
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 9, No. 2, 366-384, 2024 

https://doi.org/10.33889/IJMEMS.2024.9.2.020 
 

 

366 | https://www.ijmems.in 

Vacation Policy for k-out-of-n Redundant System with Reboot Delay 

 
Vaishali Tyagi 

Department of Applied Science & Humanities, 

ABES Institute of Technology, Ghaziabad, Uttar Pradesh, India. 

E-mail: vash.tyagi@gmail.com 
 

Mangey Ram 
Department of Mathematics, Computer Science and Engineering, 

Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India. 

E-mail: mangeyram@geu.ac.in 
 

Monika Manglik 
Department of Applied Science and Cluster, 

University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India. 

Corresponding author: mmanglik@ddn.upes.ac.in 

 

Ritu Arora 
Department of Mathematics and Statistics, 

Kanya Gurukul Campus, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India. 

E-mail: ritu.arora29@gmail.com 

 
(Received on September 26, 2023: Revised on November 7, 2023 & December 22, 2023; Accepted on January 19, 2024) 

 

 

 

Abstract 

Redundancy is a well-known concept for system resilience; k-out-of-n redundancy stipulates that a minimum number of functional 

components must be present for the system to function. Introducing a reboot delay acknowledges the temporal complexities of 

system recovery after a failure. A dynamic component is added by the vacation policy, which introduces strategic downtime for 

system components. This work predicts the performance measures of a multi-state system consisting of two subsystems A and B. 

Subsystem A follows the k-out-of-n: F policy and subsystem B has m working units and s warm standby units. The system is under 

the consideration of a single unreliable repairman who may go allow for vacation. There are two possibilities for a repairman’s 

vacation: if the system failed and the repairman is on vacation, in that case, if the repairman immediately returns from vacation, 

he/ she repairs the system but if the repairman does not return immediately from vacation, then the system takes a reboot action 

and when the repairman available, he/ she repairs the system. Failure and repair time of the units are expected to pursue an 

exponential distribution. In addition, the vacation time and reboot time regarding the failure of the units also pursue an exponential 

distribution. The concept of reboot and repairman’s vacation are incorporated to make the model more practical and versatile. The 

expressions for several performance measures such as availability, reliability, and MTTF are obtained with the help of the Markov 

process. Likewise, sensitivity analysis is done to study the impact of various parameters on system performance measures. The 

results are explained by taking numerical illustrations. 

 

Keywords- Reliability, MTTF, Sensitivity, Reboot, Vacation, Markov process, Warm standby, k-out-of-n system. 

 

 

 

1. Introduction 
Redundancy involves the replication of critical components to mitigate the impact of failures. The k-out-

of-n redundancy model extends this concept by specifying that at least k out of n replicated components 

must be operational for the system to function as intended (Ram and Dohi, 2019). This approach aims to 

provide a robust safeguard against individual component failures. Incorporating a reboot delay introduces a 

temporal dimension to the redundancy model. Traditional redundancy models often assume an immediate 

reboot or switchover in the event of a failure. However, the reboot delay acknowledges that certain 
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scenarios may warrant a strategic pause before initiating recovery actions (Wang and Chen, 2009). This 

delay could be influenced by factors such as system dynamics, operational constraints, or optimization 

objectives. Further, the term "Vacation Policy" introduces a dynamic element to system management. In 

the context of a redundant system, a vacation policy could imply a deliberate decision-making process 

regarding when and how to temporarily deactivate components for maintenance, upgrades, or other 

purposes (Kumar and Gupta, 2022). This strategic downtime, similar to a vacation for components, may be 

a key factor in optimizing the overall system performance and resource utilization. 

 

Reliability models have drawn the attention of researchers for the performance evaluation of the system’s 

various running functions. Since the 1960s, different repairable system models have been established and 

researched, for example, one-unit, series, parallel, series-parallel, redundant, k-out-of-n, and multi-state 

systems. The concept of k-out-of-n and redundancy has interest for both practitioners and researchers. The 

performance of any fault-tolerant system is exceptionally affected by the failure of its working units. High 

reliability and availability are commonly a basic necessity for a real-world repairable system (Ram, 2013). 

The provision of standbys is usually adopted for smooth functioning and to provide a satisfactory level of 

reliability and availability of the concerned system. In the recent past, numerous researchers have 

developed Markov models for the performance prediction of k-out-of-n and standby redundant systems 

(She and Pecht, 1992; Moustafa, 1996; Hsu et al., 2011). 

 

In a repairable system, it is expected that a repairman is available all the time. But, in practice, it is not true 

i.e., the repairman might take a vacation. The vacation model originated in the theory of queening and has 

been well researched over the past three years and implemented effectively in many fields such as 

engineering, computer networks, infrastructures network systems, etc. Remarkable work on the 

repairman’s vacation concept has been found (Doshi, 1986; Takagi, 1991; Tian and Zhang, 2006; Yu et al., 

2013; Jain and Gupta, 2013). They proposed various server vacation policies such as single vacation, 

multiple vacation, and hybrid vacation. Over the last decade, motivated by the principle of vacation 

queening, several researchers incorporated the vacation model into a repairable system (Ke and Wu, 2012; 

Jain and Meena, 2017; Yang and Tsao, 2019). Kadi et al. (2020) studied a queueing system with the 

vacation behaviours of the customers by using techniques based on probability-generating functions. 

Kalyanaraman and Sundaramoorthy (2019) Investigated a Markovian queueing system with a single server 

with the consideration of three states namely, busy, repaired, and working vacation. Chakravarthy et al. 

