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Abstract 

How to accurately evaluate and predict the degradation state of the components with small samples is a critical and practical 

problem. To address the problems of unknown degradation state of components, difficulty in obtaining relevant environmental data 

and small sample size in the field of reliability prediction, a reliability evaluation and prediction method based on Cox model and 

1D CNN-BiLSTM model is proposed in this paper. Taking the historical fault data of six components of a typical load-haul-dump 

(LHD) machine as an example, a reliability evaluation method based on Cox model with small sample size is applied by comparing 

the reliability evaluation models such as logistic regression (LR) model, support vector machine (SVM) model and back 

propagation neural network (BPNN) model in a comprehensive manner. On this basis, a reliability prediction method based on 

one-dimensional convolutional neural network-bi-directional long and short-term memory network (1D CNN-BiLSTM) is applied 

with the objective of minimizing the prediction error. The applicability as well as the effectiveness of the proposed model is verified 

by comparing typical time series prediction models such as the autoregressive integrated moving average (ARIMA) model and 

multiple linear regression (MLR). The experimental results show that the proposed model is valuable for the development of 

reliability plans and for the implementation of reliability maintenance activities. 

 

Keywords- Reliability evaluation, Cox model, Logistic regression model, Reliability prediction. 

 

ACRONYMS 
1D CNN-BiLSTM One-Dimensional Convolutional Neural Network-Bi-Directional Long and Short-Term Memory Network 

ARIMA Autoregressive Integrated Moving Average  

AUC Area Under the Roc Curve  

BiLSTM Bi-Directional Long and Short-Term Memory Network 

BPNN Back Propagation Neural Network 

CNN Convolutional Neural Network 

FN False Negative 

FP False Positive 

FPR False Positive Rate 

LHD Load-Haul-Dump 

LR Logistic Regression 

MAPE Mean Absolute Percentage Error 

MLR Multiple Linear Regression 

PHM Proportional Hazards Model 

RMSE Root Mean Square Error 

ROC Receiver Operating Characteristic  

SVM Support Vector Machine 

TN Ture Negative 

TP Ture Positive 

TPR True Positive Rate 
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1. Introduction 
With the advent of Industry 4.0, modern machinery and equipment are becoming more and more automated, 

system functions are becoming richer, and the working environment is more complex. The requirements 

for safety and reliability of equipment operation are increasing, and system reliability has become one of 

the important issues of concern in the industrial field. In system reliability theory, systems are divided into 

two categories: repairable and non-repairable. A non-repairable system is a system that cannot be repaired 

after a fault. A repairable system is a system that can be repaired after a fault. In the whole life cycle, 

repairable systems go through an iterative process of operation, analysis and repair (Xing et al., 2002, 2004; 

Peng et al., 2017). Repairable systems can be found everywhere in production life. And the earliest area of 

reliability research is the maintenance problem of machines and equipment. The problem of system 

maintenance has a very wide range of applications in real life. For example, when a component of a car 

fails, the first consideration should be the repair of the relevant component rather than its replacement. In 

the maintenance problem, the traditional corrective maintenance and periodic maintenance strategies can 

no longer meet the needs of daily industrial production and management. For some large transportation 

tools as well as military strategic equipment, a fault can lead to serious catastrophic accidents. Maintenance 

strategies have gradually evolved from restorative strategies to preventive maintenance (Dui et al., 2022a) 

and further to intelligent predictive maintenance (Paul et al., 2022). Therefore, it is essential to accurately 

evaluate and predict the reliability of complex systems and their components that are subject to high 

reliability requirements (Dui et al., 2021). 

 

Reliability is the probability that a component performs a specified function under specified conditions and 

within a specified time. Therefore, the estimation of component reliability is essentially an analysis of 

component degradation trends from a probabilistic point of view. A lot of work has been done in existing 

studies to evaluate and improve the reliability of repairable components and systems. For repairable 

components, considering the impact of the transition rate group between different component states on the 

probability distribution of the component, Si et al. (2013) extended the composite importance metric to 

estimate the impact of a component that stays in certain states on the performance of the overall multi-state 

system. And considering the cost constraints of preventive maintenance, Wu and Coolen (2013) proposed 

a new cost-based importance measure that considers the cost incurred in maintaining a system and its 

components over a limited time horizon. In order to perform both corrective maintenance of the faulty 

components and preventive maintenance of the operational components on a repairable system, Dui et al. 

(2019) proposed an extended joint integrated importance metric to effectively guide the selection of 

components with the aim of maximizing the benefits of system performance. Chen et al. (2021) identified 

weak or vulnerable components of a system by modeling the reliability of a pod slewing system and 

performing component importance analysis using the integrated importance metric and Griffith importance 

metric. Considering the differences and interdependencies among components, Zhang et al. (2022) analyzed 

component maintenance strategies to effectively restore system performance to improve system reliability. 

