implementation 

 

 
 

Figure 2. Flowchart of the firefly algorithm. 
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The firefly algorithm is initiated by randomly placing a population of fireflies within the search space and 

evaluating their brightness (fitness) values. Then, each firefly's attractiveness to every other firefly is 

calculated based on their relative brightness and distance. The dimmer fireflies move towards the brighter 

ones according to their attractiveness. A random component is introduced into the function defining the 

movement of the fireflies to ensure thorough exploration of the search space. After the movement, the 

algorithm updates each firefly's positions and brightness values and sorts them in descending order of their 

brightness. This process is repeated for a predefined number of iterations or until a convergence criterion 

is met. The flowchart of the algorithm is given in Figure 2. 
 

2.3 Grey Wolf Optimizer Algorithm 

Grey Wolf Optimizer (GWO) is inspired by the social hierarchy and hunting mechanism of grey wolves. 

In the wild, grey wolves exhibit a structured hierarchy, with alphas leading the pack, followed by betas and 

deltas, while the rest are categorized as omegas. In GWO, this hierarchy is simulated, with the leading three 

wolves guiding the hunt with alpha as the dominant leader, beta as the subordinate to alpha and assisting in 

decision making, gamma as the scout and subordinate to alpha and beta, and omega as the followers. The 

positions of the wolves are updated based on the guidance of the alpha, beta, and delta wolves. GWO's 

structured and strategic approach to optimization, simulating the hunting behavior of grey wolves, makes 

it apt for problems demanding precision and thorough exploration. 

 

The mathematical representation of their hunting behavior involves coefficient vectors and the positions of 

the leading wolves, which guide the rest of the pack. The GWO uses an iterative process to update the 

positions of the wolves (solutions). The positions of the wolves towards the three dominant wolves are 

updated using the following equations, Equations (6)-(10): 

A = 2a ∗ rand() − a                                                                                                                                      (6) 

C = 2 ∗ rand                                                                                                                                                  (7) 

Dwolf = |C ∗ Positionwolf − Position|                                                                                                          (8) 

X = Positionwolf − A ∗ Dwolf                                                                                                                          (9) 

 

where: 

• A and C are coefficient vectors. 

• a decrease linearly from 2 to 0 over iterations. 

• rand is a random vector in [0,1]. 

• Xwolf is the position of the leading wolf (alpha, beta, or delta). 

• Xi is the position of a specific wolf. 

 

The positions of the alpha, beta, and gamma wolves influence the new position of each wolf: 

NewPostion = 
(Xα+Xβ+Xγ)

3
                                                                                                                    (10) 

 

Algorithm Implementation  

The first step in the implementation of the algorithm is randomly initializing the positions of the wolves in 

the search space. This is followed by sorting the wolves based on their fitness values, where the top three 

wolves are designated alpha, beta, and gamma. Based on this, for each wolf in the population, the position 

of the wolves with respect to the three dominant wolves is updated using the mathematical model. The 

fitness value for this newly updated position is evaluated to check if it’s a lower value (better solution) if 

so then the algorithm replaces the current position with the new one. After all the wolves have been updated, 

their fitness values are re-evaluated and re-sorted. The procedure is repeated for a maximum number of 

iterations or until convergence criteria are met. The flowchart of the algorithm is given in Figure 3. 
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Figure 3. Flowchart of grey wolf optimiser algorithm. 

 

3. Experimental Data, Description of The Kinetic Model, and its Mathematical 

Implementation 

3.1 Samples 
Coal samples were collected from Singrauli mines in approximately 5 kg. These bulk samples were broken 

and crushed into smaller pieces before grinding using mortar. The ground powder was then sieved for 

particle sizes of 0.15 mm. The images of the bulk samples and powdered samples are shown in Figures 4 

and 5. 

 

            
 

        Figure 4. Image of bituminous bulk sample. 
 

Figure 5. Image of powdered bituminous sample. 
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Non-isothermal TGA data for coal pyrolysis was collected by carrying out TG experiments in an inert 

nitrogen atmosphere using NETZSCH STA 449 F3 Jupiter equipment for three heating rates, 10, 20, and 

30 K/min. The samples were heated from ambient temperature to 1300 C.  
 

The thermal decomposition is modeled using a single-step reaction model that can be represented as, 

Equations (11) and (12): 
dα

dt
= kf(α)                                                                                                                                                (11) 

Coal → X(Char) + (1 − X)(Volatile)                                                                                                     (12) 

 

where, X is the final char mass fraction, and alpha is the conversion mass fraction given by Equation (13): 

α = (
m0−m

m0−mf
)                                                                                                                                                (13) 

 

where, m0 is the initial mass of the sample, mf is the final mass of the sample, and m is the mass of the 

sample at that particular time step. The reaction rate was modelled using the equation, Equation (14):  

reaction_rate(T, α, A, E, n, β) =
(A∗e(

−E
R∗T⁄ ))∗(1−α)n)

β
                                                                           (14) 

 

where, T is the temperature, α represents conversion, A is the pre-exponential factor, E is the activation 

energy, n is the reaction order, β is the heating rate, and R is the universal gas constant.  