(2020) studied a queueing system with a backup served. In this research, a phase-type distribution is used 

to represent the service times. Ahuja et al. (2021) investigated a single server queueing model that is 

unreliable, as well as multiple-stage service and functioning vacation. Bhagat et al. (2021) studied a 

machine repair problem (MRP) with M identical operating machines and control arrival policy. In this 

research, the authors assumed that the server may go for a working vacation in case all the customers are 

served and used the R-K method to calculate the reliability measures of the queueing model. Thakur et al. 

(2021) investigated the M/M/1/N single server Markovian queueing model with working vacation and 

unreliable servers. In this research (Thakur et al., 2021), the authors used the M-threshold recovery policy 

to recover the server broken down.  

 

The implementation of a repairman’s vacation makes the simulation of the repairable system more 

practical and versatile from the viewpoint of the fair use of human resources. To calculate the repairable 

system’s indices by incorporating the concept of repairman’s vacation, Jain and Singh (2004) considered a 

machine system with two repairmen which may allow for vacation when many failed units are less than a 

threshold level. Ke and Lin (2005) calculated and discussed the reliability availability, MTTF, and 

sensitivity of k-out-of- M+m systems consisting of M operating units and m spares with an unreliable 

server that takes vacations. In the study of Hu et al. (2010), a single repair with a single vacation is 
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considered to investigate the three-unit system’s performance measures by using supplementary variables 

and vector Markov process theory. Guo et al. (2011) considered a series system consisting of n units with 

vacation and replacement policies and calculated some reliability indices and optimal profit of the system 

using the eigenfunction. Yuan (2012) and Yuan and Cui (2013) discussed the reliability indices of k-out-

of-n: G and consecutive k-out-of-n: F systems respectively with R repairmen who may allow for going on 

multiple vacations. Ke and Wang (2012) studied a repair system having M operating, two types of standby, 

and R repairman by incorporating the concept of repairman’s vacation. In addition, some steady-state 

probabilities are calculated by matrix geometric theory and discussed. Wu et al. (2021) calculated the 

optimal replacement policy for a deteriorating repairable system with the consideration of multiple 

vacations with a single repairman. 

 

There has been a great deal of research on vacation policy. Jia and Wu (2009) studied a repairable system 

with multiple vacations of repairmen with the assumption that the system waits for repair when the 

repairman is on vacation until the repairman is available. In real life, one can see that the stoppage of a 

system due to any error generally takes some time to recover/restart, of course with some recovery rate. 

The time between the system failure and restart is known as reboot delay. When we take a reboot action, 

that means the repairman is not available the system takes some time to recover. Many research papers in 

the area of reliability theory have incorporated the concept of reboot while analyzing the repairable 

redundant systems in a different context (Wang and Chen, 2009; Jain et al., 2014). Hsu et al. (2009) used 

the Bayesian approach when dealing with a redundant repairable system with reboot action and imperfect 

coverage. Hsu et al. (2011) proposed a redundant system with an unreliable server and reboot delay. 

Fundamentals of reboot can be found in the book written by Trivedi (2008). Goyal and Ram (2023) 

investigated a (KM+IS) system using a reboot process and considered the coverage probability only for 

switching failure. 

 

In the present research, a repairable system with two dissimilar systems with unit failure, reboot, and 

repairman vacation is considered. The considered multi-unit repairable system has two subsystems namely 

A and B, in which subsystem A follows k-out-of-n: F policy and subsystem B has m working units and s 

warm standby units. The repairman in the system follows a single vacation policy. Under regular 

circumference, when the system fails, the repairman immediately returns from vacation and repairs it. But 

if the repairman does not immediately return from vacation, in that case, reboot action is taken into 

account and the system takes a reboot delay action. This research is a unique combination of k-out-of-n 

redundancy, reboot delay, and a vacation policy. By the mathematical modeling of this model, authors 

derive some differential equations by the Markov process and study how these elements interact to 

enhance the reliability and performance of a system. 

 

The present research work is organized into six sections with subsections. Section 1 highlights the 

introduction of different approaches such as k-out-of-n model, redundancy and vacation policy with an 

extensive literature. Section 2 begins with the assumption related to the model, and notations used 

throughout the study and ends with the system model description. In next section 3, a set of differential 

equations using the Markov process is formulated. Also, this section gives the probability of each state 

obtained by using the Laplace transform. Section 4 is dedicated to deriving some specific expressions for 

the system performance measures. Some numerical illustration to explore the practical situation and 

sensitivity analysis of reliability concerning different parameters is also a part of this section. In section 5, 

results discussion regarding each reliability measure are discussed with the help of graphs. Some 

concluding remarks with a summary are given at length in section 6. 
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2. Model Details 
2.1 Assumptions and Notations 
The assumptions made for the formulation of the Markov model are as follows: 

• At time zero, the system is in new condition and starts to work. 

• The considered system has two subsystems A and B. Subsystem A follows k-out-of-n: F policy whereas 

subsystem B has m operating unit and s warm standby units. 

• On failure of the working units, the available warm standby units are used one by one with negligible 

switching time. 

• The repairman is not always available to repair the system i.e., the repairman may go allowed for 

vacation. When the system fails and the repairman is on vacation there are two possibilities either the 

repairman's immediate return from vacation with probability a or not immediate return from vacation 

with probability b. 

• When the repairman immediately returns from vacation, it starts to repair the system but when the 

repairman is not immediately returned from vacation, the system takes a reboot delay action in that state. 

• The working units that are likely to be failures have an exponential distribution. 