Wei et al. (2022) incorporated the side effects of degradation processes into state-based preventive 

maintenance optimization, based on which a continuous-time discrete-state Markov chain model was 

developed to describe the individual component's degradation stochastic process. Considering that the 

maintenance cost can vary for different maintenance policies, Dui et al. (2022b) proposed some preventive 

maintenance measures for components to improve the reliability of the system considering the maintenance 

effectiveness. For repairable systems, based on the relationship between cost and reliability, Si et al. (2019) 

proposed a generalized Birnbaum importance metric to quantify the contribution of individual components 

to system reliability improvement by considering reliability range, manufacturing complexity, and technical 

feasibility. Levitin et al. (2020) proposed an efficient analytical modeling approach for analyzing the 

reliability of k-out-of-n phased task systems. Garg (2021) determined a bi-objective reliability-cost problem 

for a series-parallel system by using an interactive approach. Yang et al. (2022) addressed the problem of 
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reliability evaluation of multi-state systems with apparent uncertainty based on multi-valued decision 

diagrams by combining interval theory and fuzzy set theory. For complex mechatronic systems with 

hierarchical, nonlinear, dependent, uncertain and stochastic properties, Chen et al. (2023) used the Wiener 

process model to describe the continuous time degradation process and developed the copula hierarchical 

Bayesian network for reliability evaluation. However, reliability evaluation of components often requires a 

large number of fault samples, which are used to construct probability distribution functions for the lifetime 

of the components. In real life, due to cost as well as time and other external factors, the collection of fault 

samples is not easy, which leads to large errors between the reliability evaluation and the actual situation. 

The traditional methods of reliability evaluation are not applicable in the case of small samples. In response 

to the shortcomings of the traditional reliability evaluation methods, a data-driven reliability evaluation 

method has been proposed (Álvarez et al., 2021; Sharma and Rai, 2021). However, how to make an accurate 

evaluation of component reliability based on limited fault data is still one of the challenges in existing 

research. 

 

A large number of methods have been proposed in reliability prediction. These reliability prediction 

methods can be broadly classified into the following four categories: model-based methods, data-based 

methods, expert knowledge-based methods, and fusion-based methods (Djeziri et al., 2019). Of these, 

model-based reliability prediction methods require that there are mathematical models about the system 

that are known in order to predict component reliability based on the intrinsic mechanisms of failure 

occurrence as well as the root cause (Chopra and Ram, 2019; Inoue and Yamada, 2020). The data-based 

reliability prediction method is a direct prediction method of component reliability metrics based on the 

data collected from the historical operation of the component by means of machine learning and other 

techniques (Begum and Dohi, 2018; Li et al., 2022). Expert knowledge-based reliability prediction methods, 

on the other hand, mainly rely on experts in related fields to predict component reliability by building an 

expert knowledge base and a historical fault database (Podofillini et al., 2023). The fusion-based reliability 

prediction method combines the three methods mentioned above to make a comprehensive prediction of 

the trend of component reliability. In recent years, data-based methods have become the focus of research 

in reliability prediction methods due to their efficiency and practicality. For example, Begum and Dohi, 

(2018) used a three-layer perceptron neural network with multiple outputs to transform the underlying 

software fault count data into Gaussian data via the well-known Box-Cox power transformation. The neural 

network is then used to predict the optimal software release time. Gaonkar et al. (2021) proposed a 

possibility method for calculating travel time reliability for any type of transportation vehicle under fuzzy 

type of data. Küçüker and Yet (2022) proposed a Bayesian network (BN) modeling framework that 

systematically combines design lifetime estimates, operational data, and expert judgment for reliability 

prediction of aircraft subsystems. Li et al. (2022) proposed an attention-based encoder-decoder recurrent 

neural networks (RNN) called EDRNN to predict the number of software failures. Existing studies have 

proposed different data-driven methods for the problem of reliability prediction. However, methods for data 

prediction are often based on sufficient amount of data. How to make accurate prediction of reliability 

trends based on the limited historical operational data of components is a challenge in existing studies. 

 

Besides, in engineering practice, the fault of a system does not only depend on its own lifetime, but is also 

influenced by external covariates such as temperature and humidity as well as internal covariates such as 

wear, aging and corrosion. In real life, all the covariates associated with a system fault are often difficult to 

measure. For example, a light bulb and the lampholder to which it is attached is a typical repairable system. 

And when engineers record historical repair information for a light bulb, they are more concerned with the 

time of each of its faults. In order to make the model widely applicable, this paper combines the 

characteristics of repairable systems and uses the time point of each fault as a covariate to characterize the 

reliability of the component. For example, the age of a light bulb is calculated from the moment it starts 
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working to the moment it fails, which is defined here as the local age, while the age of the whole repairable 

system is defined as the global age. 

 

In this paper, local age and global age are used as covariates to characterize the reliability of components, 

and a reliability evaluation and prediction model based on Cox model and 1D CNN-BiLSTM model is 

proposed. Firstly, the evaluation performances of LR, SVM and BPNN are compared comprehensively by 

combining the characteristics of repairable systems on a small sample of historical fault data of a typical 

LHD machine. A fault time series evaluation method based on Cox model is applied. Finally, with the goal 

of minimizing the prediction error, a reliability prediction method based on 1D CNN-BiLSTM is proposed. 

The applicability as well as the effectiveness of the proposed model is verified by comparing typical time 

series prediction models such as ARIMA and MLR. Overall, the framework of the proposed model in this 

paper is shown in Figure 1. 
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Figure 1. Basic framework of the proposed model. 

 

The rest of the paper is organized as follows. Section 2 presents the classical models used for reliability 

evaluation, with Cox, LR, SVM, and BPNN being included. Section 3 proposes a reliability prediction 

model based on 1D CNN-BiLSTM. The historical fault data of six components of LHD are used as 

examples in Section 4 to illustrate the generality as well as the effectiveness of the proposed method. Finally, 

the full paper is concluded and future perspectives are given in Section 5. 