 

4. Results and Discussions  

4.1 TG Profile 
DTG and mass loss profiles of the bituminous coal for the three heating rates are illustrated in Figures 6 

and 7. 

 
 

Figure 6. DTG curve of bituminous coal. 
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Figure 7. DTG curve of bituminous coal. 

 

The pyrolysis process may be divided into a threefold system, starting with the desorption phase. Moisture 

and adsorbed gaseous components are released as temperatures rise during this early phase. This process 

lasts until temperatures reach around 300 °C. The fast devolatilization phenomenon is then present in the 

stage that is characterized by a significant decrease in mass. This phenomenon is followed by increased 

temperature, making it easier for covalent bonds to break. The disintegration of tar precursors, gaseous 

emission, and semi-coke formation occurs within the heat range of 400–600 °C, after the preliminary 

phase's breakdown of weak bonds. The gasification of carbonaceous residues, which results in the formation 

of CH4, CO, and H2 gases, stabilizes the mass loss rate beyond the threshold temperature of 800 °C. 

 

4.2 Optimization Runs 

Three different algorithms—the Firefly Algorithm (FFA), the Grey Wolf Optimizer (GWO), and the Moth 

Flame Optimizer (MFO)—were used to estimate kinetic parameters using TGA data.  

 

In GWO, a small constant EPSILON is added to the denominator of the exponential term for computational 

stability. The goodness of fit between model predictions and experimental data was quantified using a least-

squares objective function, Equation (15):  

Objective(parameters, T, α, (dα dT⁄ )
exp

, β) = Σ (((
dα

dT
)
model

− (
dα

dT
)
exp

)
2

)                                 (15) 

 

Improved Model Fitting: Determining the kinetic parameters through minimizing the objective function is 

based on comparing the model-predicted rate of change of conversion, dα/dT, with the experimentally 

observed rate, which helps improve model accuracy. This is because minor rate discrepancies can lead to 

significant differences in cumulative values over time. Opting to calibrate the model based on the rate of 

change ensures a more faithful representation of the underlying process dynamics, which can be more 

informative than just looking at the extent of reaction or decomposition. Focusing on the rate is equivalent 

to looking at how rapidly a substance decomposes or reacts at various temperatures, which may be more 

insightful than only considering the degree of conversion or breakdown. 
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The best estimates of the kinetic parameters were achieved by iteratively adjusting the parameters of each 

optimization algorithm to minimize this objective function. To guide the optimization process, certain 

boundaries were established, such as lower bounds (lb), [1e3, 1e4, 1] and upper bounds (ub) [1e12, 2e5, 6] 

for A, Ea, and n. These bounds define the search space for the algorithm to work within. Along with the 

bounds, the maximum number of iterations, 2000, and the number of search agents (Number of Search 

Agents, NSA: moths, fireflies, wolves), 1000, were held common across the three algorithms. The results 

from the optimization runs are encapsulated in Table 1, given below. 

 
Table 1. Results of the optimized values obtained from the three algorithms. 

 

Algorithm 
Pre-exponential factor A 

(1/min) 
Activation energy 

Ea (J/mol) 
Order of 

reaction n 
Best Fitness Value 

Execution Time 
(seconds) 

GWO 2.99 × 108 1.30 × 105 4.6130 0.00010473 159.42 

MFO 2.54 × 109 1.42 × 105 4.9705 0.00010527 113.75 

FFA 3.91 × 108 1.31 × 105 4.6750 0.00010941 404.55 

 
 

The GWO, MFO, and FFA algorithms prove to be highly effective in fitting data. In particular, MFO obtains 

a fitness value of 0.00010527, which is practically identical to GWO's 0.00010473, but FFA records a 

slightly higher value of 0.00010941, indicating a slight inaccuracy. Interesting insights may also be gained 

from time efficiency, where MFO leads with a computational time of 113.75 seconds, followed by GWO 

at 159.42 seconds, and finally, FFA at 404.55. This demonstrates that MFO is the best option when time 

restrictions are crucial. Additionally, parameter examination reveals that MFO has the lowest pre-

exponential factor 'A' at 2.54 × 109 and the highest activation energy 'Ea' at 1.42 × 105. Slight variation in 

reaction order 'n' is found across all algorithms, with MFO showing the highest value of 4.9705, while the 

highest pre-exponential factor found is for FFA. The comparison of the conversion rate predicted by each 

algorithm is visualized in Figure 8. 