• After being repaired, the failed unit is considered as good as a new one. 

 

Some notations (see Table 1) which have been used in model development are as follows: 

 
Table 1. Notations. 

 

t Time scale 

s Laplace transform variable 

λk-1/ λk Failure rate of k-1 units/ failure rate of k units. 

λm-1/ λm Failure rate of m-1 working units/ failure rate of m working units 

λs-1/ λs failure rate of s-1 standby units/ failure rate of s standby units 

a Probability that the repairman is immediately returned from vacation 

b Probability that the repairman will not immediately return from vacation 

x Elapsed vacation time 

y Elapsed reboot time 

z Elapsed repair time 

η Vacation rate 

β Reboot rate 

μ Repair rate 

 

2.2 Model Description 
Consider a multi-unit system having two subsystems A and B where subsystem A has k-out-of-n: F policy 

and subsystem B comprises m operating unit and s warm standby units. For proper functioning of 

subsystem A, at least (n-k+1) units should work properly. For subsystem B, if m units fail, standby units 

take place one by one, and the system is worked until s standby units fail. The system is maintained by a 

single unreliable repairman who may allow for going on vacation and repairing the failed unit according to 

an exponential distribution with repair rate μ. When the system has failed, there are two possibilities i.e., 

either the repairman is in the system or may go on vacation. If the repairman is available then he/she 

repairs the system but, if the repairman goes on vacation and (i) can immediately return from vacation with 

probability a then he/she repairs the system and if (ii) the repairman did not immediately return from 

vacation with probability b then a reboot delay action is taken by the system with rate β and when the 

repairman goes back from vacation, he/she repairs the system. The lifetime distribution of working and 

standby units follows an exponential distribution. In addition, the reboot time of the failed unit and the 

vacation time of the repairman also follow an exponential distribution. The state transition diagram of the 

considered system is shown in Figure 1.  
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For mathematical formulation, the system state probabilities are defined as: 

P0(t) Probability of the state that all units are good. 

P1(t) Probability of the state that k-1 units of subsystem A have failed. 

P2(x, t) Probability of the completely failed state when k units of subsystem A have failed.  

P3(y, t) Probability of the completely failed state when k units of subsystem A have failed and the 

repairman is not returned immediately from vacation. 

P4(z, t) Probability of the completely failed state when k units of subsystem A have failed and the 

repairman is returning immediately from vacation.  

P5(t) Probability of the degraded state that m-1 operating units of subsystem B have failed. 

P6(t) Probability of the degraded state that m operating units of subsystem B have failed. 

P7(t) Probability of the degraded state that s-1 operating units of subsystem B have failed. 

P8(x, t) Probability of the completely failed state when s units of subsystem B have failed. 

P9(y, t) Probability of the completely failed state when s units of subsystem B have failed and the 

repairman is not returning immediately from vacation. 

P10(z, t) Probability of the completely failed state when s units of subsystem B have failed and the 

repairman is returning immediately from vacation. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
 

Figure 1. System states diagram. 

 

 

3. Formulation of the Model 
This section gives the state's transition probabilities associated with the model, these probabilities are 

further enjoyed to estimate the reliability characteristics such as availability, reliability, MTTF, and 

sensitivity. 

 

3.1 Governing Equations 
From the state transition diagram, the following differential equations have been derived with the help of 

the Markov process. 

λs 

λs-1 

λm-1 

λm 
λk 

λk-1 

β(y) 

aη(x) 

bη(x) 

bη(x) 

β(y) 

aη(x) 

μ(z) 

μ(z) 

P6(t) 

P5(t) P1(t) 

P2(x,t) 

P3(y,t) P8(x,t) 

P9(y,t) 

P4(z,t) 
P7(t) 

P0(t) 

P10(z,t) 
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Let initially, all units of the system be operating so that, 

P0(0) = 1 and Pi(0) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

 

Probability of each transition state in terms of Laplace transform, 

0
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=                                                                                                                                                   (18) 
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4. Performance Measures and Numerical Examples 
This section gives the reliability Characteristics like availability, reliability, MTTF, sensitivity, and relative 

sensitivity of reliability obtained from transient states of the system. Also, the numerical evaluation to 

replicate the behaviour of the system by considering a numerical example is present. The numerical 

evaluation accomplished here presents the validation of the proposed model and allows decision-makers to 

analyze the numerical effects of variation of specific input parameters on the system's overall performance 

measures which can be required for enhancing the efficacy of the redundant system. 
 

4.1 Availability Analysis 
The availability of the considered system is the sum of the probabilities of the good and degraded states 

and is given by, 

1 1 1 1 1
0

1 1

( ) ( ) 1
( )( ) ( )( )( )

k m m m m m s

k m s m s s m

A s P s
s s s s s s s
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= + + + + 
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                                       (31) 

 

For computation purposes, we compute the availability of the system in two cases: 
 

Case 1: when a = 0.8, b = 0.2, and other input parameter values are set as λk-1 = 0.4, λk = 0.5, λm-1 = 0.2, λm = 

0.3, λs-1 = 0.09, λs = 0.1 (Arora et al., 2020; Tyagi et al., 2019), x = 1, y = 1, µ(z) = 1, β(y) = 2 and ղ(x)=0.1 

in Equation (31) and then take the inverse Laplace to obtain the availability of the system in terms of time 

t. 
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



+ + +

+ +

+ 0108.

