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Abstract 

This article targets to unriddle the problem of a non-cooperative fully fuzzified ’Zero Sum Two Person Matrix Game’ (ZSTPMG) 

with payoff matrix equipped with Trapezoidal fuzzy numbers (TrFNs). To achieve the target a unique and novel decomposition 

technique has been introduced. First, we develop two auxiliaries fully fuzzified linear programming problem (FFLPP) models for 

both the players and then we decompose these two FFLPP models into four linear programming (LP) models each, for both the 

players. These eight LP models are then solved by using the software TORA-2.0. The solutions of these eight LP models 

ascertain the optimal strategies and the optimal value of the fully fuzzified ZSTPMG for both the players. Our technique has an 

advantage over the existing ones as it can solve fully fuzzified ZSTPMG with all kind of TrFNs such as symmetric, asymmetric, 

positive or negative TrFNs. To establish this fact, the proposed methodology has been illustrated by taking three numericals 

equipped with various kinds of TrFNs. 

 

Keywords- Fully fuzzy matrix games, Trapezoidal fuzzy numbers, Fully fuzzy linear programming problem. 

 

 

 

1. Introduction 
A game is an analytical tool of mathematics that is used to explain strategic mutual mediation or 

interaction among various players also known as DMs (Decision Makers). The trailblazing work of two 

American economists, John and Oskar (1944) titled "Theory of Games and Economic Behaviour" set the 

advent of game theory in 1944. Since the advent of game theory various types of games such as 

ZSTPMG, bimatrix games, constrained games, differential games, have been introduced and their 

solution techniques proposed. Broadly games can be classified into two categories, cooperative games 

and non-cooperative games. Zero sum two-person matrix game (ZSTPMG) is a significant class of non-

cooperative games where the output payoffs are assumed to be well defined and crisp for both the players, 

although in real life games, this may not be the case always. In fact, in a real-life game, DMs are not 

always able to gauge the outcome payoff exactly because of the inadequacy present in the available 

information or imprecision present in the expert’s opinions as it is estimated by using the approximate 

data available to the experts. 

 

To counter and overcome such type of imprecision and vagueness in the available information, Zadeh 

(1965) introduced the revolutionary concept of fuzziness to the already existing set theory in 1965. Then 

in 1978, for the first time Butnariu (1978) used this concept of fuzziness in a non-cooperative game where 

he modelled each player’s action against the other as fuzzy sets. Although the credit of being the first to 
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study non-cooperative game in a fuzzy environment goes to (Campos, 1989). He used Yager’s resolution 

method (Yager, 1981) and fuzzy ranking index to transform FMG (fuzzy matrix game) problem into a 

pair of auxiliary FLPP (fuzzy linear programming problem). Nishizaki and Sakawa (1995, 2000) and 

Sakawa and Nishizaki (1994) investigated matrix games with fuzzy goals and fuzzy payoffs and gave 

max-min solution concept for multi objective fuzzy matrix games. Maeda (2003) described fuzzy max 

order-based equilibrium strategy to unriddle the problem of a particular type of games in fuzzy 

environment. Ganesan and Veeramani (2006) dealt with FLPPs involving TrFNs and introduced a unique 

method to solve FLPPs without transforming them into crisp LP problems. Li (2008, 2012) and Dengfeng 

(1999) introduced a two-tier LP Model to solve FMG with TFN (triangular fuzzy numbers) payoff matrix. 

Bector and Chandra (2005) famously called it ‘The Li Model’. Dutta and Gupta (2014) elaborated the 

work of Maeda (2003) and Cunlin and Qiang (2011) and investigated the Nash equilibrium strategy of 

ZSTPMG with TrFN payoff matrix. Seikh et al. (2013, 2015) studied Intuitionistic fuzzy matrix games 

(IFMGs) and introduced a novel IFO (Intuitionistic fuzzy optimization) technique to unriddle IFMGs. 

Further in 2021, Seikh et al. (2021) used triangular fuzzy dense sets in payoff matrix to make the game 

problem more realistic and used a defuzzification function to solve it. Bhaumik et al. (2017) and Jana and 

Roy (2018) introduced a solution method to unriddle FMGs with TrFN payoffs by converting it to crisp 

MG by means of an appropriately chosen linear ranking function. Hosseinzadeh and Edalatpanah (2016) 

explored Lexicographic technique in colligation with crisp LP to develop a novel model to solve FFLP 

problem with L-R fuzzy numbers. Brikaa et al. (2020) investigated the constrained matrix games under 

completely rough fuzzy environment and developed an efficacious multi-objective fuzzy model algorithm 

to solve constrained MGs. Again Brikaa et al. (2022) introduced a new technique called ‘Mehar 

Approach’ to solve a matrix game with payoff of dual triangular hesitant fuzzy sets.  Interval number and 

symmetric TFNs were considered as fuzzy payoffs by Nayak and Pal (2009) for their study of FMGs. 

Bandyopadhyay and Nayak (2013) considered symmetrical TrFNs only for their study of FMGs. Kumar 

et al. (2016) took only the positive TrFNs for their study of FMGs. However, in real life game problems 

we may have asymmetric TrFNs and TrFNs with negative entries as well. Das and Chakraborty (2021), 

Das et al. (2017, 2019) and Akram et al. (2022) have provided new mathematical models for solving FLP 

problems in their recent works. 

 

Developing new techniques to solve decision taking problems under uncertain and vague environment has 

been a motivating field for researchers all over the globe. Fuzzy game theory is a very potent tool to solve 

decision making models in uncertain and ambiguous environment. TrFNs have played a pivotal role in 

handling uncertainty and vagueness in decision science. Various articles have already been published 

involving TrFNs to unfold the problem of decision science under uncertain conditions. In their articles 

researchers have considered only a particular type of TrFNs for their study. A question arises- Can we 

develop a methodology by which we can handle models involving all kind of TrFNs? We try to build this 

research article from this aspect. 

 

Here in this paper, we propose a novel, effective and easy decomposition fuzzy linear programming 

(FLP) model. With the help of our proposed solution methodology, we can handle fully fuzzified matrix 

games (FFMG) having payoff matrix equipped with all kind of TrFNs, such as symmetric, asymmetric, 

and with positive, negative entries as well. Also, we have not used any ranking or defuzzification function 

to crispify TrFNs, which almost all the researchers have used. Therefore, ours is a novel concept to solve 

such problems and has an advantage over the existing ones. (Refer subsection 3.3) 

 

This paper has been developed as follows. Section 2 briefly introduces some of the fundamental concepts 

and definitions of fuzzy theory. Section 3 throws light on the concepts of matrix games (MG), both crisp 

and fuzzy, shortcomings of existing methods are discussed as well. Section 4 communicates the proposed 
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solution methodology to solve the fully fuzzified matrix games (FFMG), followed by a flow chart (Figure 

2) depicting the solution procedure. Section 5 illustrates three fuzzy numerical examples to showcase the 

applicability and prove validity of the proposed method. Comparison of our work with some others 

esteem researchers has been presented by means of Tables 1, 2 and 3 in section 6 and lastly this paper 

culminates after deriving the conclusion in section 7. 

 

2. Preliminaries 

Definition 1. (Bector and Chandra, 2005) Let X be a universe of discourse. Then a fuzzy set 𝐴̃ of 𝑋is 

completely determined by its degree function 𝐴̃(𝑧): 𝑋 → [0,1], that specifies the degree of belongingness 

of each element of 𝑋 in 𝐴̃, i.e., for each 𝑧 ∈ 𝑋,  𝐴̃(𝑧) ∈ [0,1] specifies degree of belongingness of 𝑧 in 𝐴̃. 

A fuzzy set 𝐴̃ is also characterized as the set of ordered pair of elements 𝑧 and its degree of belongingness 

𝐴̃(𝑧) and is usually written 𝐴̃ = {(𝑧, 𝐴̃(𝑧)): 𝑧 ∈ 𝑋}. If 𝐴̃(𝑧) = 0 then it means 𝑧 ∉ 𝐴̃. 
 

Definition 2. (Bector and Chandra, 2005) A fuzzy set 𝐴̃ is called Normal if ∃ some 𝑥0 ∈ 𝑋 s.t. 𝐴̃(𝑥0) =
1. 
 

Definition 3. (Bector and Chandra, 2005) A fuzzy set 𝐴̃ is called Convex if for any 

𝑥1, 𝑥2 ∈ 𝑋, 𝐴̃(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛 (𝐴̃(𝑥1), 𝐴̃(𝑥2)). 

 

Definition 4. (Bector and Chandra, 2005) Any fuzzy set 𝐴̃ in ℝ (Real set) is called a fuzzy number if 

(i) 𝐴̃ is Normal. 

(ii) 𝐴̃ is Convex. 

(iii) 𝐴̃(𝑥) is piecewise continuous function. 

 

Definition 5. (Bector and Chandra, 2005) For 0 ≤ 𝛾 ≤ 1, the 𝜸 −level set or 𝜸 −cut of fuzzy number 𝐴̃ 

is defined and denoted as 𝐴̃𝛾(𝑥) = {𝑥: 𝐴̃(𝑥) ≥ 𝛾};𝛾 −cut of fuzzy number 𝐴̃ is a crisp set. 

 

Definition 6. (Bandyopadhyay and Nayak, 2013) A quadruple (𝜁1, 𝜁2, 𝜁3, 𝜁4) = 𝐴̃ (𝑠𝑎𝑦), 𝜁1 ≤ 𝜁2 ≤ 𝜁3 ≤
𝜁4is known as Trapezoidal fuzzy number (TrFN) if its membership function 𝐴̃(𝑥): ℝ → [0,1] is given 

by 

 

 
 

Figure 1. Membership Function of TrFN. 
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Definition 7. (Bandyopadhyay and Nayak, 2013) The𝛾 −cut 𝐴̃𝛾 of TrFN 𝐴̃ = (𝜁1, 𝜁2, 𝜁3, 𝜁4), using 

definition-6, is defined as the crisp interval 𝐴̃𝛾 = [𝛾𝜁2 + (1 − 𝛾)𝜁1, 𝛾𝜁3 + (1 − 𝛾)𝜁4] = [𝐿𝐴𝛾,𝑅 𝐴𝛾] for 

0 ≤ 𝛾 ≤ 1. Clearly 𝐴̃1 = [𝜁2, 𝜁3] and 𝐴̃0 = [𝜁1, 𝜁4] (refer Figure 1).  