 

2. Reliability Evaluation Model 
The more common models for evaluating the reliability of components in existing studies are mainly the 

Cox model, LR, SVM, and BPNN. However, when the sample size of component faults is small (usually 

in the sense that the number of fault samples is less than 100), there seems to be no clear definition of which 

model should be used to evaluate the reliability of the component. In this section, these four models are 

briefly introduced in conjunction with the characteristics of reliability evaluation. A comparison of the 

performance between these models will be given in Section 4. 
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2.1 Cox Model 
Cox model is also known as proportional hazards model (PHM). It is a semi-parametric regression model 

proposed by Cox in 1972 to effectively quantify the effects of covariates to represent failure rates (Cox, 

1972). The Cox model does not take into account the distribution of component survival times and allows 

time-dependent variables to be used as predictor variables. The Cox model is now increasingly used in 

component reliability evaluation, and the basic formulation of the Cox model is shown in Equation (1). 

ℎ(𝑡|𝑋𝑘(𝑡)) = ℎ0(𝑡) exp (𝛼0
𝑘 + 𝛼1

𝑘𝑥𝑘
1(𝑡) + 𝛼2

𝑘𝑥𝑘
2(𝑡) + ⋯+ 𝛼𝑚

𝑘 𝑥𝑘
𝑚(𝑡))                                                       (1) 

 

In Equation (1), ℎ(𝑡|𝑋𝑘(𝑡)) is the function of fault rate, indicating the probability of fault of the component 

k in the next time unit. 𝛼𝑚
𝑘  is the Cox regression coefficient of the m-th covariate 𝑥𝑘

𝑚(𝑡) of the component 

k. ℎ0(𝑡) is the basic fault rate function. Common basic fault rate functions include exponential distribution, 

logarithmic distribution and Weibull distribution, etc. For unknown parameters in the basic fault rate 

function, they can be determined by the method of great likelihood estimation. After obtaining the 

parameters in the basic fault rate function, the cumulative proportional fault rate of component k can be 

obtained as 

𝐻𝐾(𝑡, 𝑋𝑘(𝑡)) = ∫  ℎ𝐾(𝑡, 𝑋𝑘(𝑡))𝑑𝑡
𝑡

0
                                                                                                               (2) 

 

Meanwhile, the reliability function of component k is obtained as 

𝑅𝑘(𝑡|𝑋𝑘(𝑡)) = exp (−∫  ℎ𝐾(𝑡, 𝑋𝑘(𝑡))𝑑𝑡
𝑡

0
)                                                                                                  (3) 

 

2.2 Logistic Regression Model 
LR can be used to evaluate the relationship between the reliability metrics of components and the covariates 

that indicate their operational status. It is based on a set of categorical data to build a regression model 

between a response variable and one or more explanatory variables (Mudunuru et al., 2020). The role of 

LR is often underestimated when dealing with small datasets or datasets of events of interest. It is highly 

flexible in its assumptions and has wide applicability. It has a wide range of applications in many fields. 

Based on this regression model, some reasonable evaluation can be made for the reliability metrics of 

components. In LR, each sample k corresponds to a working state at time t. The response variable is defined 

as fault (𝑌𝑘
𝑡 = 0 ) or not faulted (𝑌𝑘

𝑡 = 1 ). 𝑋𝑘(𝑡) = {𝑥𝑘
1(𝑡), 𝑥𝑘

2(𝑡), … , 𝑥𝑘
𝑚(𝑡)}  represents covariates of 

component k. From the definition of reliability, the reliability function of component k at moment t is shown 

in Equation (4). 

𝑅𝑘(𝑡|𝑋𝑘(𝑡)) = 𝑃 (𝑌𝑘
𝑡 = 1|𝑋𝑘(𝑡)) =

exp(𝜃0
𝑘+𝜃1

𝑘𝑥𝑘
1(𝑡)+𝜃2

𝑘𝑥𝑘
2(𝑡)+⋯+𝜃𝑚

𝑘 𝑥𝑘
𝑚(𝑡))

1+exp(𝜃0
𝑘+𝜃1

𝑘𝑥𝑘
1(𝑡)+𝜃2

𝑘𝑥𝑘
2(𝑡)+⋯+𝜃𝑚

𝑘 𝑥𝑘
𝑚(𝑡))

                                                   (4) 

 

In Equation (4), 𝜃𝑚
𝑘  represents the logistic regression coefficient of the m-th covariate 𝑥𝑘

𝑚(𝑡) of component 

k. 𝜃0
𝑘 is a constant term greater than 0. At this point, the ratio of the reliability function of component k to 

the cumulative fault distribution function can be obtained as 

𝑅𝑘(𝑡|𝑋𝑘(𝑡))

1−𝑅𝑘(𝑡|𝑋𝑘(𝑡))
= exp (𝜃0

𝑘 + 𝜃1
𝑘𝑥𝑘

1(𝑡) + 𝜃2
𝑘𝑥𝑘

2(𝑡) + ⋯+ 𝜃𝑚
𝑘 𝑥𝑘

𝑚(𝑡))                                                               (5) 

 

Considering the non-linear characteristics of LR, the regression coefficients in Equation (5) can be solved 

by using the maximum likelihood estimation method. The final reliability function of component k can be 

obtained expressed as, 
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𝑅𝑘(𝑡|𝑋𝑘(𝑡)) =
exp(�̂�0

𝑘+�̂�1
𝑘𝑥𝑘

1(𝑡)+�̂�2
𝑘𝑥𝑘

2(𝑡)+⋯+�̂�𝑚
𝑘 𝑥𝑘

𝑚(𝑡))