 

 

Case 2: When a = 0.2 and b = 0.8 and all other parameters are fixed as described above, take the inverse 

Laplace to transform to get the availability of the system as follows, 
(-1.9918 ) (-1.1221 ) (-0.5314 ) (-0.5314 )

( ) -0.0038293 0.029253 0.57741 cos(0.29258 ) 1.0729

(-0.30841 ) (-0.1025 ) (-0.1025 )
sin(0.29258 ) 0.014420 - 0.11167 cos(0.062451 ) 0.17808

sin(0.062451 )

t t t t
A t e e e t e

t t ttt e e e e

te

= + + +

 + +

0.49442.+

 

 

After varying time t = 0 to 10, the availability of the system is obtained as summarized in Table 2 and 

visualized in Figure 2. 

 
Table 2. Availability vs time at different values of repair and reboot rate. 

 

Time (t) 

Availability Pup(t) 

a > b b > a 

µ = 1, β = 2 µ = 2, β = 1 µ = 1, β = 2 µ = 2, β = 1 

0 1.00000 1.00000 1.00000 1.00000 

1 0.93053 0.93083 0.93031 0.93038 

2 0.80572 0.80791 0.80408 0.80463 

3 0.69137 0.69670 0.68738 0.68871 

4 0.60740 0.61576 0.60115 0.60324 

5 0.55369 0.56412 0.54592 0.54851 

6 0.52336 0.53476 0.51489 0.51771 

7 0.50871 0.52024 0.50019 0.50301 

8 0.50350 0.51468 0.49529 0.49802 

9 0.50339 0.51401 0.49563 0.49819 

10 0.50561 0.51569 0.49829 0.50071 
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(i)       (ii) 

 

Figure 2. Availability vs time with different values of repair and reboot rate when (a) a = 0.8, b = 0.2 and (b) a = 

0.2, b = 0.8. 
 

 

4.2 Reliability Analysis 
The reliability function of the system in terms of Laplace transform is given by, 

1 1 1 1 1

1 1 1 1

1
( ) 1

( )( ) ( )( )( )

k m m m m m s

k m k m s m s s m

R s
s s s s s s s s

− − − − −

− − − −

       
= + + + + 

+  +  +  +  +  +  +  +  +  
                     (32) 

 

To obtain the reliability behavior of the system, set default parameter λk-1 = 0.4, λk = 0.5, λm-1 = 0.2, λm = 0.3, 

λs-1 = 0.09, λs = 0.1, x = 1, y = 1, µ(z) = 1, β(y) = 2, ղ(x)=0.1, a = 0.8 and b = 0.2 in Equation (32), and then 

after taking inverse Laplace, we get Equation (33) as follow: 
 

(-0.6 ) (-0.5 ) (-0.3 ) (-0.09 ) (-0.1 )( ) -3.3451 4 0.14286 5.6022 -5.4000t t t t tR t e e e e e= + + +                                     (33) 

 

The reliability of the system per unit of time is calculated by varying time t from 0 to 10, the numerical 

results for the same are summarized in Table 3(a) and (b). 

 
Table 3. Reliability of the system w.r.t time at different values of failure rates. 

 

(a) Reliability of the system with different values of λk-1, λk and λm-1. 
 

Time(t) 
Reliability 

λk-1 = 0.35 λk-1 = 0.40 λk-1 = 0.50 λk = 0.45 λk = 0.50 λk = 0.55 λm-1 = 0.15 λm-1 = 0.20 λm-1 = 0.25 

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

1 0.93765 0.92999 0.92250 0.93612 0.93019 0.92455 0.92443 0.93001 0.93560 

2 0.82011 0.80056 0.78214 0.81497 0.80075 0.78755 0.78370 0.80059 0.81749 

3 0.70225 0.67381 0.64777 0.69314 0.67399 0.65679 0.64475 0.67385 0.70294 

4 0.60310 0.56967 0.53979 0.59021 0.56984 0.55215 0.52965 0.56970 0.60975 

5 0.52593 0.49050 0.45946 0.50973 0.49065 0.47468 0.44153 0.49053 0.53953 

6 0.46800 0.43243 0.40175 0.44903 0.43256 0.41928 0.37663 0.43245 0.48828 

7 0.42496 0.39022 0.36062 0.40380 0.39035 0.37990 0.32955 0.39025 0.45095 

8 0.39263 0.35918 0.33089 0.36984 0.35930 0.35141 0.29529 0.35920 0.42311 

9 0.36766 0.33562 0.30866 0.34375 0.33572 0.32996 0.26990 0.33564 0.40138 

10 0.34753 0.31689 0.29119 0.32294 0.31699 0.31699 0.25045 0.31691 0.38337 
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Table 3 continued… 

(b) Reliability of the system with different values of λm, λs-1 and λs. 
 

t Reliability 

λm = 0.25 λm = 0.30 λm = 0.35 λs-1 = 0.04 λs-1 = 0.09 λs-1 = 0.14 λs = 0.05 λs = 0.10 λs = 0.15 

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

1 0.92972 0.92973 0.92973 0.93008 0.93028 0.92987 0.93013 0.92921 0.92966 

2 0.80016 0.80015 0.80015 0.80077 0.80075 0.80042 0.80078 0.80015 0.80030 

3 0.67344 0.67334 0.67334 0.67441 0.67394 0.67333 0.67437 0.67361 0.67331 

4 0.56949 0.56918 0.56918 0.57110 0.56976 0.56846 0.57096 0.56958 0.56854 

5 0.49064 0.49002 0.49002 0.49329 0.49057 0.48809 0.49300 0.49046 0.48833 

6 0.43301 0.43197 0.43197 0.43716 0.43248 0.42838 0.43663 0.43242 0.42882 

7 0.39134 0.38980 0.38980 0.39746 0.39027 0.38414 0.39664 0.39023 0.38483 

8 0.36088 0.35879 0.35879 0.36944 0.35922 0.35074 0.36824 0.35920 0.35171 

9 0.33793 0.33525 0.33525 0.34935 0.33565 0.32459 0.34771 0.33564 0.32588 

10 0.34753 0.31689 0.29119 0.33446 0.31692 0.30313 0.33231 0.31691 0.30478 

 

                           
(i) Variation in λk-1.        (ii) Variation in λk. 