 

 
 

Figure 8. Rate change of alpha vs. Temperature as predicted by each algorithm. 
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In conclusion, the data indicates that all three methods can accurately calculate the kinetic parameters of 

coal pyrolysis. Significant variations in fitness levels and other factors are not observed to distinguish one 

algorithm as being better than the other. The choice between them would likely hinge on external factors 

such as computational time or other problem-specific constraints and requirements. 

 

4.3 Convergence Analysis 

The objective was to evaluate the speed and consistency with which each metaheuristic algorithm—the 

Firefly Algorithm (FFA), the Grey Wolf Optimizer (GWO), and the Moth-Flame Optimizer (MFO)—

approached the optimal solution in the estimate of kinetic parameters. Each method's fitness value across 

several iterations was tracked to gauge convergence. The following were considered: 

(i) Initial Fitness Value: The starting fitness value at the first iteration. 

(ii) Final Fitness Value: The fitness value at the last recorded iteration. 

(iii) Convergence Rate: The rate at which the fitness value approaches the optimal solution. 

 

The results from the convergence analysis are listed in the Table 2 given below and Figure 9 shows the 

Visual representation of the convergence pathways of each algorithm. 

 
Table 2. Results from the convergence analysis. 

 

Algorithm Initial Fitness Value Final Fitness Value Convergence Rate 

FFA 0.000474 0.000447 -0.057 

GWO 0.000280 0.000105 -0.625 

MFO 0.000128 0.000108 -0.156 

 

 

 
 

Figure 9. Visual representation of the convergence pathways of each algorithm. 

 

It is evident from Figure 9 that MFO stands out as the most promising algorithm in terms of initial fitness 

values since it begins closer to the ideal outcome. In Figure 9, MFO (green line) begins with the smallest 

fitness values of the three algorithms and finishes above GWO (orange line), implying that the convergence 

rate is slower than GWO. Even from the figure, the slope of the curves is distinguishable with MFO 

displaying the highest slope, implying the highest convergence rate. GWO shows a notable ability to 
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improve its solutions as the iterations go on despite starting with a greater fitness value. Even though it is 

reliable, the FFA doesn't show the same level of quick convergence as the other two. The MFO curve is 

relatively constant when the convergence rate is observed, indicating that it may have discovered an area 

around the global optimum very quickly even in the initial stages of the optimization process. GWO, on the 

other hand, exhibits a more dynamic search and continuously improves its solutions. FFA's stable state and 

smaller slope value show that it actively seeks the best answer, although more slowly.  

 

A more thorough examination using longer iterations and different beginning circumstances might give 

greater insight into the algorithms' performances, considering the ultimate fitness values. However, based 

on this data, MFO appears to provide the optimal compromise between the quality of the initial solution 

and convergence stability. 

 

4.4 Robustness Testing 

The Robustness Analysis's primary goal is to evaluate the stability and dependability of the three 

metaheuristic algorithms Firefly Algorithm (FFA), Grey Wolf Optimizer (GWO), and Moth-Flame 

Optimizer (MFO) under different initial conditions or settings. To prove its dependability for the task of 

predicting kinetic parameters, a resilient algorithm should retain a high degree of performance despite these 

modifications. Random initialization is done within a given range for each kinetic parameter A, Ea, and n. 

A broad range based on literature data and empirical understanding of the coal pyrolysis process was 

defined in order to choose the bounds for the initial value estimates for the kinetic parameters (A, Ea and 

n). The goal of this strategy was to guarantee that the search space was adequately investigated without 

limiting the optimizers to a small area that would skew the outcomes. 

 

The robustness study was aimed at evaluating the impact of these initial parameters on the optimisation 

results. In this investigation, each optimisation algorithm (FFA, GWO, and MFO) was run 10 times, with 

initial parameters generated at random within the specified common ranges. Using a multiple-run approach, 

the consistency and dependability of the optimisation outcomes were assessed in relation to the variation 

in initial positions. The results from this analysis are tabulated in Table 3 given below. The analysis, which 

is presented in Tables 3 and 4, shows that the optimisation algorithms continuously converged to similar 

solutions even when the initial values were randomly chosen. 

 
Table 3. Kinetic parameters estimated in the robustness analysis. 

 

Algorithm Avg. A Std. Dev. A Avg. Ea Std. Dev. Ea Avg. n Std. Dev. n 

FFA 4.32 × 1011 3.27 × 1011 16.8 × 104 5.04 × 103 5.71 0.159 

GWO 2.18 × 1011 2.72 × 1011 15.3 × 104 18.7 × 103 5.29 0.545 

MFO 4.74 × 1011 3.47 × 1011 15.7 × 104 91.8 × 103 3.03 1.500 

 

 

Table 4. Key statistics from the robustness analysis. 
 