 

Definition 8. (Kaufmann and Gupta, 1991; Kaur and Kumar, 2012), A TrFN 𝐸̃ = (𝜁1, 𝜁2, 𝜁3, 𝜁4) is 

defined as:-  

(i) Non-negative TrFN if 𝜁1 ≥ 0 and is denoted as 𝐸̃ ≽ 0̃. 

(ii) Non-positive TrFN if 𝜁4 ≤ 0 and is denoted as 𝐸̃ ≼ 0̃. 

(iii) Unrestricted TrFN if 𝜁1 ≤ 0 and 𝜁4 ≥ 0. 

(iv) Scalar TrFN if 𝜁1 = 𝜁2 = 𝜁3 = 𝜁4 = 𝑘 and is denoted as(𝑘̃). 

i. Zero TrFN if 𝑘 = 0 and is denoted as(0̃). 

ii. Unit TrFN if 𝑘 = 1 and is denoted as(1̃). 

(v) Triangular Fuzzy Number (TFN) if 𝜁2 = 𝜁3. 

 

Definition 9. (Kaufmann and Gupta, 1991) Two TrFNs 𝐸̃1 = (𝜁1, 𝜁2, 𝜁3, 𝜁4) and 𝐸̃2 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) are 

defined to be equal if 𝜁1 = 𝜉1; 𝜁2 = 𝜉2; 𝜁3 = 𝜉3; 𝜁4 = 𝜉4. 

 

Definition 10. (Liou and Wang, 1992) A Ranking or Defuzzification function ℜ is a real function 

defined on the set of all fuzzy numbers, which maps each fuzzy numbers into the real line, where the 

order exists naturally, i.e., ℜ:𝐹(ℝ) → ℝ, where, 𝐹(ℝ) is a set of all fuzzy numbers. If 𝐸̃ =
(𝜁1, 𝜁2, 𝜁3, 𝜁4) ∈ 𝐹(ℝ) is a TrFN then we define ranking of 𝐸̃ as  

ℜ(𝐸̃) =
𝜁1+𝜁2+𝜁3+𝜁4

4
. 

 

Definition 11. (Liou and Wang, 1992) If 𝐸̃1 = (𝜁1, 𝜁2, 𝜁3, 𝜁4) and 𝐸̃2 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) are two TrFNs then 

(i) 𝐸̃1 ≼ 𝐸̃2 ⇔ ℜ(𝐸̃1) ≤ ℜ(𝐸̃2). 

(ii) 𝐸̃1 ≽ 𝐸̃2 ⇔ ℜ(𝐸̃1) ≥ ℜ(𝐸̃2). 

(iii) 𝐸̃1 ≈ 𝐸̃2 ⇔ ℜ(𝐸̃1) = ℜ(𝐸̃2). 

where, ≼, ≽, and ≈ are fuzzy versions of ≤, ≥ and = respectively. 

 

Definition 12. (Kaufman and Gupta, 1991) Arithmetic operations on two TrFNs 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) 

and 𝐸̃ = (𝜉1, 𝜉2, 𝜉3, 𝜉4) are defined as follows: 

(i) Addition: 𝐴̃ ⊕ 𝐸̃ = (𝑎1 + 𝜉1, 𝑎2 + 𝜉2, 𝑎3 + 𝜉3, 𝑎4 + 𝜉4). 

(ii) Negation: (−𝐸̃) = (−𝜉4, −𝜉3, −𝜉2, −𝜉1). 

(iii) Substraction: 𝐴̃ ⊖ 𝐸̃ = (𝑎1 − 𝜉4, 𝑎2 − 𝜉3, 𝑎3 − 𝜉2, 𝑎4 − 𝜉1). 

(iv) Multiplication: 𝐴̃ ⊗ 𝐸̃ = (
𝑚𝑖𝑛( 𝑎1𝜉1, 𝑎1𝜉4, 𝑎4𝜉1, 𝑎4𝜉4), 𝑚𝑖𝑛( 𝑎2𝜉2, 𝑎2𝜉3, 𝑎3𝜉2, 𝑎3𝜉3),
𝑚𝑎𝑥( 𝑎2𝜉2, 𝑎2𝜉3, 𝑎3𝜉2, 𝑎3𝜉3), 𝑚𝑎𝑥( 𝑎1𝜉1, 𝑎1𝜉4, 𝑎4𝜉1, 𝑎4𝜉4)

). 

 

Particular Cases: 

If𝐸̃ = (𝜉1, 𝜉2, 𝜉3, 𝜉4) is a non-negative TrFN and 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is any TrFN then: 

(a) 𝐴̃ ⊗ 𝐸̃ = (𝑎1𝜉4, 𝑎2𝜉2, 𝑎3𝜉3, 𝑎4𝜉4) 𝑖𝑓𝑎1 < 0, 𝑎𝑛𝑑 𝑎2, 𝑎3, 𝑎4 ≥ 0. 
(b) 𝐴̃ ⊗ 𝐸̃ = (𝑎1𝜉4, 𝑎2𝜉3, 𝑎3𝜉3, 𝑎4𝜉4) 𝑖𝑓𝑎1 < 0, 𝑎2 < 0 𝑎𝑛𝑑 𝑎3, 𝑎4 ≥ 0. 
(c) 𝐴̃ ⊗ 𝐸̃ = (𝑎1𝜉4, 𝑎2𝜉3, 𝑎3𝜉2, 𝑎4𝜉4) 𝑖𝑓𝑎1 < 0, 𝑎2 < 0, 𝑎3 < 0 𝑎𝑛𝑑 𝑎4 ≥ 0. 
(d) 𝐴̃ ⊗ 𝐸̃ = (𝑎1𝜉4, 𝑎2𝜉3, 𝑎3𝜉2, 𝑎4𝜉1) 𝑖𝑓𝑎1 < 0, 𝑎2 < 0, 𝑎3 < 0 𝑎𝑛𝑑 𝑎4 ≤ 0. 
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(v) Division:  

𝐴̃⊘𝐸̃= (𝑚𝑖𝑛 (
𝑎1

𝜉1
,

𝑎1

𝜉4
,

𝑎4

𝜉1
,

𝑎4

𝜉4
) , 𝑚𝑖𝑛 (

𝑎2

𝜉2
,

𝑎2

𝜉3
,

𝑎3

𝜉2
,

𝑎3

𝜉3
) , 𝑚𝑎𝑥 (

𝑎2

𝜉2
,

𝑎2

𝜉3
,

𝑎3

𝜉2
,

𝑎3

𝜉3
) , 𝑚𝑎𝑥 (

𝑎1

𝜉1
,

𝑎1

𝜉4
,

𝑎4

𝜉1
,

𝑎4

𝜉4
)). 

 

(vi) Reciprocal: (𝐸̃)
−1

= (
1

𝜉4
,

1

𝜉3
,

1

𝜉2
,

1

𝜉1
) 𝑖𝑓𝐸̃ ≻ 0𝑜𝑟𝐸̃ ≺ 0. 

(vi) Scalar Multiplication: (𝑘𝐸̃) = {
(𝑘𝜉1, 𝑘𝜉2, 𝑘𝜉3, 𝑘𝜉4)𝑖𝑓𝑘 ≥ 0
(𝑘𝜉4, 𝑘𝜉3, 𝑘𝜉2, 𝑘𝜉1)𝑖𝑓𝑘 < 0

.  

 

Remark 1: The ranking of a TrFN given in definition-10 is a linear function, i.e. 

ℜ(𝛼𝐸̃1 + 𝛽𝐸̃2) = 𝛼ℜ(𝐸̃1) + 𝛽ℜ(𝐸̃2); for any scalars 𝛼 and 𝛽. 
 

Remark 2: If 𝐸̃1 = (𝜁1, 𝜁2, 𝜁3, 𝜁4) and 𝐸̃2 = (𝜉1, 𝜉2, 𝜉3, 𝜉4) are two TrFNs such that 𝜁1 ≤ 𝜉1, 
𝜁2 ≤ 𝜉2, 𝜁3 ≤ 𝜉3, 𝜁4 ≤ 𝜉4;

 
then clearly, we have ℜ(𝐸̃1)≼ℜ(𝐸̃2). 

 

 

3. Matrix Games (MGs) 

3.1 Crisp Matrix Game (CMG) 
We shall initiate this section by first explaining a crisp matrix game (CMG) then we will explain FMG in 

next subsection. Let 𝐸 = (𝑎𝑗𝑘)
𝑚×𝑛

∈ ℝ𝑚×𝑛 be real matrix. By a crisp zero sum two-person matrix game 

(CMG) we shall mean a triplet (𝑆𝐼 , 𝑆𝐼𝐼 , 𝐸), where,  𝑆𝐼 , 𝑆𝐼𝐼 denotes set of all possible mixed strategies for 

player-I and player-II respectively i.e. 

𝑆𝐼 = {𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑚): ∑ 𝜉𝑗 = 1,𝑚
𝑗=1 𝜉𝑗 ∈ ℝ}, and 

𝑆𝐼𝐼 = {𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑛): ∑ 𝜂𝑘
𝑛
𝑘=1 = 1, 𝜂𝑘 ∈ ℝ}. 

 

The matrix 𝐸is called payoff matrix for player-I and the real quantity (𝜉𝑇𝐸𝜂) for 𝜉 ∈ 𝑆𝐼and𝜂 ∈ 𝑆𝐼𝐼 is 

called expected payoff value to player-I. The triplet (𝜉∗, 𝜂∗, 𝑢∗) ∈ 𝑆𝐼 × 𝑆𝐼𝐼 × ℝ is solution of CMG if 

𝜉∗𝑇𝐸𝜂 ≥ 𝑢∗    ∀  𝜂 ∈ 𝑆𝐼𝐼 and 𝜉𝑇𝐸𝜂∗ ≤ 𝑢∗    ∀  𝜉 ∈ 𝑆𝐼. 

 

Since CMG is zero sum the payoff value for player-II is−(𝜉𝑇𝐸𝜂). For a given CMG it is well known to 

write following pair of LPPs for player I and II respectively. 