1+exp(�̂�0
𝑘+�̂�1

𝑘𝑥𝑘
1(𝑡)+�̂�2

𝑘𝑥𝑘
2(𝑡)+⋯+�̂�𝑚

𝑘 𝑥𝑘
𝑚(𝑡))

                                                                                  (6) 

 

2.3 Support Vector Machine Model 
SVM has been widely used in the field of reliability evaluation because of its strong small sample learning 

capability and generalization ability. The core idea of SVM model lies in maximizing the separation of the 

two classes of training samples. That is, how to construct a classification hyperplane that maximizes the 

separation between the two classes of training samples (Li et al., 2003), so as to achieve an effective 

evaluation of the operational state of the components. The common mapping functions of SVM are linear 

kernel function, polynomial kernel function and Sigmoid kernel function. Based on experience, the more 

commonly used and well-performing Gaussian radial basis function is chosen as the kernel function for 

training in this paper. The expression of the Gaussian radial basis function is as follows. 

𝐾(𝑋𝑖
𝑘 , 𝑋𝑗

𝑘) = 𝑒

−||𝑋𝑖
𝑘−𝑋𝑗

𝑘||2

2𝛿𝑘
2

                                                                                                                                 (7) 

 

In Equation (7), 𝑋𝑖
𝑘 represents the training tuple of component k, and 𝛿𝑘 is the parameter of the Gaussian 

radial basis kernel function of component k. After choosing the kernel function, the performance of the 

SVM is then mainly affected by two parameters, that is, the penalty factor 𝐶𝑘 for misclassified samples and 

the parameter 𝛿𝑘 of the kernel function. Meanwhile, the following optimization problem need to be solved 

when training two types of samples i, j in component k, which is shown in Equation (8). 

𝑚𝑖𝑛  
1

2
∥ 𝑤𝑘

𝑖𝑗
∥2+ 𝐶𝑘 ∑ 𝜉𝑡

𝑖𝑗𝑙
𝑡=1 . 

𝑠. 𝑡. {

𝑤𝑘
𝑖𝑗

⋅  𝐾(𝑋𝑘(𝑡)) + 𝑏𝑘
𝑖𝑗

≥ 1 − 𝜉𝑡𝑘
𝑖𝑗，𝑌𝑘

𝑡 = 𝑖

𝑤𝑘
𝑖𝑗

⋅  𝐾(𝑋𝑘(𝑡)) + 𝑏𝑘
𝑖𝑗

≤ −1 + 𝜉𝑡𝑘
𝑖𝑗，𝑌𝑘

𝑡 = 𝑗

𝜉𝑡𝑘
𝑖𝑗

≥ 0，𝑖, 𝑗 = 1,2,… , 𝑙

                                                                                          (8) 

 

In Equation (8), 𝐾 is the Gaussian radial basis kernel function that maps 𝑋𝑘(𝑡) to a high-dimensional 

feature space, 𝐶𝑘  is the penalty factor of component k, 𝑤𝑘  is the weight vector associated with the 

explanatory variables in the new space of component k, 𝑏𝑘 is the estimated bias term of component k, and 

𝜉𝑡𝑘
𝑖𝑗

 is the relaxation variable of component k. Once the weight vector and the deviation term are determined, 

the operational status of component k can be evaluated. At this point, the reliability evaluation function is 

shown in Equation (9). 

𝑅𝑘(𝑡|𝑋𝑘(𝑡)) = 𝑃 (𝑌𝑘
𝑡 = 1|𝑋𝑘(𝑡)) =

1

1+exp(𝐴𝐾𝑓𝐾(𝑋𝑘(𝑡))+𝐵𝐾)
                                                                          (9) 

 

In Equation (9), 𝑓𝐾(𝑋𝑘(𝑡)) is the prediction function of component k, and 𝐴𝐾 and 𝐵𝐾 are the multilayer 

perceptron coefficients of component k, respectively. 

 

2.4 Back Propagation Neural Network Model 
BPNN is a multilayer feedforward neural network which is trained according to the error back propagation 

algorithm. It is one of the most widely used neural network models in deep learning (Feng et al., 2019). 

BPNN can be analyzed and deduced from the operational data of the components, which is consequently 

widely used in the reliability assessment of components. 

 

In terms of structure, BPNN has an input layer, a hidden layer and an output layer. Essentially, the BP 

algorithm takes the squared error of the network as the objective function and uses the gradient descent 
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method to calculate the minimum value of the objective function. The basic idea of BP is the gradient 

descent method, which uses the gradient search technique to minimize the mean squared error between the 

actual output and the desired output of the network. The error function of BPNN is defined as 

𝐸 =
1

2𝑛𝑘
∑ ∑ (𝑌𝑘𝑖𝑗

𝑡 − �̂�𝑘𝑖𝑗
𝑡 )2

𝑚𝑘
𝑗=1

𝑛𝑘
𝑖=1                                                                                                                  (10) 

 

In Equation (10), 𝑛𝑘 represents the dimension of the output vector of component k in the network, and 𝑚𝑘 

represents the dimension of the input vector of component k in the network. 𝑌𝑘𝑖𝑗
𝑡  represents the actual value 

of component k at the j-th input vector in the dimension of the i-th input vector, and �̂�𝑘𝑖𝑗
𝑡  represents the 

output value of component k at the j-th input vector in the dimension of the i-th input vector. Until the 

calculated error is less than the set prediction accuracy, the training is finished. 

 

2.5 Performance Comparison of Evaluation Models 
Once the model for reliability evaluation has been built, the performance of the model needs to be evaluated. 