 

                               
(iii) variation in λm-1.        (iv) Variation in λm. 

 

                                 
(v) Variation in λs-1.         (vi) Variation in λs. 

 

Figure 3. Reliability vs time with variation in failure rates. 
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4.3 Mean Time to Failure (MTTF) 

Mean time to system failure is defined as follows,  

s

s 0
0 0

( ) lim ( )e tMTTF R t dt R t dt

 

−

→

 
= =  

 
  . 

 

So, the MTTF of the considered system is obtained by taking s→0 in Equation (32) and given by, 

1 1 1 1 1

1 1 1 1

1
1 k m m m m m s

k m k m s m s s m

MTTF − − − − −

− − − −

       
= + + + + 
 +         

                                                         (34) 

 

To get the numerical results of MTTF with respect to variation in failure rates, set failure rate values λk-1 = 

0.4, λk = 0.5, λm-1 = 0.2, λm = 0.3, λs-1 = 0.09, λs = 0.1 and vary one by one from 0.1 to 0.9 i.e., to get MTTF 

with respect to λk-1, set λk = 0.5, λm-1 = 0.2, λm = 0.3, λs-1 = 0.09, λs = 0.1 in Equation (34) and then vary λk-1 

from 0.1 to 0.9. Similarly, all parameters vary one by one while other parameters are fixed at their values. 

The computed results are given in Table 4 and graphically shown in Figure 4. 

 
Table 4. Effects of failure rates on MTTF of the system. 

 

Variation in failure 
rates 

Mean time to failure (MTTF) 

λk-1 λk λm-1 λm λs-1 λs 

0.1 16.4814 20.2963 13.3704 8.4888 11.148 10.7778 

0.2 13.1482 15.7222 11.7037 11.1482 9.4814 9.1111 

0.3 12.0370 12.9778 11.1482 13.0476 8.9259 8.5555 

0.4 11.4815 11.1482 10.8704 14.4722 8.6481 8.2777 

0.5 11.1482 9.8412 10.7037 15.5803 8.4814 8.1111 

0.6 10.9259 8.8611 10.5926 16.4667 8.3703 8.0000 

0.7 10.7672 8.0987 10.5132 17.1919 8.2910 7.9206 

0.8 10.6482 7.4888 10.4537 17.7963 8.2314 7.8611 

0.9 10.5556 6.9899 10.4074 18.3077 8.1851 7.8148 

 

 

 
 

Figure 4. Mean time to system failure vs variation in failure rates. 
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4.4 Sensitivity Analysis 
Sensitivity analysis is done to determine the effect of the system input (independent) variable on the 

system performance measures under a given set of assumptions. 

 

4.4.1 Sensitivity of Reliability 
Reliability sensitivity is obtained by partial differentiation of reliability expression regarding failure rates 

i.e. if it is represented by Δθ then, 

( )R t



 =


, 

where, θ = λk-1, λk, λm, λm-1, λs-1, λs. 

 
Table 5. Sensitivity of reliability with respect to various parameters. 

 

Time (t) 

Sensitivity of reliability 

1

( )

k

R t

−




 ( )

k

R t


 

1

( )

m

R t

−




 ( )

m

R t


 

1

( )

s

R t

−




 ( )

s

R t


 

0 0 0 0 0 0 0 

1 -0.15286 -0.11736 0.02184 -5.6E-5 -1.78E-4 -1.9E-4 

2 -0.38074 -0.27563 0.11591 -6.9E-4 -0.00226 -0.00253 

3 -0.54518 -0.36431 0.26277 -0.0027 -0.00917 -0.01026 

4 -0.63251 -0.38067 0.42404 -0.0066 -0.02333 -0.02615 

5 -0.66325 -0.34978 0.57165 -0.01249 -0.04605 -0.05174 

6 -0.66035 -0.29636 0.69151 -0.02018 -0.07759 -0.08739 

7 -0.64061 -0.23745 0.77970 -0.02926 -0.11733 -0.13247 

8 -0.61422 -0.18266 0.83816 -0.03925 -0.16405 -0.18570 

9 -0.58653 -0.13623 0.87138 -0.04964 -0.21624 -0.24541 

10 -0.55991 -0.09915 0.88454 -0.05999 -0.27222 -0.30977 

 

4.4.2 Relative Sensitivity of Reliability 
Relative sensitivity is related to a unit percentage change in parameter value (Shekhar et al., 2017). In the 

study of relative sensitivity, one can compare the relative effect of different parameters. 
( ) / ( )

/

R t R t
R 


 =

 
, 

where, θ = λk-1, λk, λm, λm-1, λs-1, λs. 
 

 

Table 6. Relative sensitivity of reliability with respect to various parameters. 
 