 

LPP for player-I 

Maximize        (u) 

Subject to                             ∑ 𝑎𝑗𝑘𝜉𝑗 ≥ 𝑢;𝑚
𝑗=1 (𝑘 = 1,2, … , 𝑛) 

                                             𝑒𝑇𝜉 = 1 

                                              𝜉 ≥ 0                                                                                                              (1) 

 

LPP for player - II 

Minimize        (v) 

Subject to                             ∑ 𝑎𝑗𝑘𝜂𝑘 ≤ 𝑣;𝑛
𝑘=1 (𝑗 = 1,2, . . . , 𝑚) 

                                             𝑒𝑇𝜂 = 1 
                                             𝜉 ≥ 0                                                                                                               (2) 

where, 𝑒𝑇 = (1,  1, . . . ,  1) is row matrix of ones having the context specific order. 
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3.2 Fully Fuzzified Matrix Games (FFMG) 

Let 𝑬̃ = (𝒂̃𝒋𝒌)
𝒎×𝒏

∈ (𝑻𝒓𝑭𝑵(ℝ))
𝒎×𝒏

be fuzzy matrix with TrFN entries where 𝑎̃𝑗𝑘 =

(𝑎𝑗𝑘
1 , 𝑎𝑗𝑘

2 , 𝑎𝑗𝑘
3 , 𝑎𝑗𝑘

4 ) ∈ 𝑇𝑟𝐹𝑁(ℝ), where 𝑇𝑟𝐹𝑁(ℝ) being the set of all TrFNs.  

 

The matrix 𝐸̃ is called the fuzzy payoff matrix for player - I and the fuzzy entity (𝜉𝑇 ⊗ 𝐸̃ ⊗ 𝜂̃)  for 𝜉 ∈

𝑆̃𝐼 and 𝜂̃ ∈ 𝑆̃𝐼𝐼 is called fuzzy expected TrFN payoff value to player - I. Then by a fully fuzzified matrix 

game we mean a triplet (𝑆̃𝐼 , 𝑆̃𝐼𝐼 , 𝐸̃)= FFMG (say) where 𝑆̃𝐼 and 𝑆̃𝐼𝐼 are sets of all fuzzy mixed TrFN 

strategies for player-I and player-II respectively, i.e. 

𝑆̃𝐼 = {𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑚): ∑ 𝜉𝑗
𝑚
𝑗=1 ≃ 1̃, 𝜉𝑗 ∈ 𝑇𝑟𝐹𝑁(ℝ)}. 

𝑆̃𝐼𝐼 = {𝜂̃ = (𝜂̃1, 𝜂̃2, . . . , 𝜂̃𝑛): ∑ 𝜂̃𝑘
𝑛
𝑘=1 ≃ 1̃, 𝜂̃𝑘 ∈ 𝑇𝑟𝐹𝑁(ℝ)}. 

 

Then the couplet (𝑢̃,  𝑣̃) where 𝑢̃, 𝑣̃ ∈ TrFN(ℝ), is known as a Reasonable Solution of FFMG if there 

exists 𝜉∗ ∈ 𝑆̃𝐼 and 𝜂̃∗ ∈ 𝑆̃   𝐼𝐼 satisfying 

((𝜉∗)𝑇 ⊗ 𝐸̃ ⊗ 𝜂̃) ≽ 𝑢̃  ∀  𝜂̃ ∈ 𝑆̃𝐼𝐼. 

(𝜉𝑇 ⊗ 𝐸̃ ⊗ 𝜂̃∗) ≼ 𝑣̃     ∀  𝜉 ∈ 𝑆̃𝐼. 

 

and 𝑢̃, 𝑣̃  are known as Reasonable Values of FFMG for player-I and player-II respectively. 

 

Let’s take 𝛬̃1, 𝛬̃2 as reasonable value sets for player-I and player-II respectively. 

Then if ∃ 𝑢̃∗∈𝛬̃1 and 𝑣̃∗∈𝛬̃2 such that 

𝑢̃∗ ≽ 𝑢̃  ∀  𝑢̃∈𝛬̃1 and 𝑣̃∗ ≼ 𝑣̃  ∀ 𝑣̃∈𝛬̃2. 

 

Then the quadruple (𝜉∗, 𝜂̃∗, 𝑢̃∗, 𝑣̃∗) is called the solution of FFMG = (𝑆̃𝐼 , 𝑆̃𝐼𝐼 , 𝐸̃) and 𝑢̃∗, 𝑣̃∗ are called 

the fuzzy optimum TrFN values of FFMG for player-I and player-II respectively and 𝜉∗, 𝜂̃∗ are called the 

fuzzy optimal TrFN strategies of FFMG for player-I and player-II respectively. Equations similar to 

equations (1) and (2) can be written in fuzzy environment to obtain the optimum fuzzy solution of a given 

FFMG (Refer to equation (5) and equation (6)). 

 

3.3 Existing Methods and their Limitations 
In this subsection we discuss the shortfalls of the existing methods given by various researchers like 

(Bandopadhyay and Nayak, 2013; Kumar et al., 2016; Krishnavani and Ganesan, 2018) to compute fuzzy 

optimum solution of a given FFMG with payoff of TrFNs. 
 

(i) All the above mentioned researchers have used a particular type of TrFN payoffs matrix for their 

study e.g. (Bandopadhyay and Nayak, 2013) considered only symmetric TrFNs for their study, 

(Kumar et al., 2016) illustrated only positive TrFNs. In the example taken by Krishnavani and 

Ganesan (2018), in his study, has used the old domination law by ranking TrFNs with the help of a 

ranking function. Their results can be influenced by changing the ranking function, also the 

strategies of the two players are calculated as TrFNs with negative entries and their sum is also not 

equal to one, hence the solution can’t be the best relied on. (Refer Table 2). 

(ii) Almost all the researchers mentioned above have not computed the value of the FMG for player-II, 

they assume it as negative of the value obtained for player-I, as the FMG is zero sum. But this is not 

true as the sum of any TrFN and its negative is never zero unless it is a scalar TrFN (Refer  Tables 

1, 2, 3). 
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(iii) Almost all the researchers have taken the strategies to be crisp, so their solutions are a particular 

case, not the generalized ones. In our work strategies are also taken as fuzzy. 

 

4. Proposed Solution Methodology 
In this section we now present a new model to overcome the shortcomings of the existing methods. The 

steps of the method are as follows: 

 

Step 1: We write FFLPPs for the two players respectively 

For Player-I: (FFLPP)I 

Maximize   (𝑢̃)         where 𝑢̃ = (𝑢1, 𝑢2, 𝑢3, 𝑢4)is a TrFN. 

Subject to   𝜉 ⊗ 𝐴̃ ⊗ 𝜂̃ ≽ 𝑢̃    ∀  𝜂̃ ∈ 𝑆̃𝐼𝐼 

    𝜉 ∈ 𝑆̃𝐼                                                                                                     (3) 

where, 𝜉, 𝜂̃ are TrFNs giving the fuzzy strategies and 𝑆̃𝐼 ,  𝑆̃𝐼𝐼 are fuzzy TrFN strategy spaces of player-I 

and II respectively, 𝐴̃ = (𝑎̃𝑗𝑘)
𝑚×𝑛

is payoff matrix with TrFN entries 𝑎̃𝑗𝑘. 

 

For Player-II: (FFLPP)II 

Minimize    (𝑣̃)           where 𝑣̃ = (𝑣1, 𝑣2, 𝑣3, 𝑣4)is a TrFN. 

Subject to   𝜉 ⊗ 𝐴̃ ⊗ 𝜂̃  ≼ 𝑣̃     ∀    𝜉 ∈ 𝑆̃𝐼    

𝜂̃ ∈ 𝑆̃𝐼𝐼                                                                                                     (4) 

 

Taking the stationary points (pure strategies) of convex polytope 𝑆𝐼and 𝑆𝐼𝐼 in the constraints, we get the 

following FFLPPs 

 

(FFLPP)I 

Maximize             (𝑢̃) 

Subject to               𝜉 ⊗ 𝐴̃𝑘 ≽ 𝑢̃(𝑘 = 1,2, . . . , 𝑛). 

                                                  𝑒̃𝑇 ⊗ 𝜉 ≈ 1̃ 
                                                  𝜉 ≽ 0̃                                                                                                          (5) 

where, 𝐴̃𝑘(𝑘 = 1,2, . . . . , 𝑛) is 𝑘𝑡ℎcolumn of pay off matrix 𝐴̃ and 𝑒̃𝑇 = (1̃, 1̃, . . . ,  1̃)
1×𝑚

 

 

(FFLPP)II 

Minimize          (𝑣̃) 

Subject to           𝐴̃𝑗 ⊗ 𝜂̃ ≼ 𝑣̃(𝑗 = 1,2, . . . , 𝑚). 

                                               𝑒̃𝑇 ⊗ 𝜂̃ ≈ 1̃ 
                                                𝜂̃ ≽ 0̃                                                                                                           (6) 

 

where, 𝐴̃𝑗(𝑗 = 1,2, . . . . , 𝑚) is 𝑗𝑡ℎrow of pay off matrix 𝐴̃ and 𝑒̃𝑇 = (1̃, 1̃, . . . ,  1̃)
1×𝑛

. 