Algorithm Avg. Fitness Std. Dev. Fitness Avg. Execution Time (Seconds) Std. Dev. Execution Time 

FFA 1.28 × 10-4  1.78 × 10-5 241.29 1.86 

GWO 1.07 × 10-4 1.90 × 10-6 38.86 0.35 

MFO 4.08 × 1013  1.29 × 1014 8.32 0.61 

 

 

The average value of the kinetic parameters as well as the fitness values acquired throughout the runs 

reflects this. The standard deviations of the fitness values show a moderate spread in the range of 10-5 and 

10-6 for FFA and GWO respectively, whereas MFO has a significant value in the range of 1014. This 

indicates that the optimisation process's accuracy or stability is largely unaffected in the case of FFA and 
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GWO. The average value of the fitness function is the measure of the optimisation process efficiency, where 

a lower fitness function value corresponds to a better fit. In this regard, both FFA and GWO have average 

fitness function values in the range of 10-4, indicating their superior performance when compared to the 

MFO's average fitness function value, which is in the range of 1013.  

 

The execution time of these algorithms too is also of interest since they have a direct bearing on the 

efficiency of the optimisation process. Therefore, when considering the execution time, MFO had the lowest 

average execution time of 8.32 seconds with a standard deviation of 0.6. GWO and MFO came second and 

third best in this regard with 38.86 and 241.29 seconds respectively. The standard deviations of the 

execution time too followed a similar trend. The results indicate that MFO sacrificed its accuracy and 

reliability for speed, while GWO emerges as the best option offering a combination of better fit, lower 

execution time and variation. Therefore, the initial parameter values have the lowest effect on the 

optimisation efficiency in the case of GWO, demonstrating its robustness towards initial values. 

 

In the case of Pre-exponential factor, A, MFO has the highest average value (4.74 × 1011) along with a large 

standard deviation (3.47 × 1011), indicating much variability. FFA too produces similar results with the 

average value A and its standard deviation at 4.32 × 1011 and 3.42 × 1011 respectively. However, the average 

value of A as well as the standard deviation is the lowest in the case of GWO at 2.18 × 1011 and 2.72 × 1011 

respectively.  

 

The results indicate that FFA predicts a higher energy barrier for the reaction on average, with the highest 

average value for the activation energy Ea, 16.8×104 J/mol. The standard deviation of 5.04×103 indicates a 

low level of variability in Ea, indicating a consistent performance in activation energy estimation across 

several experiments. The Grey Wolf Optimizer (GWO) yields results with an average Ea of 15.3×104 J/mol 

and a slightly higher standard deviation of 18.7×103 J/mol. However, the MFO displays the highest standard 

deviation of 91.8×103 indicating that its Ea estimations are most sensitive to the selection of initial 

parameters.  

 

With a standard deviation of 1.5 for the reaction order n, MFO exhibits considerable variability, suggesting 

a notable variance in the values of n it determines. This might indicate that there is a wide range of possible 

reaction orders due to the significant sensitivity of MFO's model of the reaction mechanism to initial 

assumptions. However, the average n values for FFA and GWO cluster closer together, at 5.71 and 5.29, 

respectively, with FFA showing a narrower standard deviation of 0.159. This tightness implies that FFA 

consistently finds a comparable reaction sequence across several initializations, which might be 

advantageous for repeatability. Compared to FFA, but significantly less than MFO, GWO has a larger 

standard deviation to a certain extent for n (0.545), suggesting slightly more variability in the reaction order. 

These interpretations are corroborated by the violin plots shown in Figures 10 and 11. 

 

A Kernel Density Estimate (KDE) produces a smooth continuous curve where the width of the shape at 

different values represents the data's distribution density at that value. For instance, a wider part of a 'violin' 

means more data points exist at that value, while a narrower part means fewer data points.  
 

The kernel density estimate (KDE) distributions visualize how optimized parameters like A, Ea, and n vary 

under the Firefly Algorithm (FFA) and Moth-Flame Optimization (MFO). The wider shape of the figures 

for the algorithms indicates the variations in the final values across the varied initial parameters. However, 

despite variations in starting inputs, the Grey Wolf Optimizer's (GWO) narrower KDE plots demonstrate 

more consistent optimisation of those parameters. This suggests that GWO is more resilient to changes in 

the initial values. Furthermore, for the optimal fitness value, the MFO shows the broadest KDE dispersion. 
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This wide dispersion points to erratic or inconsistent MFO optimisation performance. The narrowest violin 

shape is produced by the FFA in terms of execution time, indicating that it achieves more steady 

computation times than both GWO and MFO. GWO appears to be the most robust across multiple 

parameters, followed by FFA and MFO. 

 

 
 

 
 

Figure 10. Violin plots visualizing the frequency of occurrence of the corresponding optimized values of 

parameters, A(Pre-Exponential Factor), Ea(Activation Energy), and n(order of reaction). 
 