Time (t) 

Relative sensitivity of reliability 

1k
R

−  k
R   1m

R
−  m

R   1s
R

−  s
R   

0 0 0 0 0 0 0 

1 -0.06574 -0.06310 0.00470 -2E-5 -2E-5 -2E-5 

2 -0.19023 -0.17214 0.02895 -2.6E-4 -2.8E-4 -2.8E-4 

3 -0.32362 -0.27032 0.07799 -0.0012 -0.00137 -0.00136 

4 -0.4441 -0.3341 0.14886 -0.00347 -0.00413 -0.00409 

5 -0.54084 -0.35654 0.23308 -0.00764 -0.00949 -0.00939 

6 -0.61080 -0.34265 0.31981 -0.01400 -0.01819 -0.01794 

7 -0.65662 -0.30424 0.39959 -0.02250 -0.03055 -0.03006 

8 -0.68398 -0.25427 0.46668 -0.03278 -0.04653 -0.04567 

9 -0.69901 -0.20294 0.51924 -0.04437 -0.06581 -0.06443 

10 -0.70672 -0.15643 0.55823 -0.05679 -0.08797 -0.08590 
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(i) .     (ii) 

 

Figure 5. (i) Sensitivity and (ii) relative sensitivity of reliability of the system with respect to various failures. 

 

5. Results and Discussion 
In Table 2 as well as Figure 2, one can observe the effects of failures, repair, and reboot in two cases i.e., 

when a > b and b > a. As Figure 2 clearly shows that the availability of the considered system decreases 

with respect to an increase in time and it is greater in case of a > b in comparison to case b > a. Further, 

from Figure 2 (i), it is noticed that the maximum achievable availability of the considered system is 0.9308 

at time equal to 1 while holding µ = 2, β = 1 and 0.93053 while holding µ = 1, β = 2. Hence, this graph 

clearly shows that the maximum availability has been achieved when the repair rate is taken to be greater 

than the reboot rate. Similarly, in Figure 2 (ii), maximum availability is achieved when the repair rate has a 

greater value than the reboot rate. 

 

Figure 3 represents the variation in the reliability of the system regarding time for various system failure 

rates. Figure 3 (i)-(vi) shows the decrement in reliability as time extends. To empathize with failure effects 

on system reliability, take a change in the value of each failure while other parameters are fixed at their 

value. From Figure 3, it can be observed that λk-1, λm-1 significantly influence system reliability, λk, λs-1 and 

λs affects system reliability moderately while λm rarely influences system reliability. 

 

Figure 4 reveals that the MTTF of the system decreases with the increment in the value of failure rates in 

the time interval of [0,10]. With respect to λk, MTTF of the system is decreased in a uniform manner but 

with respect to λk-1, it decreased rapidly from 20.2963 to 6.98990. With respect to λm, MTTF decreases 

uniformly but regarding λm-1, it increases rapidly. Also, From the graph, it is seen that MTTF gradually 

decreases with increment in the value of both λs-1 and λs. However, for a higher value of λs-1 and λs, it 

ultimately becomes almost constant. 

 

Tables 5 and 6 give the value of sensitivity and relative sensitivity of reliability and corresponding Figure 

5 reveals the trend of reliability sensitivity with respect to different failure rates. From the graph, it is seen 

that the parameter λm causes a weak change in reliability sensitivity resulting in the reliability of the system 

is less sensitive regarding λm. Whereas, the parameter λm-1 causes a stronger change in reliability 

sensitivity, results, the reliability of the system is more sensitive regarding λm-1. 
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6. Conclusion 

This work analyses the repair system supported by two subsystems A and B follow k-out-of-n: F policy 

and have warm standbys respectively. Some practical concepts such as reboot, unreliable repairman, and 

vacation are combined to enlarge and analyze the reliability measures of fault-tolerant systems. The 

differential equations of the probabilities for each state are derived with the help of a state transition 

diagram and the performance measures like availability, reliability, and MTTF are obtained by using the 

Laplace transformation. Likewise, sensitivity and relative sensitivity of reliability are done to determine 

how the reliability of the system is affected by each parameter. Some important results are below: 

 

Availability of the system is greater when the repair rate has a greater value than the reboot rate. λm-1 is 

most significant important to influence system reliability and λm is rarely important. Furthermore, the 

MTTF of the system is decreased rapidly with respect to λk-1 and decreased uniformly with respect to λk. 

Also, for a higher value of λs-1 and λs, it ultimately becomes almost constant. In the context of sensitivity 

of reliability, the sensitivity and relative sensitivity of reliability are quite close to each other with respect 

to λs-1 and λs. Relative sensitivity of reliability affected by each parameter can be ranked as λk-1 > λm-1 > λk 

> λs-1 > λs > λm. 

 

The sensitivity analysis is carried out for the validation of the system performance measures. The 

sensitivity analysis conducted may be useful to the decision-makers for advance changes to the system 

being taken into consideration. The concepts of vacation and the unreliable server incorporated in our 

model can be observed frequently in daily life including in banking sectors, communication centers, power 

plants, hospitals, call centers, etc. In the future, we proceed to modify our model by considering the multi-

server vacation policy with reboot delay action. Also, future research could focus on the development of 

optimization algorithms to determine the most effective vacation policies and reboot delay durations for 

specific system configurations. 
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Appendix 

Probability of the state that all units are good in the interval (𝑡, 𝑡 + ∆𝑡) is given by (on the basis Figure 1).  