In this paper, the model is trained using the training set and evaluated using the relevant metrics from the 

test set. For components of repairable systems, if the accuracy of the reliability evaluation model is very 

low, the model cannot be applied in practice. For this reason, this paper evaluates the performance of the 

model in terms of the following metrics. 

 

For the problem of reliability evaluation, the loss caused by a fault being misclassified is much greater than 

the loss caused by a fault not being misclassified. In this paper, we record normal status of components as 

positive cases and abnormal status as negative cases. Considering that the accuracy rate does not accurately 

reflect the cost of misclassification, the precision rate as well as the recall rate are introduced into the metrics 

for evaluating the performance of the model. If all the classification results are represented in a table, it is 

called the confusion matrix, which is shown in Table 1. 
 

Table 1. Confusion matrix. 
 

Sample 
Prediction result 

Positive Negative 

Positive  Ture Positive (TP) False Negative (FN) 

Negative  False Positive (FP) Ture Negative (TN) 

 

From the confusion matrix, we can obtain the relevant evaluation metrics. Some of the more commonly 

used evaluation metrics are shown in Table 2. 

 

It is important to note in particular that reliability evaluation problems often involve multiple classifications. 

In real life, engineers often classify components into different health states according to the operating status 

and health of the components. The four health states that are often used are normal, warning, alarm, and 

fault. For a component with a normal health state, a positive example means that the component has a 

normal health state, while a negative example includes a component with health states of warning, alarm, 

or fault. In other words, the evaluation metrics used in this paper can be extended to multi-category 

problems. 

 

In addition, receiver operating characteristic (ROC) curves are often used to evaluate reliability evaluation 

models, where the true positive rate (TPR) and false positive rate (FPR) are calculated at different thresholds 

and plotted as vertical and horizontal coordinates, respectively. The area under the ROC curve is called 

AUC, and the closer the AUC is to 1, the better the classifier is (Nusinovici et al., 2020). For the multi-

classification problem, the AUC is then the average of the different AUC corresponding to the component 
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in different health states. In consideration, the AUC curve, the precision rate and the recall rate are used as 

the evaluation metrics for the reliability evaluation of components in this paper. 

 
Table 2. Relevant evaluation indicators. 

 

Evaluation metrics Definition 

Accuracy ACC =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision P =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall R =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐹1 =
2𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 

 

3. Reliability Prediction Model 
After evaluating the reliability of the components using the reliability evaluation model in Section 2, further 

prediction of the reliability of the components is needed in order to arrange the maintenance in advance and 

reduce the economic loss. To address the problems of low accuracy and stability in existing reliability 

prediction models, a reliability prediction model based on 1D CNN-BiLSTM model is proposed in this 

paper. In order to fully reflect the characteristics of the time series of the component reliability evaluation, 

firstly, 1D CNN is used to extract the deep features in the reliability time series. Secondly, the memory 

function of BiLSTM is used to retain the important information in the deep features in order to make 

accurate prediction for the reliability of the components. 

 

CNN has the ability of representation learning to pan unclassify the input information according to the 

hierarchical structure and it has been widely used in image classification (Bisht and Gupta, 2020), and 

speech recognition (Tiwari and Darji, 2022). 1D CNN, then, is an application of CNN model to the 

extraction of one-dimensional signals. The 1D CNN selects relevant sequence segments along the time 

dimension from the time series data for reliability evaluation. Then it performs the same transformation on 

each sequence segment (Abdeljaber et al., 2018). Similar to the CNN model, the network structure of 1D 

CNN also contains convolutional layers, pooling layers, and fully connected layers. The basic network 

structure of 1D CNN is illustrated in Figure 2. 

 

In Figure 2, the input of the convolutional layer of component k is defined as 𝑅𝑘 = [𝑅𝑘
1, 𝑅𝑘

2, … , 𝑅𝑘
𝑛𝑘]𝑇, where 

𝑅𝑘
𝑛 is the evaluation of the reliability of component k at time 𝑛𝑘. Then the output after this input has been 

processed by the 𝑖𝑘-th convolution kernel of the convolution layer is given as 

�̅�𝑖𝑘 = 𝑓𝑘(𝑅𝑘 ∙ 𝑊𝑖𝑘
0 + 𝛾𝑘

0)                                                                                                                             (11) 

 

In Equation (11), 𝑓𝑘(∗) represents the activation function of component k, that is, the nonlinear mapping 

capability of the model. 𝑊𝑖𝑘
0  represents the coefficient of the i-th convolution kernel of component k. 𝛾𝑘

0 is 

the bias of the convolution layer. The methods used for the pooling layer of component k mainly include 

two types of maximum pooling and average pooling, which are calculated as follows 

𝑃𝑘𝑚𝑎𝑥
= max[�̅�𝑘(𝑡), �̅�𝑘(𝑡 + 1),… , �̅�𝑘(𝑡 + 𝑘)]                                                                                            (12) 

𝑃𝑘𝑚𝑒𝑎𝑛
= mean[�̅�𝑘(𝑡), �̅�𝑘(𝑡 + 1),… , �̅�𝑘(𝑡 + 𝑘)]                                                                                       (13) 
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Figure 2. Basic network structure of 1D CNN. 