 

Equation (5) and (6) respectively gives 

(FFLPP)I 

Maximize                       (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

Subject to                     ∑ 𝑎̃𝑗𝑘
𝑚
𝑗=1 ⊗ 𝜉𝑗 ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4)(𝑘 = 1,2, . . . . , 𝑛) 

                                              ∑ 𝜉𝑗
𝑚
𝑗=1 ≈ (1,1,1,1) 

                                              𝜉𝑗 ≽ 0̃(𝑗 = 1,2, . . . , 𝑚)                                                                                  (7) 
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(FFLPP)II 

Minimize           (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

Subject to           ∑ 𝑎̃𝑗𝑘
𝑛
𝑘=1 ⊗ 𝜂̃𝑘 ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4)(𝑗 = 1,2, . . . . , 𝑚) 

                                    ∑ 𝜂̃𝑘
𝑛
𝑘=1 ≈ (1,1,1,1) 

                                    𝜂̃𝑘 ≽ 0̃(𝑘 = 1,2, . . . , 𝑛)                                                                                            (8) 

 

Now if we take 𝑎̃𝑗𝑘 = (𝑎𝑗𝑘
1 , 𝑎𝑗𝑘

2 , 𝑎𝑗𝑘
3 , 𝑎𝑗𝑘

4 ), 𝜉𝑗 = (𝜉𝑗
1, 𝜉𝑗

2, 𝜉𝑗
3, 𝜉𝑗

4), 𝜂̃𝑘 = (𝜂𝑘
1 , 𝜂𝑘

2, 𝜂𝑘
3, 𝜂𝑘

4), equation (7) and (8) 

becomes 

 

(FFLPP)I 

Maximize   (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

Subject to  ∑ (𝑎𝑗𝑘
1 , 𝑎𝑗𝑘

2 , 𝑎𝑗𝑘
3 , 𝑎𝑗𝑘

4 )𝑚
𝑗=1 ⊗ (𝜉𝑗

1, 𝜉𝑗
2, 𝜉𝑗

3, 𝜉𝑗
4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4)(𝑘 = 1,2, . . . , 𝑛) 

   ∑ (𝜉𝑗
1, 𝜉𝑗

2, 𝜉𝑗
3, 𝜉𝑗

4)𝑚
𝑗=1 ≈ (1,1,1,1) 

                                      (𝜉𝑗
1, 𝜉𝑗

2, 𝜉𝑗
3, 𝜉𝑗

4) ≽ 0̃(𝑗 = 1,2, . . . , 𝑚)                                                                      (9) 

 

(FFLPP)II 

Minimize  (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

subject to  ∑ (𝑎𝑗𝑘
1 , 𝑎𝑗𝑘

2 , 𝑎𝑗𝑘
3 , 𝑎𝑗𝑘

4 )𝑛
𝑘=1 ⊗ (𝜂𝑘

1 , 𝜂𝑘
2, 𝜂𝑘

3, 𝜂𝑘
4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4)(𝑗 = 1,2, . . . , 𝑚) 

   ∑ (𝜂𝑘
1 , 𝜂𝑘

2, 𝜂𝑘
3, 𝜂𝑘

4)𝑚
𝑗=1 ≈ (1,1,1,1) 

                                      (𝜂𝑘
1 , 𝜂𝑘

2, 𝜂𝑘
3, 𝜂𝑘

4) ≽ 0̃(𝑘 = 1,2, . . . , 𝑛)                                                                   (10) 

 

Step 2: Decomposing FFLPPs into four crisp LPPs each for player-I and II respectively. 

 

Now we decompose the above FFLPPs (9) and (10) into four crisp LPP’s for both players, by solving 

them using the algebra of TrFNs (refer to definition 12) as follows. 

 

For Player-I 

(LPP-1)I 

Maximize             (𝑢1)   

subject to            ∑ 𝑎𝑗𝑘
1 𝜉𝑗

1𝑚
𝑗=1 ≥ 𝑢1; (𝑘 = 1,2, . . . , 𝑛) 

                                     ∑ 𝜉𝑗
1𝑚

𝑗=1 = 1 

                                     𝜉𝑗
1 ≥ 0(𝑗 = 1,2, . . . , 𝑚)                                                                                         (11) 

 

If optimal solutions to (LPP-1)I  is 𝛼𝑗
1: (𝑗 = 1,2, . . . , 𝑚) then go on to solve LPP-2 for player-I. 

 

(LPP-2)I 

Maximize                   (𝑢2)   

subject to          ∑ 𝑎𝑗𝑘
2 𝜉𝑗

2𝑚
𝑗=1 ≥ 𝑢2; (𝑘 = 1,2, . . . , 𝑛) 

                                   ∑ 𝜉𝑗
2𝑚

𝑗=1 = 1 

                                   𝑢2 ≥ 𝑢1, 𝜉𝑗
2 ≥ 𝛼𝑗

1(𝑗 = 1,2, . . . , 𝑚)                                                                          (12) 

 

If optimal solution to (LPP-2)I is 𝛼𝑗
2: (𝑗 = 1,2, . . . , 𝑚) then go on to solve LPP-3 for player-I. 
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(LPP-3)I 

Maximize                  (𝑢3) 

subject to         ∑ 𝑎𝑗𝑘
3 𝜉𝑗

3𝑚
𝑗=1 ≥ 𝑢3; (𝑘 = 1,2, . . . , 𝑛) 

                                  ∑ 𝜉𝑗
3𝑚

𝑗=1 = 1 

                                  𝑢3 ≥ 𝑢2, 𝜉𝑗
3 ≥ 𝛼𝑗

2(𝑗 = 1,2, . . . , 𝑚)                                                                          (13) 

 

If optimal solution to (LPP-3)I is 𝛼𝑗
3: (𝑗 = 1,2, . . . , 𝑚) then go on to solve LPP-4 for player-I. 

 

(LPP-4)I 

Maximize                 (𝑢4)   

Subject to        ∑ 𝑎𝑗𝑘
4 𝜉𝑗

4𝑚
𝑗=1 ≥ 𝑢4; (𝑘 = 1,2, . . . , 𝑛) 

                                 ∑ 𝜉𝑗
4𝑚

𝑗=1 = 1 

                                 𝑢4 ≥ 𝑢3, 𝜉𝑗
4 ≥ 𝛼𝑗

3(𝑗 = 1,2, . . . , 𝑚)                                                                           (14) 

 

Now for Player-II 

 

(LPP-I)II 

Minimize        (𝑣1) 

Subject to       ∑ 𝑎𝑗𝑘
1 𝜂𝑘

1𝑛
𝑘=1 ≤ 𝑣1; (𝑗 = 1,2, . . . , 𝑚) 

                                ∑ 𝜂𝑘
1𝑛

𝑘=1 = 1 
                                𝜂𝑘

1 ≥ 0(𝑘 = 1,2, . . . , 𝑛)                                                                                              (15) 

 

If optimal solution to this (LPP-I)II  is 𝛽𝑘
1: (𝑘 = 1,2, . . . , 𝑛) then go on to write next LPP-2 for player-II. 

 

(LPP-2)II 

Minimize       (𝑣2) 

Subject to      ∑ 𝑎𝑗𝑘
2 𝜂𝑘

2𝑛
𝑘=1 ≤ 𝑣2; (𝑗 = 1,2, . . . , 𝑚) 

                               ∑ 𝜂𝑘
2𝑛

𝑘=1 = 1 
                               𝑣2 ≥ 𝑣1, 𝜂𝑘

2 ≥ 𝛽𝑘
1(𝑘 = 1,2, . . . , 𝑛)                                                                              (16) 

 

If optimal solution to this (LPP-2)II  is 𝛽𝑘
2: (𝑘 = 1,2, . . . , 𝑛) then go on to next LLP for player-II. 

 

(LPP-3)II 

Minimize     (𝑣3) 

Subject to    ∑ 𝑎𝑗𝑘
3 𝜂𝑘

3𝑛
𝑘=1 ≤ 𝑣3; (𝑗 = 1,2, . . . , 𝑚) 

                             ∑ 𝜂𝑘
3𝑛

𝑘=1 = 1 

                             𝑣3 ≥ 𝑣2, 𝜂𝑘
3 ≥ 𝛽𝑘

2(𝑘 = 1,2, . . . , 𝑛)                                                                                (17) 

 

If optimal solution to this (LPP-3)II  is 𝛽𝑘
3: (𝑘 = 1,2, . . . , 𝑛) then go on to next LLP for player-II. 

(LPP-4)II 

Minimize     (𝑣4) 

Subject to    ∑ 𝑎𝑗𝑘
4 𝜂𝑘

4𝑛
𝑘=1 ≤ 𝑣4; (𝑗 = 1,2, . . . , 𝑚) 

                             ∑ 𝜂𝑘
4𝑛

𝑘=1 = 1 
                             𝑣4 ≥ 𝑣3, 𝜂𝑘

4 ≥ 𝛽𝑘
3(𝑘 = 1,2, . . . , 𝑛)                                                                                (18) 
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Step 3: Solving the crisp LPPs for optimum values. 

Now we solve the LPP equations (11), (12), (13) and (14) using TORA-2.0 software for optimum solution 

for player-I. Let 𝛼𝑗
1, 𝛼𝑗

2, 𝛼𝑗
3, 𝛼𝑗

4, (𝑗 = 1,2, . . . , 𝑚) be the optimal solution and 𝑢1, 𝑢2, 𝑢3, 𝑢4 be the 

optimum objective function value of these equations respectively.  

 

Similarly for player II, let 𝛽𝑘
1, 𝛽𝑘

2, 𝛽𝑘
3, 𝛽𝑘

4, (𝑘 = 1,2, . . . , 𝑛) be the optimum solution and  𝑣1, 𝑣2, 𝑣3, 𝑣4be the 

optimum objective function value of LPP equations (15), (16), (17) and (18). 

 

Step 4: Combining the results of step-3 to achieve the complete optimal solution. 

According to the data obtained in step-3, we get the best/optimal strategies for player-I as 

(𝛼𝑗
1, 𝛼𝑗

2, 𝛼𝑗
3, 𝛼𝑗

4): (𝑗 = 1,2, . . . , 𝑚) and the best/optimal value of the game as (𝑢1, 𝑢2, 𝑢3, 𝑢4)for player-I. 

Similarly, we get the best/optimal strategies for player -II as(𝛽𝑘
1, 𝛽𝑘

2, 𝛽𝑘
3, 𝛽𝑘

4), (𝑘 = 1,2, . . . , 𝑛), and the 

best/optimal value of the game is (𝑣1, 𝑣2, 𝑣3, 𝑣4) for player-II.  

 

4.1 Flow Chart 
For an easy understanding, a visual representation of the proposed solution methodology has been 

depicted by the flowchart in Figure 2. 

 

 

 
 

Figure 2. Flow chart of the proposed solution model. 

 

In the next section we present three examples with different type TrFN payoffs that illustrate the 

computational process of our proposed model. 

 

5. Illustration and Computational Results 
Let us illustrate the proposed method by numerical examples: 
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Example 1: (Kumar et al., 2016) Take a specific FMG of Payoff Matrix𝐴̃for player-I equipped with 

positive TrFN entries: 

𝐴̃ = [
(175,180,185,190) (150,155,157,158)

(80,87,92,100) (175,180,185,190)
]. 

 

Assuming that 𝜉1, 𝜉2 are fuzzy TrFN strategies for player-I and 𝜂̃1, 𝜂̃2 are fuzzy TrFN strategies for 

player-II. The TrFNs 𝑢̃ and 𝑣̃ are the best (optimal) fuzzy TrFN values of game for player-I and player-II 

respectively, where, 

𝜉1 = (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4), 𝜉2 = (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4), 𝜂̃1 = (𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4), 𝜂̃2 = (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4), 𝑢̃ = (𝑢1, 𝑢2, 𝑢3, 𝑢4). 