𝑃0(𝑡 + ∆𝑡) = (1 − 𝜆𝑘−1 ∆𝑡)(1 − 𝜆𝑚−1 ∆𝑡)𝑃0(𝑡) + ∫ µ(𝑧)
∞

0
 𝑃4(𝑧, 𝑡)∆𝑡𝑑𝑧 + ∫ µ(𝑧)

∞

0
 𝑃10(𝑧, 𝑡)∆𝑡𝑑𝑧, 

𝑃0(𝑡+∆𝑡)−𝑃0(𝑡)

∆𝑡
+ (𝜆𝑘−1 + 𝜆𝑚−1)𝑃0(𝑡) = ∫ µ(𝑧)

∞

0
 𝑃4(𝑧, 𝑡)𝑑𝑧 + ∫ µ(𝑧)

∞

0
 𝑃10(𝑧, 𝑡)𝑑𝑧. 

 

Now taking 
𝑙𝑖𝑚

∆𝑡 → 0
 we get 

 
𝑙𝑖𝑚

∆𝑡 → 0
𝑃0(𝑡+∆𝑡)−𝑃0(𝑡)

∆𝑡
+ (𝜆𝑘−1 + 𝜆𝑚−1)𝑃0(𝑡) = ∫ µ(𝑧)

∞

0
 𝑃4(𝑧, 𝑡)𝑑𝑧 + ∫ µ(𝑧)

∞

0
 𝑃10(𝑧, 𝑡)𝑑𝑧, 

 

[
𝜕

𝜕𝑡
+ 𝜆𝑘−1 + 𝜆𝑚−1] 𝑃0(𝑡) = ∫ µ(𝑧)

∞

0
 𝑃4(𝑧, 𝑡)𝑑𝑧 + ∫ µ(𝑧)

∞

0
 𝑃10(𝑧, 𝑡)𝑑𝑧                                                  (1) 
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Probability of the state that k-1 units of subsystem A have failed is given by 

𝑃1(𝑡 + ∆𝑡) = (1 − 𝜆𝑘  ∆𝑡)𝑃1(𝑡) + 𝜆𝑘−1∆𝑡 𝑃0(𝑡), 
𝑃1(𝑡+∆𝑡)−𝑃1(𝑡)

∆𝑡
+ (𝜆𝑘)𝑃1(𝑡) = 𝜆𝑘−1 𝑃0(𝑡). 

 

Now taking 
𝑙𝑖𝑚

∆𝑡 → 0
 we get 

 
𝑙𝑖𝑚

∆𝑡 → 0
𝑃1(𝑡+∆𝑡)−𝑃1(𝑡)

∆𝑡
+ 𝜆𝑘𝑃1(𝑡) = 𝜆𝑘−1 𝑃0(𝑡), 

 

[
𝜕

𝜕𝑡
+ 𝜆𝑘] 𝑃1(𝑡) = 𝜆𝑘−1 𝑃0(𝑡)                                                                                                                       (2) 

 

Probability of the completely failed state when k units of subsystem A have been failed is given by 

𝑃2(𝑥 + ∆𝑥, 𝑡 + ∆𝑡) = (1 − 𝑎ղ(𝑥) ∆𝑡)(1 − 𝑏ղ(𝑥) ∆𝑡)𝑃2(𝑥, 𝑡), 
𝑃2(𝑥+∆𝑥,𝑡+∆𝑡)−𝑃2(𝑥,𝑡)

∆𝑡
+ [𝑎ղ(𝑥) + 𝑏ղ(𝑥)]𝑃2(𝑥, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑥 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

 , we get, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
] 𝑃2(𝑥, 𝑡) + [𝑎ղ(𝑥) + 𝑏ղ(𝑥)]𝑃2(𝑥, 𝑡) = 0, 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝑎ղ(𝑥) + 𝑏ղ(𝑥)] 𝑃2(𝑥, 𝑡) = 0                                                                                                      (3) 

 

Probability of the completely failed state when k units of subsystem A have been failed and the repairman 

is not returned immediately from vacation is given by 

𝑃3(𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = (1 − 𝛽(𝑦)∆𝑡)𝑃3(𝑦, 𝑡), 

 
𝑃3(𝑦 + ∆𝑦, 𝑡 + ∆𝑡) − 𝑃3(𝑦, 𝑡)

∆𝑡
+ [𝛽(𝑦)]𝑃3(𝑦, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑦 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

 , we get, 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
] 𝑃3(𝑦, 𝑡) + 𝛽(𝑦)𝑃3(𝑦, 𝑡) = 0, 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛽(𝑦)] 𝑃3(𝑦, 𝑡) = 0                                                                                                                      (4) 

 

Probability of the completely failed state when k units of subsystem A have been failed and the repairman 

is returning immediately from vacation is given by  

𝑃4(𝑧 + ∆𝑧, 𝑡 + ∆𝑡) = (1 − µ(𝑧)∆𝑡)𝑃4(𝑧, 𝑡), 

 
𝑃4(𝑧+∆𝑧,𝑡+∆𝑡)−𝑃4(𝑧,𝑡)

∆𝑡
+ µ(𝑧)𝑃4(𝑧, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑧 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

, we get, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
] 𝑃4(𝑧, 𝑡) + µ(𝑧)𝑃4(𝑧, 𝑡) = 0, 
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[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑡
+ µ(𝑧)] 𝑃4(𝑧, 𝑡) = 0                                                                                                                        (5) 

 

Probability of the degraded state that m-1 operating units of subsystem B have failed is given by 

𝑃5(𝑡 + ∆𝑡) = (1 − 𝜆𝑚 ∆𝑡)𝑃5(𝑡) + 𝜆𝑚−1∆𝑡 𝑃0(𝑡), 
𝑃5(𝑡+∆𝑡)−𝑃5(𝑡)

∆𝑡
+ (𝜆𝑚)𝑃5(𝑡) = 𝜆𝑚−1 𝑃0(𝑡). 