 

 
 

Figure 11. Violin plots visualizing the frequency of occurrence of the corresponding optimized values of fitness 

function values and execution time. 
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From all the above inferences, according to the robustness study, the most reliable method is the Grey Wolf 

Optimizer (GWO), which also has the most minor variability in fitness values and the lowest standard 

deviations for the estimated parameters A, Ea, and n. This shows that it consistently finds the best answers 

under various initial circumstances. Moth-Flame Optimizer (MFO) exhibits substantial variability in fitness 

and the order of the reaction n, despite higher mean fitness values, raising concerns about its robustness. A 

balanced, albeit slower performance is delivered by the Firefly Algorithm (FFA) across all criteria. In 

particular, GWO stands out as the most reliable and effective option among the three algorithms since it 

not only delivers the most consistent and high-quality answers but also does so in the least amount of time. 

 

4.5 Repeatability Analysis 

This study's main goal was to evaluate the repeatability of three metaheuristic optimization 

algorithms. Each algorithm used the same TGA dataset and attempted to estimate the kinetic parameters 

that best fit the data by minimizing an objective function that measured the sum of squared discrepancies 

between the experimental and modelled rate of change of conversion. To ensure a consistent and equitable 

evaluation, all algorithms were operated under identical conditions, each executed 30 times. The limits for 

the search agents were the same for all algorithms, with the lower limits set at [1e3, 5e4, 1] and upper limits 

at [1e12, 3e5, 6]. Every time a run was completed, the ideal kinetic parameters and their fitness values were 

recorded, collated into a Pandas DataFrame, and then saved as a CSV file. The study is well-positioned to 

directly compare the repeatability and performance of GWO, FFA, and MFO in optimizing TGA data by 

keeping this uniform approach in data processing, algorithm execution, and results recording. 

 

The histograms in Figure 12 depict the distributions of best fitness values and execution times for each 

algorithm, providing intuitive insights into their performance metrics. Key statistics from the repeatability 

tests are listed in Table 5. 

 

 
 

Figure 12. Distribution of the best fitness value and execution time for each algorithm. 
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Table 5. Key statistics from the repeatability tests. 
 

Algorithm Metric Mean Std Dev Minimum Maximum 

Firefly Algorithm (FFA) 
Best Fitness Value 1.54×10−4 5.39×10−5 1.08×10−4 2.74×10−4 

Execution Time (s) 244.33 4.84 236.41 257.32 

Grey Wolf Optimizer (GWO) 
Best Fitness Value 1.05×10−4 6.36×10−9 1.05×10−4 1.05×10−4 

Execution Time (s) 15.73 0.31 15.41 16.72 

Moth Flame Optimizer (MFO) 
Best Fitness Value 1.28×10−4 2.16×10−5 1.05×10−4 1.86×10−4 

Execution Time (s) 15.50 0.27 14.92 16.11 

 

The histograms for best fitness values produced by the FFA are distributed across different ranges of values 

indicating that the algorithm might have a stochastic element inherent in its structure. Although the range 

of fitness values do suggest that the FFA can find optimal solutions albeit inconsistently. In contrast, GWO 

and MFO display very narrow spread. This implies that these algorithms are stable and consistent. When it 

comes to execution times, the FFA histogram reveals a broad range of execution times, indicating that there 

might be substantial variations in the amount of time needed for FFA to converge to a solution. While using 

FFA in time-sensitive applications, this fluctuation may be something to take into account. The distribution 

of execution times for GWO is more concentrated, suggesting more reliable computing performance. The 

time values are clustered in a narrow range, suggesting that GWO not only provides consistent optimization 

quality (as seen in the Best Fitness Value histogram) but also does so with predictable computational effort. 

MFO's execution times exhibit a distribution akin to its optimisation quality performance, but with a 

narrower spread than that of FFA. This suggests that MFO's problem-solving time varies to a moderate 

extent. 

 

From Table 4, it is clear that GWO is the most repeatable of the three algorithms since it exhibits the least 

deviation in both optimal fitness values and execution times. This consistency could signify a more 

exploitative strategy, as it tends to provide similar results throughout different runs. On the other hand, the 

variation in FFA's results points to a predisposition for exploring various areas of the problem space. This 

can be helpful for thorough research, but it might not be the best option for situations requiring repeatability. 

The middle-ground results from MFO suggest a balanced strategy that combines exploration and 

exploitation. 
 

Conclusively, the choice between FFA, GWO, and MFO hinges on the application's specific requirements. 

GWO emerges as the front-runner for situations where repeatability takes precedence over experimentation. 

On the other hand, tasks that emphasize thorough investigation might benefit from FFA's wide range. MFO, 

which sits in the middle of the two, looks ideal in situations looking for a delicate balance between 

exploration and exploitation. 

 

4.6 Parameter Tunning Analysis 

This study engaged in a systematic comparison of three optimization algorithms in kinetic parameter 

estimation. The primary focus was understanding how varying hyperparameters affect the algorithms' 

performance, computational time, and result stability. 