 

and 𝑣̃ = (𝑣1, 𝑣2, 𝑣3, 𝑣4). Now using the theory of proposed solution methodology (Refer section-4), we 

get the following FFLPPs for Player-I and Player-II respectively. 

 

For player-I (FFLPP)I 

Maximize  (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

subject to   

           (175,180,185,190) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (80,87,92,100) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 
           (150,155,157,158) ⊗ (𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ⊕ (175,180,185,190) ⊗ (𝜉2

1, 𝜉2
2, 𝜉2

3, 𝜉2
4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

           (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≈ (1,1,1,1) 
           (𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ≽ 0̃ 

           (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ 0̃                                                                                                                         (19)

 

 

 

For player-II (FFLPP)II 

Minimize  (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

subject to 

         (175,180,185,190) ⊗ (𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ⊕ (150,155,157,158) ⊗ (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
(80,87,92,100) ⊗ (𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (175,180,185,190) ⊗ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

(𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ⊕ (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≈ (1,1,1,1) 
(𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ≽ 0̃ 

          (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≽ 0̃                                                                                                                           (20)  

 

Now for the player-I, we decompose equation (19) into four crisp LPP’s as follows 

 

(LPP-I)I 

Maximize   (𝑢1) 

subject to   175𝜉1
1 + 80𝜉2

1 ≥ 𝑢1 
                                       150𝜉1

1 + 175𝜉2
1 ≥ 𝑢1                                                                                         (21) 

                                       𝜉1
1 + 𝜉2

1 = 1 
                                       𝜉1

1 ≥ 0, 𝜉2
1 ≥ 0 

 

Solving equation (21) we get 𝜉1
1 = 0.7917, 𝜉2

1 = 0.2083, 𝑢1 = 155.21. Now go on to solve LPP-2, 

 

(LPP-2)I 

Maximize   (𝑢2) 

subject to   180𝜉1
2 + 87𝜉2

2 ≥ 𝑢2 
                                       155𝜉1

2 + 180𝜉2
2 ≥ 𝑢2                                                                                         (22) 
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                                       𝜉1
2 + 𝜉2

2 = 1 

                                       𝜉1
2 ≥ 0.7917, 𝜉2

2 ≥ 0.2083, 𝑢2 ≥ 155.21 

 

Solving equation (22) we get 𝜉1
2 = 0.7917, 𝜉2

2 = 0.2083, 𝑢2 = 160.21,
 
now we go on to write the next 

LPP 

(LPP-3)I 

Maximize   (𝑢3) 

subject to                       185𝜉1
3 + 92𝜉2

3 ≥ 𝑢3 
                                       157𝜉1

3 + 185𝜉2
3 ≥ 𝑢3 

                                      𝜉1
3 + 𝜉2

3 = 1                                                                                                         (23) 

𝜉1
3 ≥ 0.7917, 𝜉2

3 ≥ 0.2083, 𝑢3 ≥ 160.21 

 

Solving equation (23) we get 𝜉1
3 = 0.7917, 𝜉2

3 = 0.2083, 𝑢3 = 162.83, now we solve the following LPP 

(LPP-4)I 

Maximize   (𝑢4) 

subject to   190𝜉1
4 + 100𝜉2

4 ≥ 𝑢4 
                                       158𝜉1

4 + 190𝜉2
4 ≥ 𝑢4 

                                       𝜉1
4 + 𝜉2

4 = 1                                                                                                        (24) 

𝜉1
4 ≥ 0.7917, 𝜉2

4 ≥ 0.2083, 𝑢4 ≥ 162.83 

 

Solving this equation (24) we get 𝜉1
4 = 0.7917, 𝜉2

4 = 0.2083, 𝑢4 = 164.67, From the solutions of 

equations (21), (22), (23) and (24) we get the best (optimal) fuzzy TrFN strategy for player-I 

is (0.7917, 0.7917, 0.7917, 0.7917) and (0.2083, 0.2083, 0.2083, 0.2083) and the best (optimal) 

value of the game for player-I is (155.21, 160.21, 162.83, 164.67) i.e. player-I will win at least 

(155.21, 160.21, 162.83, 164.67) if he/she opts his/her 𝐼𝑠𝑡and 𝐼𝐼𝑛𝑑strategies with probabilities 

0.7917and 0.2083 respectively. 

 

Now for player-II, we decompose equation (20) into four crisp LPP’s as follows 

(LPP-1)II 

Minimize   (𝑣1)  

subject to   175𝜂1
1 + 150𝜂2

1 ≤ 𝑣1 
                                        80𝜂1

1 + 175𝜂2
1 ≤ 𝑣1 

                                        𝜂1
1 + 𝜂2

1 = 1 
                                       𝜂1

1 ≥ 0, 𝜂2
1 ≥ 0                                                                                                  (25) 

 

Solving this equation (25) we get 𝜂1
1 = 0.2083, 𝜂2

1 = 0.7917, 𝑣1 = 155.21, now go to write next LPP 

(LPP-2)II 

Minimize   (𝑣2)  

subject to   180𝜂1
2 + 155𝜂2

2 ≤ 𝑣2 
                                       87𝜂1

2 + 180𝜂2
2 ≤ 𝑣2 

                                       𝜂1
2 + 𝜂2

2 = 1                                                                                                        (26) 

                                       𝜂1
2 ≥ 0.2083, 𝜂2

2 ≥ 0.7917, 𝑣2 ≥ 155.21. 

 

Solving this equation (26) we get 𝜂1
2 = 0.2083, 𝜂2

2 = 0.7917, 𝑣2 = 160.63, now go on to write next LPP 

(LPP-3)II 
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Minimize   (𝑣3)  

subject to   185𝜂1
3 + 157𝜂2

3 ≤ 𝑣3 
                                       92𝜂1

3 + 185𝜂2
3 ≤ 𝑣3 

                                       𝜂1
3 + 𝜂2

3 = 1                                                                                                      (27) 

                                       𝜂1
3 ≥ 0.2083, 𝜂2

3 ≥ 0.7917, 𝑣3 ≥ 160.63. 

 

Solving this equation (27) we get 𝜂1
3 = 0.2083, 𝜂2

3 = 0.7917, 𝑣3 = 165.63, now we finally go on to solve 

the following LPP. 

 

(LPP-4)II 

Minimize   (𝑣4)  

subject to  190𝜂1
4 + 158𝜂2

4 ≤ 𝑣4 
                                       100𝜂1

4 + 190𝜂2
4 ≤ 𝑣4 

                                       𝜂1
4 + 𝜂2

4 = 1                                                                                                      (28) 

                                       𝜂1
4 ≥ 0.2083, 𝜂2

4 ≥ 0.7917, 𝑣4 ≥ 165.63. 

 

Solving this we get 𝜂1
4 = 0.2083, 𝜂2

4 = 0.7917, 𝑣4 = 171.253. From the solution of equations (25), (26), 

(27) and (28) we get the best (optimal) strategies for the player-II are (0.2083, 0.2083, 0.2083,
0.2083) and (0.7917, 0.7917, 0.7917, 0.7917) and the best (optimal) value of the game for player-II 

is (155.21,160.63,165.63,171.25)
 
i.e. player-II will lose at the most (155.21, 160.63, 165.63, 171.25) 

if he/she opts for his/her 𝐼𝑠𝑡and 𝐼𝐼𝑛𝑑strategies with probabilities 0.2083and 0.7917respectively. 

 

Example 2: (Krishnaveni and Ganesan, 2018) Now we take an example where payoff matrix contains 

TrFNs with negative entries as well: 

 

𝐴̃ = [

(1,4,5,6)
(5,10,12,17)

(−1,0,2,3)

(1,2,4,5)
(8,10,11,19)

(−1,2,3,4)

(3,4,7,8)
(5,7,10,14)

(12,14,18,20)

(4,5,7,8)
(7,10,11,12)
(8,17,21,30)

]. 

 

Assuming that 𝜉1, 𝜉2, 𝜉3 are fuzzy TrFN strategies for player-I and 𝜂̃1, 𝜂̃2, 𝜂̃3, 𝜂̃4 are fuzzy TrFN strategies 

for player-II. The TrFNs 𝑢̃ and 𝑣̃are the best/optimal TrFN fuzzy values of game for player-I and player-

II respectively. We get the following FFLPPs for both the players. 

 

For player - I, (FFLPP)I 

Maximize   (𝑢̃) 

subject to   

                                            ∑ 𝑎̃𝑗𝑘 ⊗ 𝜉𝑗
3
𝑗=1 ≽ 𝑢̃ (𝑘 = 1,2,3,4) 

                                        ∑ 𝜉𝑗
3
𝑗=1 ≈ 1̃ 

                                        𝜉𝑗 ≽ 0̃(𝑗 = 1,2,3)                                                                                            (29) 

 

For player- II, (FFLPP)II 

Minimize   (𝑣̃) 

subject to   

                                             ∑ 𝑎̃𝑗𝑘 ⊗ 𝜂̃𝑘
4
𝑘=1 ≼ 𝑣̃(𝑗 = 1,2,3) 

                                         ∑ 𝜂̃𝑘
4
𝑘=1 ≈ 1̃ 

                                         𝜂̃𝑘 ≽ 0̃(𝑘 = 1,2,3,4)                                                                                        (30) 
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Equation (29) gives us the following FFLPP for Player-I 

 

(FFLPP)I 

Maximize   (𝑢̃) 

subject to  

                 (1,4,5,6) ⊗ 𝜉1 ⊕ (5,10,12,17) ⊗ 𝜉2 ⊕ (−1,0,2,3) ⊗ 𝜉3 ≽ 𝑢̃ 
(1,2,4,5) ⊗ 𝜉1 ⊕ (8,10,11,19) ⊗ 𝜉2 ⊕ (−1,2,3,4) ⊗ 𝜉3 ≽ 𝑢̃ 
(3,4,7,8) ⊗ 𝜉1 ⊕ (5,7,10,14) ⊗ 𝜉2 ⊕ (12,14,18,20) ⊗ 𝜉3 ≽ 𝑢̃ 
(4,5,7,8) ⊗ 𝜉1 ⊕ (7,10,11,12) ⊗ 𝜉2 ⊕ (8,17,21,30) ⊗ 𝜉3 ≽ 𝑢̃ 
𝜉1 ⊕ 𝜉2 ⊕ 𝜉3 ≈ 1̃ 