 

Now taking 
𝑙𝑖𝑚

∆𝑡 → 0
 , we get, 

 
𝑙𝑖𝑚

∆𝑡 → 0
𝑃5(𝑡+∆𝑡)−𝑃5(𝑡)

∆𝑡
+ 𝜆𝑚𝑃5(𝑡) = 𝜆𝑚−1 𝑃0(𝑡), 

 

[
𝜕

𝜕𝑡
+ 𝜆𝑚] 𝑃5(𝑡) = 𝜆𝑚−1 𝑃0(𝑡)                                                                                                                     (6) 

 

Probability of the degraded state that m operating units of subsystem B have failed is given by 

𝑃6(𝑡 + ∆𝑡) = (1 − 𝜆𝑠−1 ∆𝑡)𝑃6(𝑡) + 𝜆𝑚∆𝑡 𝑃5(𝑡), 
𝑃6(𝑡+∆𝑡)−𝑃6(𝑡)

∆𝑡
+ (𝜆𝑠−1)𝑃6(𝑡) = 𝜆𝑚 𝑃5(𝑡). 

 

Now taking 
𝑙𝑖𝑚

∆𝑡 → 0
 , we get, 

 
𝑙𝑖𝑚

∆𝑡 → 0
𝑃6(𝑡+∆𝑡)−𝑃6(𝑡)

∆𝑡
+ 𝜆𝑠−1𝑃6(𝑡) = 𝜆𝑚 𝑃5(𝑡), 

[
𝜕

𝜕𝑡
+ 𝜆𝑠−1] 𝑃6(𝑡) = 𝜆𝑚 𝑃5(𝑡)                                                                                                                       (7) 

 

Probability of the degraded state that s-1 operating units of subsystem B have failed is given by 

𝑃7(𝑡 + ∆𝑡) = (1 − 𝜆𝑠 ∆𝑡)𝑃7(𝑡) + 𝜆𝑠−1∆𝑡 𝑃6(𝑡), 
𝑃7(𝑡+∆𝑡)−𝑃7(𝑡)

∆𝑡
+ (𝜆𝑠)𝑃7(𝑡) = 𝜆𝑠−1 𝑃6(𝑡). 

 

Now taking 
𝑙𝑖𝑚

∆𝑡 → 0
 , we get, 

 
𝑙𝑖𝑚

∆𝑡 → 0
𝑃7(𝑡+∆𝑡)−𝑃7(𝑡)

∆𝑡
+ 𝜆𝑠𝑃7(𝑡) = 𝜆𝑠−1 𝑃6(𝑡), 

 

[
𝜕

𝜕𝑡
+ 𝜆𝑠] 𝑃7(𝑡) = 𝜆𝑠−1 𝑃6(𝑡)                                                                                                                      (8) 

 

Probability of the completely failed state when s units of subsystem B have been failed is given by 

𝑃8(𝑥 + ∆𝑥, 𝑡 + ∆𝑡) = (1 − 𝑎ղ(𝑥) ∆𝑡)(1 − 𝑏ղ(𝑥) ∆𝑡)𝑃8(𝑥, 𝑡), 

 
𝑃8(𝑥+∆𝑥,𝑡+∆𝑡)−𝑃8(𝑥,𝑡)

∆𝑡
+ [𝑎ղ(𝑥) + 𝑏ղ(𝑥)]𝑃8(𝑥, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑥 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

, we get, 
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[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
] 𝑃8(𝑥, 𝑡) + [𝑎ղ(𝑥) + 𝑏ղ(𝑥)]𝑃8(𝑥, 𝑡) = 0, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝑎ղ(𝑥) + 𝑏ղ(𝑥)] 𝑃8(𝑥, 𝑡) = 0                                                                                                      (9) 

 

Probability of the completely failed state when s units of subsystem B have been failed and the repairman 

is not returning immediately from vacation is given by 

𝑃9(𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = (1 − 𝛽(𝑦)∆𝑡)𝑃9(𝑦, 𝑡), 

 
𝑃9(𝑦+∆𝑦,𝑡+∆𝑡)−𝑃9(𝑦,𝑡)

∆𝑡
+ [𝛽(𝑦)]𝑃9(𝑦, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑦 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

 , we get, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
] 𝑃9(𝑦, 𝑡) + 𝛽(𝑦)𝑃9(𝑦, 𝑡) = 0, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛽(𝑦)] 𝑃9(𝑦, 𝑡) = 0                                                                                                                     (10) 

 

Probability of the completely failed state when s units of subsystem B have been failed and the repairman 

is returning immediately from vacation is given by 

𝑃10(𝑧 + ∆𝑧, 𝑡 + ∆𝑡) = (1 − µ(𝑧)∆𝑡)𝑃10(𝑧, 𝑡), 
 

𝑃10(𝑧+∆𝑧,𝑡+∆𝑡)−𝑃10(𝑧,𝑡)

∆𝑡
+ µ(𝑧)𝑃10(𝑧, 𝑡) = 0. 

 

Now taking 
𝑙𝑖𝑚

∆𝑧 → 0
 𝑎𝑛𝑑 

𝑙𝑖𝑚
∆𝑡 → 0

, we get, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
] 𝑃10(𝑧, 𝑡) + µ(𝑧)𝑃10(𝑧, 𝑡) = 0, 

 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
+ µ(𝑧)] 𝑃10(𝑧, 𝑡) = 0                                                                                                                    (11) 

 

Initial condition  

𝑃𝑖(0) = {
1 𝑖 = 0
0 𝑖 ≠ 0

                                                                                                                                      (12) 
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