 
Table 6. Parameter tunning analysis input parameters. 

 

Algorithm Population Size Iteration Range Additional Parameters 

Firefly Algorithm [30, 50, 70] [500, 1000, 1500, 2000] 

Alpha: [0.1, 0.5, 1], 

Beta: [0.2, 1, 2], 
Gamma: [0.05, 0.5, 1] 

Grey Wolf Optimizer [30, 50, 70] [500, 1000, 1500, 2000] N/A 

Moth Flame Optimizer [30, 50, 70] [500, 1000, 1500, 2000] N/A 
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The algorithms were rigorously tested across multiple combinations of hyperparameters. Metrics like 

optimal kinetic parameters (A, Ea, n), best fitness value, the number of iterations to converge, and 

computational time were tracked. Table 6 provides the design parameters of the parameter tunning analysis. 

 

Results of the test runs are tabulated in Table 7 given below. 

 
Table 7. Results of parameter tunning analysis. 

 

Algorithm Average Best Fitness 
Value 

Std Dev of Best Fitness 
Value 

Average Time Taken 
(seconds) 

Std Dev of Time Taken 
(seconds) 

FFA 2.82×10−4 1.33×10−4 7.69 7.59 

GWO 1.09×10−4 6.56×10−7 3.42 1.67 

MFO 1.08×10−4 5.17×10−7 53.65 34.53 

 
 

A higher average fitness value of (2.82×10−4) for the Firefly Algorithm (FFA) suggests that it might not be 

the best method for locating the global minimum in this optimization issue. Additionally, the higher 

standard deviation suggests less consistent results. The Grey Wolf Optimizer (GWO), on the other hand, 

showed a lower average fitness value (1.09×10−4), indicating superior performance and a smaller standard 

deviation, resulting in a more stable set of results. The Moth Flame Optimizer (MFO) roughly matched 

GWO's performance with an average fitness value of (1.08×10−4); however, its computational time was 

significantly higher, making it less efficient in terms of time complexity. 

 

 
 

Figure 13. Heatmap of results highlighting the combination of parameter values providing the best fitness values in 

the parameter tunning analysis. 
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Figure 14. Line graph visualizing the relationship between fitness values and iterations categorized by the number 

of search agents. 

 

 

The heatmaps and line graphs shown in Figures 13 and 14 provide a thorough overview of the performance 

metrics and computational time for each optimization procedure over a range of maximum iterations and 

population sizes (Number of Search Agents, NSA). Lighter colors indicate greater performance; the 

heatmaps expressly represent the average best fitness values. The line graphs simultaneously show the 

average best fitness values and the average time taken, segregated by NSA. 
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The heatmap and the line graph for the Firefly Algorithm (FA) confirm that larger population sizes and 

more iterations typically result in greater fitness scores. In contrast, as shown by its heatmap and line graph, 

the Grey Wolf Optimizer (GWO) maintains constant performance and demonstrates a lower average 

computational time throughout a range of population sizes and iterations. 

 

In conclusion, Grey Wolf Optimizer (GWO) emerged as the most balanced algorithm in terms of 

performance and computational efficiency. It not only achieved the lowest average fitness values but did 

so in the least amount of time and with high result stability. Therefore, for the specific task of kinetic 

parameter estimation, GWO appears to be the most suitable algorithm among the three evaluated. 

 

4.7 Noise Analysis 
The overarching objective of the study across all three optimization algorithms—Firefly Algorithm, Grey 

Wolf Optimizer, and Moth Flame Optimization—is to assess their robustness in handling uncertainties 

introduced as Gaussian noise. The algorithms aim to estimate kinetic parameters while minimizing the 

impact of the noise on the optimization process. 

 

Three optimization algorithms were each given a function to introduce Gaussian noise to the input data to 

assess their coping ability. As the main criteria for optimization and robustness evaluation under noise, all 

algorithms used a single objective function that computes the sum of squares of the discrepancies between 

predicted and experimental conversion rates. FFA comprises of variables that include attractiveness, 

distance, and dynamic updates of locations which are examined for sensitivity towards noise. For GWO, 

position updates, and hierarchical components based on alpha, beta, and delta wolves were considered. The 

performance under noise of MFO which entails the dynamic updating of locations based on flame and moth 

positions, was evaluated. 

 

The main takeaways are a detailed comprehension of each method's robustness as demonstrated by 

performance fluctuations under noise and identifying the most reliable algorithm for kinetic parameter 

estimation in the face of imperfect data. The results from the test runs are provided in Table 8 given below. 

 
Table 8. Results from noise handling analysis test run. 