 

𝑃𝑘 represents the output of the pooling layer for component k. �̅�𝑘(𝑡) is the input to the 1D pooling layer at 

time t. Before entering the fully connected layer, the original input needs to be flattened. That is, the original 

multidimensional variables are transformed into one-dimensional variables in order as the input of the fully 

connected layer of component k. At this point the output of the fully connected layer of component k is 

given as 

�̂�𝑘 = 𝑓𝑘(�̅�𝑘 ∙ 𝑊𝑖𝑘
1 + 𝛾𝑘

1)                                                                                                                            (14) 

 

In Equation (14), �̅�𝑘 is the input of the fully connected layer of component k. 𝑊𝑖𝑘
1  represents the coefficient 

of the fully connected layer of component k. 𝛾𝑘
1 is the bias of the fully connected layer. Finally, the output 

of the fully connected layer, which is also the output layer of the 1D CNN, can be obtained. 

 

After obtaining the output sequence of the 1D CNN model, the LSTM model can be used for further 

reliability prediction of the components. The input of the LSTM of component k is the input ℎ𝑘,𝑡 at the 

current moment and the output ℎ𝑘,𝑡−1 at the previous moment. The internal structure includes the forgetting 

gate 𝐹𝑘,𝑡 , the external input gate 𝐼𝑘,𝑡, and the output gate 𝑂𝑘,𝑡. The corresponding expressions are given as 

follows. 

 

𝐹𝑘,𝑡 = 휀𝑘(𝑊𝐹𝑘
∙ [ℎ𝑘,𝑡−1, �̂�𝑘(𝑡)] + 𝑏𝐹𝑘

)                                                                                                        (15) 

𝐼𝑘,𝑡 = 휀𝑘(𝑊𝐼𝑘 ∙ [ℎ𝑘,𝑡−1, �̂�𝑘(𝑡)] + 𝑏𝐼𝑘)                                                                                                          (16) 

𝑂𝑘,𝑡 = 휀𝑘(𝑊𝑂𝑘
∙ [ℎ𝑘,𝑡−1, �̂�𝑘(𝑡)] + 𝑏𝑂𝑘

)                                                                                                      (17) 

𝐶𝑘,𝑡 = 𝐹𝑘,𝑡 ∙ 𝐶𝑘,𝑡−1 + 𝐼𝑘,𝑡 ∙ tanh(𝑊𝐶𝑘
∙ [ℎ𝑘,𝑡−1, �̂�𝑘(𝑡)] + 𝑏𝐶𝑘

)                                                                    (18) 

ℎ𝑘,𝑡 = 𝑂𝑘,𝑡 ∙ tanh(𝐶𝑘,𝑡)                                                                                                                                 (19) 

 

In the above equations, 휀𝑘 represents the sigmod function of component k, and 𝐶𝑘,𝑡 represents the memory 

cell state of component k. tanh is the hyperbolic tangent function. Considering that the prediction will be 

jointly affected by the input of multiple moments in front and behind at the same time, BiLSTM is 

introduced for accurate prediction of the component reliability. BiLSTM mainly has two different hidden 

layers, forward hidden layer and reverse hidden layer. The forward hidden layer reads the output sequence 

after the 1D CNN model in the ascending order of the time series. The backward hidden layer reads the 
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output sequence after the 1D CNN model in the descending order of the time series. The forward network 

output as well as the backward network output are defined as follows. 

ℎ⃗ 𝑘,𝑡 = LSTM⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(�̂�𝑘(𝑡), ℎ⃗ 𝑘,𝑡−1)                                                                                                                         (20) 

ℎ⃗⃖𝑘,𝑡 = LSTM⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (�̂�𝑘(𝑡), ℎ⃗⃖𝑘,𝑡−1)                                                                                                                       (21) 

 

ℎ⃗ 𝑘,𝑡 represents the forward hidden state of component k and ℎ⃗⃖𝑘,𝑡 represents the backward hidden state of 

component k. Ultimately, the evaluated value of the reliability of component k can be predicted. In summary, 

the basic framework diagram of 1D CNN-BiLSTM is shown in Figure 3. 
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Figure 3. Basic framework diagram of 1D CNN-BiLSTM. 

 

 

4. Case Study 

In order to show the practicality of the proposed model, data related to the faults occurring in six 

components of LHD (Kumar and Klefsjo, 1992) are used as experimental data for this study. According to 

the previous description of this paper, local age and global age are used as independent variables to 

characterize the reliability of the components. Local age is calculated from the moment the component 

starts working to the moment it fails. The global age is the age of the whole system LHD. Meanwhile, in 

order to simplify the regression model, reduce the risk of model overfitting, improve the accuracy of model 

prediction, and facilitate managers to arrange maintenance in advance and save cost time, we discretize the 

duration of the components, for example, the time period from 0 to 1 is represented by 1. Finally, the 

occurrence or not of the failure of component k is recorded as the dependent variable 𝑌𝑘
𝑡, with 𝑌𝑘

𝑡 = 0 

representing the failure of component k at time t and 𝑌𝑘
𝑡 = 1  representing the normal operation of 

component k at time t. 

 

4.1 Correlation between Variables 
Before the reliability of the components can be evaluated, the relationships between the variables need to 

be discussed. If the correlation between independent variables is very high, the variables with correlation 

need to be retained or eliminated. The correlation between variables can be expressed by the correlation 

coefficient. Table 3 shows the correlation coefficient matrix between the variables in LHD1. 
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Table 3. The matrix of correlation coefficients in LHD1. 
 

 Global age Local age 

Global age 1  

Local age -0.184 1 

 

At the same time, a significant P-value between the two variables of the variables in LHD1 is obtained as 

0.222, which is greater than 0.05, justifying that the correlation between the two variables is not significant. 