                                 𝜉1, 𝜉2, 𝜉3 ≽ 0̃                                                                                                             (31) 

 

let us take𝜉1 = (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4), 𝜉2 = (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4), 𝜉3 = (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4) and 𝑢̃ = (𝑢1, 𝑢2, 𝑢3, 𝑢4)in 

equation (31), we get, 

 

(FFLPP)I 

Maximize  (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

subject to 

(1,4,5,6) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (5,10,12,17) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (−1,0,2,3) ⊗ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4)
≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

(1,2,4,5) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (8,10,11,19) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (−1,2,3,4) ⊗ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4)
≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

(3,4,7,8) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (5,7,10,14) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (12,14,18,20) ⊗ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4)
≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

(4,5,7,8) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (7,10,11,12) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (8,17,21,30) ⊗ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4)
≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

(𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4) ≈ 1̃ 
(𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ≽ 0̃ 

(𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ 0̃ 
(𝜉3

1, 𝜉3
2, 𝜉3

3, 𝜉3
4) ≽ 0̃.                                                                                                                                   (32) 

 

(FFLPP)I further yields  

Maximize  (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

subject to 

(𝜉1
1, 4𝜉1

2, 5𝜉1
3, 6𝜉1

4) ⊕ (5𝜉2
1, 10𝜉2

2, 12𝜉2
3, 17𝜉2

4) ⊕ (−𝜉3
4, 0𝜉3

2, 2𝜉3
3, 3𝜉3

4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 
(𝜉1

1, 2𝜉1
2, 4𝜉1

3, 5𝜉1
4) ⊕ (8𝜉2

1, 10𝜉2
2, 11𝜉2

3, 19𝜉2
4) ⊕ (−𝜉3

4, 2𝜉3
2, 3𝜉3

3, 4𝜉3
4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

(3𝜉1
1, 4𝜉1

2, 7𝜉1
3, 8𝜉1

4) ⊕ (5𝜉2
1, 7𝜉2

2, 10𝜉2
3, 14𝜉2

4) ⊕ (12𝜉3
1, 14𝜉3

2, 18𝜉3
3, 20𝜉3

4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 
(4𝜉1

1, 5𝜉1
2, 7𝜉1

3, 8𝜉1
4) ⊕ (7𝜉2

1, 10𝜉2
2, 11𝜉2

3, 12𝜉2
4) ⊕ (8𝜉3

1, 17𝜉3
2, 21𝜉3

3, 30𝜉3
4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

 (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ⊕ (𝜉3
1, 𝜉3

2, 𝜉3
3, 𝜉3

4) ≈ 1̃ 
(𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ≽ 0̃ 

(𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ 0̃ 
(𝜉3

1, 𝜉3
2, 𝜉3

3, 𝜉3
4) ≽ 0̃.                                                                                                                                   (33) 

 

Now we decompose equation (33) into four crisp LPPs as follows for Player-1. 

(LPP-1)I 

Maximize   (𝑢1) 
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subject to 

                                        𝜉1
1 + 5𝜉2

1 + (−1)𝜉3
4 ≥ 𝑢1 

                                        𝜉1
1 + 8𝜉2

1 + (−1)𝜉3
4 ≥ 𝑢1 

                                       3𝜉1
1 + 5𝜉2

1 + 12𝜉3
1 ≥ 𝑢1 

                                       4𝜉1
1 + 7𝜉2

1 + 8𝜉3
1 ≥ 𝑢1 

                                       𝜉1
1 + 𝜉2

1 + 𝜉3
1 = 1 

                                       𝜉3
4 − 𝜉3

1 ≥ 0 
                                       𝜉1

1, 𝜉2
1, 𝜉3

1, 𝜉3
4 ≥ 0.                                                                                                (34) 

 

On solving equation (34) we get 𝜉1
1 = 0, 𝜉2

1 = 1, 𝜉3
1 = 0, 𝜉3

4 = 0 and 𝑢1 = 5, now let us go on to solve the 

following LPP. 

(LPP-2)I 

Maximize  (𝑢2) 

subject to                        4𝜉1
2 + 10𝜉2

2 + 0𝜉3
2 ≥ 𝑢2 

                2𝜉1
2 + 10𝜉2

2 + 2𝜉3
2 ≥ 𝑢2 

     4𝜉1
2 + 7𝜉2

2 + 14𝜉3
2 ≥ 𝑢2 

     5𝜉1
2 + 10𝜉2

2 + 17𝜉3
2 ≥ 𝑢2 

     𝜉1
2 + 𝜉2

2 + 𝜉3
2 = 1 

    𝜉1
2 ≥ 0, 𝜉2

2 ≥ 1, 𝜉3
2 ≥ 0, 𝑢2 ≥ 5.                                                                         (35) 

 

On solving equation (35) we get 𝜉1
2 = 0, 𝜉2

2 = 1, 𝜉3
2 = 0 and 𝑢2 = 7. Now let us go on to solve LPP-3 

(LPP-3)I 

Maximize              (𝑢3) 

subject to           5𝜉1
3 + 12𝜉2

3 + 2𝜉3
3 ≥ 𝑢3 

             4𝜉1
3 + 11𝜉2

3 + 3𝜉3
3 ≥ 𝑢3 

                                    7𝜉1
3 + 10𝜉2

3 + 18𝜉3
3 ≥ 𝑢3 

                                    7𝜉1
3 + 11𝜉2

3 + 21𝜉3
3 ≥ 𝑢3 

                                    𝜉1
3 + 𝜉2

3 + 𝜉3
3 = 1 

                                    𝜉1
3 ≥ 0, 𝜉2

3 ≥ 1, 𝜉3
3 ≥ 0, 𝑢3 ≥ 7                                                                             (36) 

 

On solving equation (36) we get 𝜉1
3 = 0, 𝜉2

3 = 1, 𝜉3
3 = 0 and 𝑢3 = 10. now finally let us go on to solve 

the next LPP for player I 

(LPP-4)I 

Maximize              (𝑢4) 

subject to                      6𝜉1
4 + 17𝜉2

4 + 3𝜉3
4 ≥ 𝑢4 

                                      5𝜉1
4 + 19𝜉2

4 + 4𝜉3
4 ≥ 𝑢4 

                                      8𝜉1
4 + 14𝜉2

4 + 20𝜉3
4 ≥ 𝑢4 

                                      8𝜉1
4 + 12𝜉2

4 + 30𝜉3
4 ≥ 𝑢4 

                                      𝜉1
4 + 𝜉2

4 + 𝜉3
4 = 1 

                                      𝜉3
4 − 𝜉3

1 ≥ 0 
                                      𝜉1

4 ≥ 0, 𝜉2
4 ≥ 1, 𝜉3

4 ≥ 0, 𝑢4 ≥ 10                                                                         (37) 

 

 

On solving equation (37) we get 𝜉1
4 = 0, 𝜉2

4 = 1, 𝜉3
4 = 0 and 𝑢4 = 12.

 
So for player-1 we get the best 

fuzzy TrFN strategies as 𝜉1 = (0,0,0,0), 𝜉2 = (1,1,1,1), 𝜉3 = (0,0,0,0) and the best fuzzy TrFN value of 
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the game 𝑢̃ = (5,7,10,12) i.e., Player- 1 will never play his/her first and third strategy. He/she will win at 

least (5,7,10,12) by playing the second strategy only. 

 

Now for player-II 

(FFLPP)II 

Minimize  (𝑣̃) 

subject to 

 (1,4,5,6) ⊗ 𝜂̃1 ⊕ (1,2,4,5) ⊗ 𝜂̃2 ⊕ (3,4,7,8) ⊗ 𝜂̃3 ⊕ (4,5,7,8) ⊗ 𝜂̃4 ≼ (𝑣̃) 
                   (5,10,12,17) ⊗ 𝜂̃1 ⊕ (8,10,11,19) ⊗ 𝜂̃2 ⊕ (5,7,10,14) ⊗ 𝜂̃3 ⊕ (7,10,11,12) ⊗ 𝜂̃4 ≼ (𝑣̃) 
                   (−1,0,2,3) ⊗ 𝜂̃1 ⊕ (−1,2,3,4) ⊗ 𝜂̃2 ⊕ (12,14,18,20) ⊗ 𝜂̃3 ⊕ (8,17,21,30) ⊗ 𝜂̃4 ≼ (𝑣̃) 
                   𝜂̃1 ⊕ 𝜂̃2 ⊕ 𝜂̃3 ⊕ 𝜂̃4 ≈ 1̃ 

                   𝜂̃1, 𝜂̃2, 𝜂̃3, 𝜂̃4 ≽ 0̃                                                                                                                    (38) 

 

Let us take 𝜂̃1 = (𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4), 𝜂̃2 = (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4), 𝜂̃3 = (𝜂3
1, 𝜂3

2, 𝜂3
3, 𝜂3

4), 𝜂̃4 = (𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) and 𝑣̃ =
(𝑣1, 𝑣2, 𝑣3, 𝑣4) in equation (38). This gives. 