 

Algorithm Data Type Amean Astd Emean Estd nmean nstd Fitness 
Mean 

Fitness Std 

Firefly Optimizer 

(FFA) 

 

noise-free 5.44×1011 3.24×1011 173118 5968 5.47 0.35 0.000227 1.0×10−4 

noisy 4.44×1011 3.13×1011 174830 9241 5.19 0.59 0.000290 1.4×10-4 

Grey Wolf 

Optimizer (GWO) 

 

noise-free 5.91×1011 0 172263 0 5.86 0 0.000109 0 

noisy 4.21×1011 0 170281 0 5.83 0 0.000255 0 

Moth Flame 

Optimization 

(MFO) 

noise-free 5.46×1011 3.50×1011 170589 4127 5.81 0.12 0.000109 6.76×10−7 

noisy 5.00×1011 5.27×1011 153233 100573 6 0 0.0125 6.88×10−5 

 

From Table 7, it can be inferred that when noise is added to the data, the Grey Wolf Optimizer (GWO) and 

Firefly Algorithm (FFA) exhibit more robust tolerance to noise than Moth Flame Optimisation (MFO), as 

seen by their smaller increases in mean fitness values. In addition, GWO stands out for its stability, 

exhibiting 0% variation in fitness values, albeit this can mean the algorithm is locked in a local minimum. 

GWO leads the pack in terms of overall performance on noise-free data, having the lowest mean fitness, 

closely followed by MFO and, finally, FFA. 
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The performance of each method in both noise-free and noisy environments may be seen more thoroughly 

in visualizations using grouped bar graphs (Figure 15). Their robustness against noise may be carefully 

compared, contrasted, and understood with the help of this comprehensive presentation. 

 

 

 
 

Figure 15. Visual representation of the variation in parameter values across data types (Noise-Free and Noisy). 

 

From Figure 15 the overall trend can be seen in the bar graphs for the A, E, and n parameters: all algorithms 

operate best in a noise-free environment, although noise has varying effects on their capacity 

to optimise these parameters. Particularly FFA exhibits a discernible rise in the mean values of A and E 

when noise is present, suggesting a vulnerability to noise in data. Even though they are equally affected, 

GWO and MFO show less performance deterioration when noise is introduced, which may indicate stronger 

noise-handling capabilities. The most remarkable insights come from the bar plots when looking at fitness, 

the most important performance metric for these algorithms. Plots show that in both noisy and noise-free 

situations, GWO maintains the lowest mean fitness value, indicating a higher capacity to identify optimum 

solutions or more efficient convergence. The MFO exhibits a relative rise in fitness value in noisy situations, 

indicating that although it can still navigate toward optimum solutions, its accuracy and efficiency are lower 

than those of the GWO. 

 

In conclusion, although the introduction of noise affects all three algorithms, GWO seems to be the most 

resilient, followed by FFA and MFO. In situations where the data may not be perfect, this makes GWO the 

most trustworthy method, even though its stability is a concern considering a zero standard deviation in 
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fitness values. Applying FFA and MFO to noisy data sets may require additional modifications or 

considerations. 

 

5. Conclusion, Recommendations and Limitations 
In this study, we carried out a thorough analysis of the Firefly Algorithm (FFA), Grey Wolf Optimizer 

(GWO), and Moth Flame Optimizer (MFO) focusing on their performance in estimating the kinetic 

parameters for a single-step coal pyrolysis model. The main objective was to evaluate the applicability of 

these methods for optimizing the model's parameters and to offer insight into their strengths and 

weaknesses. 

 

Our findings reveal that all three algorithms effectively estimated kinetic parameters by fitting data, 

showcasing their accuracy. The FFA and MFO yielded really good results, with fitness values of 1.09×10-

4 and 1.04×10-4. However, the best performer was the GWO, which fared better to a certain extent with a 

fitness value of 1.04×10-4. Meanwhile, the MFO algorithm was the fastest in terms of computation time 

(113.4 seconds), making it a good choice where processing speed is essential. Upon examining the specifics 

of every algorithm, the MFO estimated the highest values for activation energy Ea, pre-exponential factor 

A and reaction order n. However, each algorithm’s convergence rate varied, FFA had the slowest 

convergence rate (-0.057), lowering fitness values starting from 0.000474 at the beginning to 0.000447 at 

the end. The Grey Wolf Optimizer (GWO) showed a far more aggressive convergence, as evidenced by a -

0.625 convergence rate and a fitness value that fell from 0.000280 to 0.000105. This suggests a rapid and 

significant improvement in its optimisation performance. Finally, a modest optimisation progress was 

shown by the Moth Flame Optimizer (MFO), which showed a minor improvement from 0.000128 to 

0.000108 with a convergence rate of -0.156. In summary convergence rate analysis quantified the GWO’s 

rapid improvements to the fitness values indicating its suitability to problems requiring quick solutions. 