Table 4 shows the correlation coefficients between global age and local age in all components of LHD 

along with the significant P-values. As can be seen from Table 4, the significant P-values among the 

independent variables in all six data sets are greater than 0.05, and the correlation between global age and 

local age is not significant. Further analysis can be performed. 

 
Table 4. Correlation coefficients and significant P-values of LHD. 

 

Type 
Correlation coefficient between 

independent variables 
significant 
P-values 

LHD1 -0.184 0.222 

LHD3 -0.206 0.160 

LHD9 -0.196 0.208 

LHD11 -0.056 0.681 

LHD17 -0.077 0.588 

LHD20 -0.121 0.139 

 

4.2 Data Pre-processing 
In general, the collected raw data often suffers from missing, irregular format, and non-equilibrium. In 

machine learning, data pre-processing plays a key role in optimizing the accuracy of classifiers. Therefore, 

before analyzing the data, data pre-processing such as relevant cleaning and normalization of the raw data 

should be considered. The paper mainly focuses on the processing of unbalanced data and the partitioning. 

 

The data imbalance phenomenon is widely found in the fields of anomaly detection and fault diagnosis. For 

example, data imbalance usually occurs in the fault prediction of repairable systems, where far more faults 

occur than do not occur. Two conditions are usually required to define a dataset as unbalanced, either an 

imbalance in the number of classes or an imbalance in the cost of misclassification. Usually, the class that 

has the majority of samples is called the majority class and the other class is called the minority class. 

Studies have shown that imbalance exists in a dataset when the majority class sample is three or more times 

larger than the minority class sample (Liang et al., 2020). When there is data imbalance, classification of 

the data may result in identifying all the sample data as the majority class. The classification accuracy 

obtained at this point may be 90% or even higher, but this is not meaningful. For fault prediction of 

repairable systems, misclassification can be more costly. 

 

There are three main approaches to solve the imbalanced data in existing studies, that is, model adaptive, 

cost-sensitive and data-driven approaches (Guo et al., 2017). Of these, the data-driven techniques are more 

widely used. Oversampling or undersampling methods are usually used to construct balanced datasets in 

data-driven. The undersampling technique is more popular than the oversampling technique. Moreover, it 

is worth noting that the fault occurs in a sequential order, which leads to a strict sequential order in the time 

of its fault. In this study, the K-means based undersampling technique is used to handle the imbalanced data 

in the repairable system, and the original order of the original data is not changed. Finally, each dataset is 

divided into a training set (70%) as well as a test set (30%). The training set is used to construct the model 

and search for the parameters in the model by cross-validation. The test set is used to evaluate the 

performance of the model. 
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4.3 Reliability Evaluation 
In order to show the wide applicability of the Cox-based reliability evaluation model, this paper validates 

the fault data for each of the six different components of LHD. Four different models, Cox, LR, SVM and 

BPNN, are used as examples to train the training set respectively. The parameters in the training set models 

are searched by 5-fold cross-validation. The models obtained are finally validated by using test sets. 

 

Before conducting the experiments, the dataset is divided by the categories of the components of the LHD. 

To justify this operation, statistical experiments are tested on the partitioned dataset. The results of the mean 

predicted survival curves for LHD obtained from the Cox are presented in Figure 4. As can be seen in 

Figure 4, the six sets of curves are almost parallel at different time points. The p-value of the log-rank test 

obtained at the same time is 0.0002, and the results obtained after correction for the BH method are still 

statistically significant. This indicates that it is reasonable to divide the data set according to the type of 

components of the LHD. In addition, the discussion of the reliability evaluation results under different 

components demonstrates to some extent the practicality of the method presented in this paper. Finally, the 

results of the reliability evaluation based on the Cox are shown in Figure 5. From Figure 5, it can be seen 

that the cycle of reliability of the component with the change of global age is well demonstrated by the Cox 

model. 

 

The results of the reliability evaluation of the components based on LR are presented in Figure 6, which 

shows that the reliability of the components generally tends to decrease as the global age increases. This 

result indicates that the reliability of the component is actually affected by the operating time of the system. 

 

Meanwhile, the reliability evaluation results based on SVM and the reliability evaluation results based on 

BPNN are shown in Figure 7 and Figure 8, respectively. 

 

 

 
 

Figure 4. Mean predicted survival curve of LHD. 
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Figure 5. Reliability evaluation results based on Cox model. 

 

 

 

 

 
 

Figure 6. Reliability evaluation results based on LR model. 
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Figure 7. Reliability evaluation results based on SVM model. 

 

 

 
 

Figure 8. Reliability evaluation results based on BPNN model. 

 

Firstly, it is necessary to classify the operational status of the components of the LHD. Based on practical 

experience, the health status of the component is classified according to the value of reliability. The 

reliability evaluation value between 0 and 0.25 indicates a fault of the component, 0.25 to 0.5 indicates an 

alarm of the component, 0.5 to 0.75 indicates a warning of the component, and 0.75 to 1 indicates the 

normal of the component. In this paper, the health status of the original data is classified based on the k-

means clustering algorithm. The number of clusters is specified as 4. In determining the initial class cluster 

centroids, the fault data of the components are used as class cluster centroids. The iterative process of the 

clustering algorithm is stopped until no samples are reclassified. Finally, the experimental results of the test 

set are obtained as shown in Table 5. 
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Table 5. Results of reliability evaluation. 
 