 

(FFLPP)II 

Minimize  (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

subject to 
                (1,4,5,6) ⊗ (𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (1,2,4,5) ⊗ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ⊕ (3,4,7,8) ⊗ (𝜂3

1, 𝜂3
2, 𝜂3

3, 𝜂3
4) 

                         ⊕ (4,5,7,8) ⊗ (𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
                         (5,10,12,17) ⊗ (𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (8,10,11,19) ⊗ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ⊕ (5,7,10,14) ⊗ (𝜂3

1, 𝜂3
2, 𝜂3

3, 𝜂3
4) 

                         ⊕ (7,10,11,12) ⊗ (𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
                         (−1,0,2,3) ⊗ (𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (−1,2,3,4) ⊗ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ⊕ (12,14,18,20) ⊗ (𝜂3

1, 𝜂3
2, 𝜂3

3, 𝜂3
4) 

⊕ (8,17,21,30) ⊗ (𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
(𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ⊕ (𝜂3

1, 𝜂3
2, 𝜂3

3, 𝜂3
4) ⊕ (𝜂4

1, 𝜂4
2, 𝜂4

3, 𝜂4
4) ≈ (1,1,1,1) 

(𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ≽ (0,0,0,0) 
(𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ≽ (0,0,0,0) 

(𝜂3
1, 𝜂3

2, 𝜂3
3, 𝜂3

4) ≽ (0,0,0,0) 
                               (𝜂4

1, 𝜂4
2, 𝜂4

3, 𝜂4
4) ≽ (0,0,0,0)                                                                                                             (39) 

 

Equation (39) further gives 

 

(FFLPP)II 

Minimize  (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

subject to 

(𝜂1
1, 4𝜂1

2, 5𝜂1
3, 6𝜂1

4) ⊕ (𝜂2
1, 2𝜂2

2, 4𝜂2
3, 5𝜂2

4) ⊕ (3𝜂3
1, 4𝜂3

2, 7𝜂3
3, 8𝜂3

4) ⊕ (4𝜂4
1, 5𝜂4

2, 7𝜂4
3, 8𝜂4

4)
≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

(5𝜂1
1, 10𝜂1

2, 12𝜂1
3, 17𝜂1

4) ⊕ (8𝜂2
1, 10𝜂2

2, 11𝜂2
3, 19𝜂2

4) ⊕ (5𝜂3
1, 7𝜂3

2, 10𝜂3
3, 14𝜂3

4)

⊕ (7𝜂4
1, 10𝜂4

2, 11𝜂4
3, 12𝜂4

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

(−𝜂1
4, 0𝜂1

2, 2𝜂1
3, 3𝜂1

4) ⊕ (−𝜂2
4, 2𝜂2

2, 3𝜂2
3, 4𝜂2

4) ⊕ (12𝜂3
1, 14𝜂3

2, 18𝜂3
3, 20𝜂3

4) ⊕ (8𝜂4
1, 17𝜂4

2, 21𝜂4
3, 30𝜂4

4)
≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

(𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ⊕ (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ⊕ (𝜂3
1, 𝜂3

2, 𝜂3
3, 𝜂3

4) ⊕ (𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) ≈ (1,1,1,1) 
(𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ≽ (0,0,0,0) 

(𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≽ (0,0,0,0) 
(𝜂3

1, 𝜂3
2, 𝜂3

3, 𝜂3
4) ≽ (0,0,0,0) 

(𝜂4
1, 𝜂4

2, 𝜂4
3, 𝜂4

4) ≽ (0,0,0,0)                                                                                                                       (40) 
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Now for player-II we decompose equation (40) into four crisp LPPs as follows: 

(LPP-1)II 

Minimize   (𝑣1) 

subject to    𝜂1
1 + 𝜂2

1 + 3𝜂3
1 + 4𝜂4

1 ≤ 𝑣1 
                                        5𝜂1

1 + 8𝜂2
1 + 5𝜂3

1 + 7𝜂4
1 ≤ 𝑣1 

                                      −𝜂1
4 − 𝜂2

4 + 12𝜂3
1 + 8𝜂4

1 ≤ 𝑣1 
                                       𝜂1

1 + 𝜂2
1 + 𝜂3

1 + 𝜂4
1 = 1 

                                       𝜂1
4 − 𝜂1

1 ≥ 0 

                                       𝜂2
4 − 𝜂2

1 ≥ 0 
            𝜂1

1 ≥ 0, 𝜂2
1 ≥ 0, 𝜂3

1 ≥ 0, 𝜂4
1 ≥ 0                                                                           (41) 

 

The solution of equation (41) gives 𝜂1
1 = 0.54,  𝜂2

1 = 0,  𝜂3
1 = 0.46,  𝜂4

1 = 0, 𝜂1
4 = 0.54, 𝜂2

4 = 0 and 𝑣1 =
5. 
Now we go on to solve the next LPP-2 for player-II 

(LPP-2)II 

Minimize   (𝑣2) 

subject to   

                                       4𝜂1
2 + 2𝜂2

2 + 4𝜂3
2 + 5𝜂4

2 ≤ 𝑣2 
                                      10𝜂1

2 + 10𝜂2
2 + 7𝜂3

2 + 10𝜂4
2 ≤ 𝑣2 

                                      0𝜂1
2 + 2𝜂2

2 + 14𝜂3
2 + 17𝜂4

2 ≤ 𝑣2 
                                      𝜂1

2 + 𝜂2
2 + 𝜂3

2 + 𝜂4
2 = 1 

                                      𝜂1
2 ≥ 0.54, 𝜂2

2 ≥ 0, 𝜂3
2 ≥ 0.46, 𝜂4

2 ≥ 0, 𝑣2 ≥ 5                                                   (42) 

 

The solution of equation (42) gives 𝜂1
2 = 0.54, 𝜂2

2 = 0, 𝜂3
2 = 0.46, 𝜂4

2 = 0and 𝑣2 = 8.62. Now we go on 

to solve the next LPP-3 for player-II 

(LPP-3)II 

Minimize               (𝑣3) 

subject to                 5𝜂1
3 + 4𝜂2

3 + 7𝜂3
3 + 7𝜂4

3 ≤ 𝑣3 
                12𝜂1

3 + 11𝜂2
3 + 10𝜂3

3 + 11𝜂4
3 ≤ 𝑣3 

               2𝜂1
3 + 3𝜂2

3 + 18𝜂3
3 + 21𝜂4

3 ≤ 𝑣3 
              𝜂1

3 + 𝜂2
3 + 𝜂3

3 + 𝜂4
3 = 1 

              𝜂1
3 ≥ 0.54, 𝜂2

3 ≥ 0, 𝜂3
3 ≥ 0.46, 𝜂4

3 ≥ 0, 𝑣3 ≥ 8.62                                            (43) 

 

The solution of equation (43) gives 𝜂1
3 = 0.54, 𝜂2

3 = 0,  𝜂3
3 = 0.46,  𝜂4

3 = 0 and v3 = 11.08. Now finally 

we go on to solve the LPP-4 for player-II 

(LPP-4)II 

Minimize             (𝑣4) 

subject to                      6𝜂1
4 + 5𝜂2

4 + 8𝜂3
4 + 8𝜂4

4 ≤ 𝑣4 
17𝜂1

4 + 19𝜂2
4 + 14𝜂3

4 + 12𝜂4
4 ≤ 𝑣4 

3𝜂1
4 + 4𝜂2

4 + 20𝜂3
4 + 30𝜂4

4 ≤ 𝑣4 
𝜂1

4 + 𝜂2
4 + 𝜂3

4 + 𝜂4
4 = 1 

𝜂1
4 ≥ .54, 𝜂2

4 ≥ 0, 𝜂3
4 ≥ .46, 𝜂4

4 ≥ 0, 𝑣4 ≥ 11.08                                                  (44) 

 

The solution of equation (44) gives 𝜂1
4 = 0.54, 𝜂2

4 = 0, 𝜂3
4 ≥ 0.46, 𝜂4

4 = 0, 𝑣4 = 15.62. Therefore for 

player- II, the best value of the game is (5, 8.62, 11.08, 15.62) and the best strategies are given as 𝜂̃1 = 

(0.54, 0.54, 0.54, 0.54),  𝜂̃2= (0, 0, 0, 0), 𝜂̃3 = (0.46, 0.46, 0.46, 0.46) and 𝜂̃4 = (0, 0, 0, 0) i.e player- II 
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will never use his /her IInd and IVth strategies and will lose at the most (5, 8.62, 11.08, 15.62) if he/she 

plays the first and third strategies with probabilities 0.54 and 0.46 respectively. 
 

Example 3: Bandyopadhyay and Nayak (2013): Now we take a specific FMG with positive symmetric 

TrFN payoff matrix: 

𝐴̃ = [
(1,2,3,4)

(3.5,7,10.5,14)
(2.5,5,7.5,10)
(1.5,3,4.5,6)

]. 

 

Assuming that 𝜉1, 𝜉2 are fuzzy TrFN strategies for player-I and 𝜂̃1, 𝜂̃2 are fuzzy TrFN strategies for 

player-II. The TrFNs 𝑢̃ and 𝑣̃ are the best fuzzy TrFN values of game for player-I and player-II 

respectively, where  

𝜉1 = (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4), 𝜉2 = (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4), 𝜂̃1 = (𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4), 𝜂̃2 = (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4), 𝑢̃ = (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

and 𝑣̃ = (𝑣1, 𝑣2, 𝑣3, 𝑣4). Now using the theory of proposed solution methodology (Refer section-4), we 

get the following FFLPPs for Player-I and Player-II respectively. 
 

For player-I (FFLPP)I 

Maximize  (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

subject to   

              (1,2,3,4) ⊗ (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (3.5,7,10.5,14) ⊗ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 
                     (2.5,5,7.5,10) ⊗ (𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ⊕ (1.5,3,4.5,6) ⊗ (𝜉2

1, 𝜉2
2, 𝜉2

3, 𝜉2
4) ≽ (𝑢1, 𝑢2, 𝑢3, 𝑢4) 

                     (𝜉1
1, 𝜉1

2, 𝜉1
3, 𝜉1

4) ⊕ (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≈ (1,1,1,1) 
                     (𝜉1

1, 𝜉1
2, 𝜉1

3, 𝜉1
4) ≽ 0̃ 

                     (𝜉2
1, 𝜉2

2, 𝜉2
3, 𝜉2

4) ≽ 0̃                                                                                                               (45) 

 

For player-II (FFLPP)II 

Minimize  (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

subject to 

                 (1,2,3,4) ⊗ (𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ⊕ (2.5,5,7.5,10) ⊗ (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
(3.5,7,10.5,14) ⊗ (𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ⊕ (1.5,3,4.5,6) ⊗ (𝜂2

1, 𝜂2
2, 𝜂2

3, 𝜂2
4) ≼ (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

(𝜂1
1, 𝜂1

2, 𝜂1
3, 𝜂1

4) ⊕ (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≈ (1,1,1,1) 
(𝜂1

1, 𝜂1
2, 𝜂1

3, 𝜂1
4) ≽ 0̃ 

                (𝜂2
1, 𝜂2

2, 𝜂2
3, 𝜂2

4) ≽ 0̃                                                                                                                    (46) 

 

Now for the player-I, we decompose equation (45) into four crisp LPP’s as follows 

 

(LPP-I)I 

Maximize   (𝑢1) 

subject to              1.0𝜉1
1 + 3.5𝜉2

1 ≥ 𝑢1 
                                      2.5𝜉1

1 + 1.5𝜉2
1 ≥ 𝑢1 

                                      𝜉1
1 + 𝜉2

1 = 1 
                                      𝜉1

1 ≥ 0, 𝜉2
1 ≥ 0                                                                                                     (47) 

 

Solving equation (47) we get 𝜉1
1 = 0.57, 𝜉2

1 = 0.43, 𝑢1 = 2.07. Now we go on towrite the next LPP. 