 

In our robustness test analysis, we found that even with varied initial parameters, all three algorithms 

consistently converge to similar solutions. The average kinetic and fitness values across several runs 

highlight the effectiveness of the algorithms. However, standard deviations in fitness values revealed 

differing stability and accuracy retention. The standard deviations for fitness values show a reasonable 

variance for FFA (10−5) and GWO (10−6), but a substantial variability for MFO (1014). When it comes to 

average fitness function values, MFO's average is much less ideal at 1013, although FFA and GWO both 

report in the 10−4 range, demonstrating their efficiency. When it comes to execution times, GWO and FFA 

come in second and third, with 38.86 and 241.29 seconds respectively, with MFO leading with the smallest 

average of 8.32 seconds (±0.6 SD). This implies that during the optimisation process, FFA and GWO retain 

greater accuracy and stability while MFO sacrifices accuracy and robustness for speed. 

 

GWO also demonstrated the greatest repeatability, providing consistent outcomes across several runs, with 

the lowest standard deviation across the three algorithms at 6.36×10−9. Even the average value of the fitness 

function was the lowest for GWO at 1.05×10−4. While MFO established a balance between exploration and 

exploitation, FFA displayed unpredictability, suggesting a propensity to investigate different solution 

spaces. To sum up, FFA is more appropriate for situations requiring extensive investigation, but GWO is 

the recommended approach where consistency and repeatability are critical. MFO is a good choice for 

activities that require a careful balance between the two techniques since it offers an ideal combination of 

exploration and exploitation. 

 

In terms of parameter tunning analysis, GWO balanced speed (3.42 seconds) and efficiency (avg. fitness 

values of 1.09x10-4 and ±6.56x10-7 SD), whereas MFO computed more slowly even if its performance was 

comparable (avg. fitness values of 1.08×10−4). These algorithms also displayed strong resilience to noise in 
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data. The Firefly Algorithm (FFA) demonstrated steady performance even in the presence of noise, with 

the fitness standard deviation rising just slightly from 1.0×10−4 to 1.4×10−4. Remarkably the Grey Wolf 

Optimizer (GWO) demonstrated perfect noise tolerance, as seen by zero fitness values for both noisy and 

noise-free data. The Moth Flame Optimisation (MFO), on the other hand, showed significant sensitivity 

when switching from noise-free to noisy data. Its mean fitness dropped from 0.000109 to 0.0125, and the 

standard deviation rose to 6.88x10-5. To sum up, data noise had a major effect on the MFO, a little impact 

on the FFA, and a minimal impact on the stable optimisation of the GWO. This indicates that the MFO has 

the highest sensitivity and the GWO is the most noise robust technique. 

 

Based on our comprehensive analysis, we recommend the Moth Flame Optimizer (MFO) for rapid 

convergence needs in time-sensitive applications, the Firefly Optimizer (FFA) for applications requiring 

extensive explorations and the Grey Wolf Optimizer (GWO) for its reliability and consistency overall. 

Apart from the speed of execution, GWO was the best performer in terms of robustness to initial parameter 

values, consistent repeatability, and resilience to noise in the data. 

 

This study contributes to understanding metaheuristic optimization algorithms' applicability in estimating 

kinetic parameters for coal pyrolysis models. We improve the subject of coal pyrolysis modeling and 

optimization by providing essential information to researchers and practitioners so they may choose an 

algorithm for their particular needs with knowledge of its performance characteristics. The choice of 

algorithm ultimately depends on the specific demands of the task, as each algorithm has demonstrated its 

unique strengths and characteristics. 

 

While this study has merit, there are some restrictions that could be addressed by further research on the 

topic. The present investigation highlights the dependence of the efficacy of the FFA, GWO, and MFO 

algorithms on the particular configurations and starting parameter estimations, which may not translate to 

other models or problem definitions. The performance metrics, influenced by the search space size and the 

landscape of the objective function, may not reflect all potential operational scenarios, posing a limitation 

to their broader application. Moreover, the evaluations of robustness and repeatability were carried out 

under limited conditions, which might not fully accommodate the range of real-world fluctuations. 

Additionally, the algorithms' sensitivity to hyperparameter adjustment raises the possibility of an impact on 

transferability and usability. Due to its overall high performance, the GWO is advised for general usage; 

however, this recommendation is accompanied by a caveat that it might not be ideal for every single 

purpose. This highlights how crucial it is to properly verify that the algorithms are appropriate for the 

particular scenario at hand. 

 

Although our study offers insightful information, there is room for more investigation and prospective 

advancements. Hybridization of algorithms is one of the main aspects. The advantages of combining 

various metaheuristic algorithms to maximize their strengths and minimize their flaws must be investigated. 

Real-world applications of these metaheuristic algorithms in coal pyrolysis or other domains could provide 

valuable insights into their practical utility. Developing noise-handling techniques or adjustments will make 

FFA and MFO more robust to noisy data. It is recommended to investigate the parallelization strategies to 

speed up the optimization process even further. 
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