 

(LPP-2)I 

Maximize   (𝑢2) 
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subject to               2.0𝜉1
2 + 7.0𝜉2

2 ≥ 𝑢2 
                                       5.0𝜉1

2 + 3.0𝜉2
2 ≥ 𝑢2 

                                         𝜉1
2 + 𝜉2

2 = 1 
                                        𝜉1

2 ≥ 0.57, 𝜉2
2 ≥ 0.43, 𝑢2 ≥ 2.07                                                                      (48) 

 

Solving equation (48) we get 𝜉1
2 = 0.57, 𝜉2

2 = 0.43, 𝑢2 = 4.14,
 
now we go on to write the next LPP 

( 

LPP-3)I 

Maximize   (𝑢3) 

subject to               3.0𝜉1
3 + 10.5𝜉2

3 ≥ 𝑢3 
                                       7.5𝜉1

3 + 4.5𝜉2
3 ≥ 𝑢3 

                                       𝜉1
3 + 𝜉2

3 = 1 
                                      𝜉1

3 ≥ 0.57, 𝜉2
3 ≥ 0.43, 𝑢3 ≥ 4.14                                                                        (49) 

 

Solving equation (49) we get 𝜉1
3 = 0.57, 𝜉2

3 = 0.43, 𝑢3 = 6.21, now we solve the following LPP 

 

(LPP-4)I 

Maximize   (𝑢4) 

subject to  4.0𝜉1
4 + 14𝜉2

4 ≥ 𝑢4 
                                       10𝜉1

4 + 6.0𝜉2
4 ≥ 𝑢4 

                                        𝜉1
4 + 𝜉2

4 = 1 
                                        𝜉1

4 ≥ 0.57, 𝜉2
4 ≥ 0.43, 𝑢4 ≥ 6.21                                                                      (50) 

 

Solving this LPP equation (50) we get 𝜉1
4 = 0.57, 𝜉2

4 = 0.43, 𝑢4 = 8.28, From the solutions of equations 

(47), (48), (49) and (50) we get the best fuzzy TrFN strategy for player-I is(0.57,0.57,0.57,0.57) and 
(0.43, 0.43, 0.43, 0.43) and the best value of the game for player-I is (2.07, 4.14, 6.21, 8.28). i.e. player-I 

will win at least (2.07, 4.14, 6.21, 8.28). if he/she opts his/her𝐼𝑠𝑡and 𝐼𝐼𝑛𝑑strategies with 

probabilities 0.57and 0.43 respectively. 

 

Now for player-II, we decompose equation (46) into four crisp LPP’s as follows 

 

(LPP-1)II 

Minimize   (𝑣1)  

subject to   1.0𝜂1
1 + 2.5𝜂2

1 ≤ 𝑣1 
                                       3.5𝜂1

1 + 1.5𝜂2
1 ≤ 𝑣1 

                                        𝜂1
1 + 𝜂2

1 = 1 
                                         𝜂1

1 ≥ 0, 𝜂2
1 ≥ 0                                                                                                  (51) 

 

Solving this equation (51) we get 𝜂1
1 = 0.29, 𝜂2

1 = 0.71, 𝑣1 = 2.07, now go to write next LPP 

(LPP-2)II 

Minimize   (𝑣2)  

subject to              2.0𝜂1
2 + 5.0𝜂2

2 ≤ 𝑣2 
                                       7.0𝜂1

2 + 3.0𝜂2
2 ≤ 𝑣2 

                                       𝜂1
2 + 𝜂2

2 = 1 
                                      𝜂1

2 ≥ 0.29, 𝜂2
2 ≥ 0.71, 𝑣2 ≥ 2.07.                                                                       (52) 
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Solving this equation (52) we get 𝜂1
2 = 0.29, 𝜂2

2 = 0.71, 𝑣2 = 4.16, now go on to write next LPP-3 

 

(LPP-3)II 

Minimize   (𝑣3)  

subject to   3.0𝜂1
3 + 7.5𝜂2

3 ≤ 𝑣3 
                                       10.5𝜂1

3 + 4.5𝜂2
3 ≤ 𝑣3 

                                        𝜂1
3 + 𝜂2

3 = 1 
                                        𝜂1

3 ≥ 0.29, 𝜂2
3 ≥ 0.71, 𝑣3 ≥ 4.16.                                                                     (53) 

 

Solving this equation (53) we get 𝜂1
3 = 0.29, 𝜂2

3 = 0.71, 𝑣3 = 6.24. Now we finally go on to solve the 

following LPP. 

 

(LPP-4)II 

Minimize   (𝑣4)  

subject to   4.0𝜂1
4 + 10.0𝜂2

4 ≤ 𝑣4 
                                       14𝜂1

4 + 6.0𝜂2
4 ≤ 𝑣4 

                                        𝜂1
4 + 𝜂2

4 = 1 
                                        𝜂1

4 ≥ 0.29, 𝜂2
4 ≥ 0.71, 𝑣4 ≥ 6.24.                                                                     (54) 

 

Solving this we get 𝜂1
4 = 0.29,  𝜂2

4 = 0.71,  𝑣4 = 8.32. From the solution of equations (51), (52), (53) and 

(54) we get the best strategies (optimal) for the player-II as (0.29, 0.29, 0.29, 0.29) and 

(0.71, 0.71, 0.71, 0.71) and the best value of the game for player-II is (2.07, 4.16, 6.24, 8.32)
 
i.e. player-

II will lose at the most (2.07, 4.16, 6.24, 8.32) if he/she opts for his/her 𝐼𝑠𝑡and 𝐼𝐼𝑛𝑑strategies with 

probabilities 0.29 and 0.71 respectively. 

 

 

6. Comparison 
In our paper, three numerical illustrations have been provided with different type of TrFN payoff matrix 

to show that our technique can unriddle all these problems, whereas existing methods given by 

researchers like (Bandopadhyay and Nayak, 2013; Kumar et al., 2016; Krishnaveni and Ganesan, 2018) 

has considered only a particular type of TrFNs for their study. Their methods may fail to solve FMGs 

with other type of TrFN payoffs. Our single technique is good enough to solve FFMGs with all these 

different types of TrFN payoffs and has given almost the same results. So, our method has an advantage 

over the others as we don’t need three different methods, one for each type, as proposed by these 

researcher’s. Also, they have considered crisp strategies, whereas ours is a fully fuzzified case, therefore 

it is more general and can handle FFMG with all type of TrFNs. Comparisons of our results with the 

results of other researchers are given in following tables.  

 

 
Table 1. Comparison of our work with the results of other researchers for example 1. 

 

Reference 

Player – I’s 

optimal mixed 

strategies 

Player – II’s 

optimal mixed 

strategies 

Player – I’s 

optimal TrFN value 

of the game 

Player – II’s 

optimal TrFN value 

of the game 

Kumar et al. (2016) 
(0.7377, 0.2623) 

(0.7917, 0.2083) 
Not computed 

(155.20, 160.29,                                    

162.93, 166.39) 

Assumed as –ve 

of player-I’s value 

Our work 

(0.7917, 0.7917, 

0.7917, 0.7917) 
(0.2083, 0.2083, 

0.2083, 0.2083) 

(0.2083, 0.2083, 

0.2083, 0.2083) 
(0.7917, 0.7917, 

0.7917, 0.7917) 

(155.21, 160.21, 
162.83, 164.67) 

(155.21, 160.63, 165.63,
 171.25) 
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Table 2. Comparsion of our work with the results of other researchers for example 2. 
 

Reference 

Player – I’s 

optimal mixed 

strategies 

Player – II’s 

optimal mixed 

strategies 

Player – I’s 

optimal TrFN value 

of the game 

Player – II’s 

optimal TrFN value 

of the game 

Krishnaveni 
and Ganesan 

(2018) 

(0, 0, 0, 0) 
(-6.14, -1.14, 2.85, 7.85) 

(-6.66, -1.66, 2.33, 7.33) 

(-6.57, -1.57, 2.42, 7.42) 

(0, 0, 0, 0) 

(-6.42, -1.42, 2.57, 7.57) 
(0, 0, 0, 0) 

(2.5, 7.5, 11.5, 16.5) 
Assumed as –ve 

of player-I’s value 

Our work 
(0, 0, 0, 0) 
(1, 1, 1, 1) 

(0, 0, 0, 0) 

(0.54, 0.54, 0.54, 0.54) 

(0, 0, 0, 0) 

(0.46, 0.46, 0.46, 0.46) 
(0, 0, 0, 0) 

(5, 7, 10, 12) (5, 8.62, 11.08, 15.62) 

 

 
Table 3. Comparison of our work with the results of other researchers for example 3. 

 

Reference 
Player – I’s 

optimal mixed 

strategies 

Player – II’s 
optimal mixed 

strategies 

Player – I’s 
optimal TrFN value 

of the game 

Player – II’s 
optimal TrFN value 

of the game 

Bandopadhyay 

And Nayak (2013) 
(0.5714, 0.4286) (0.2857, 0.7143) (2.0714, 4.1429, 6.2143, 8.2857) 

Assumed as –ve 

of player-I’s value 

Our work 
(0.57, 0.57, 0.57, 0.57) 

(0.43, 0.43, 0.43, 0.43) 

(0.29, 0.29, 0.29, 0.29) 

(0.71, 0.71, 0 .71, 0 .71) 
(2.07, 4.14, 6.21, 8.28) (2.07, 4.14, 6.24, 8.32) 

 

7. Conclusion 
In our present article, we have proposed an easy to compute decomposition methodology to obtain the 

optimal solution of a fully fuzzified ZSTPMG with payoff matrix equipped with TrFNs. The 

methodology for solving matrix games, elaborated in our work, encompasses a wider class of ZSTPMGs 

as it does not restrict payoff matrix to a particular type of TrFNs. Numerical illustrations taken clearly 

show that our methodology is capable of solving ZSTPMGs with all type of TrFN payoff matrix. Also, 

we have not used any defuzzification function to crispify the TrFNs. So, our results cannot be influenced 

by changing any defuzzification function. With the help of TrFNs we can handle almost all kind of 

uncertainties and imprecision that occurs in day to day working of highly competitive real industrial 

world. Our work can help the competitive players of industrial world to make better decisions that can 

help them commercially and economically. In future we plan to further extend our work to a variety of 

games such as constrained fuzzy matrix games and bimatrix games. 
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