Type Approach ACC Recall Precision 𝐹1 AUC 

LHD1 

Cox 0.804 0.783 0.783 0.783 0.792 

LR 0.622 0.609 0.636 0.622 0.681 

SVM 0.500 0.435 0.500 0.465 0.540 

BPNN 0.717 0.609 0.778 0.683 0.737 

LHD3 

Cox 0.681 0.750 0.667 0.706 0.752 

LR 0.583 0.680 0.586 0.630 0.675 

SVM 0.551 0.583 0.560 0.571 0.520 

BPNN 0.636 0.875 0.618 0.724 0.752 

LHD9 

Cox 0.709 0.724 0.700 0.712 0.765 

LR 0.655 0.724 0.656 0.688 0.745 

SVM 0.672 0.655 0.678 0.666 0.688 

BPNN 0.672 0.586 0.708 0.641 0.728 

LHD11 

Cox 0.679 0.679 0.679 0.679 0.723 

LR 0.643 0.750 0.620 0.679 0.691 

SVM 0.554 0.429 0.572 0.490 0.545 

BPNN 0.536 0.714 0.527 0.606 0.575 

LHD17 

Cox 0.731 0.731 0.731 0.731 0.695 

LR 0.615 0.731 0.594 0.655 0.676 

SVM 0.539 0.580 0.536 0.557 0.500 

BPNN 0.635 0.885 0.590 0.708 0.573 

LHD20 

Cox 0.652 0.696 0.640 0.667 0.711 

LR 0.674 0.696 0.667 0.681 0.715 

SVM 0.500 0.435 0.500 0.465 0.559 

BPNN 0.609 0.609 0.609 0.609 0.661 

 

 

 
 

Figure 9. ROC curves for different components of LHD. 
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For the drawing of ROC curves in the multiclassification, this paper first transforms the multiclassification 

problem into several dichotomous problems. Considering the characteristics of the samples used in the 

experiments, the ROC curves of each class derived are arithmetically averaged to obtain the ROC curves 

of the multiclassification problem, that is, the macro-averaged-ROC curves. Figure 9 shows the ROC curves 

for the components of the LHD under different models. 

 

As we know, for the state evaluation of repairable systems, the precision rates and the recall rates are more 

important than the accuracy rates. In practice, the precision rates and the recall rates affect each other, and 

high precision rates are often accompanied by low recall rates. In order to take into account both precision 

and recall, we use the summed average 𝐹1 as a metric to evaluate the model evaluation results. The AUC 

value of the area under the ROC curve is also used as another metric to evaluate the results of the model 

evaluation. As can be seen from Table 5, the values of Cox model are 0.783, 0.706, 0.712, 0.679, 0.731, 

and 0.667 respectively for different components of LHD. Cox model has higher values compared to other 

baseline models. This indicates that Cox model can be applied to repairable systems with small data sets of 

maintenance histories. The calculation of AUC takes into account both the classification ability of the 

classifier for positive and negative cases, and it can still give a reasonable evaluation of the classifier in the 

case of sample imbalance. The closer the value of AUC is to 1, the better the classification ability of the 

model. In consideration of this, we use the AUC value as another index to evaluate the model evaluation 

results. As can be seen from Figure 9, Cox model has a higher AUC value, which indicates Cox model can 

be further applied in the case of data imbalance. Meanwhile, LR model has a relatively high AUC value. 

Although SVM model is often used to deal with the classification problem of small samples, the 

classification ability of SVM model is not stable as seen in Figure 9. The classification ability of the BPNN 

model is also unstable when the sample size is relatively small. The experimental results show that the 

evaluation performances of the Cox model and the LR model are much better than those of the SVM model 

and the BPNN model. Of these, the Cox model has the best reliability evaluation performance, and the LR 

model has the second performance, and both of them have more stable evaluation performance. The 

performances of the SVM and BPNN reliability evaluation models are more volatile, while the former has 

a higher risk of misclassification. This also reflects the fact that machine learning algorithms often require 

sufficiently large sample data. When the sample size is relatively small, the performance of machine 

learning algorithms will be degraded. Compared with the LR model, the Cox model is able to reflect the 

dynamic process of the reliability of the components with the working time of the whole system. As a result, 

the Cox model is further applied to the reliability prediction of LHD components in this paper.  

 

4.4 Reliability Prediction 
After the reliability evaluation model of a component is built, the working condition of the component can 

be monitored in real time. However, the reliability evaluation model does not predict the change trend of 

the working condition of the component. In order to arrange maintenance in advance and reduce economic 

losses, this paper proposes a reliability prediction model based on 1D CNN-BiLSTM model to address the 

problems of low accuracy and stability in the existing reliability prediction models. Firstly, in order to 

compare the effects of different prediction models more realistically, the dataset of reliability of components 

obtained based on Cox model is divided into training set (90%) and test set (10%). Secondly, 1D CNN is 

used to extract the deep features in the reliability time series. Finally, the memory function of BiLSTM is 

used to retain the important information in the deep features for accurate prediction of the component 

reliability. Finally, the reliability prediction results are obtained as shown in Figure 10. From Figure 10, it 

can be seen that the proposed model of reliability prediction can roughly reflect the change trend of the 

reliability of different components. Meanwhile, the proposed model can accurately predict the working 

condition of the components in the short term. And from the long-term perspective, the accuracy of the 

reliability prediction model tends to decrease. In actual production, managers should make adjustments to 
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the production management process based on the proposed reliability prediction model and the historical 

failure information database, so as to formulate the corresponding reliability plan and maintenance activities 

in time. 

 

 
 

Figure 10. Reliability prediction results based on 1D CNN-BiLSTM model. 

 

In order to further verify the applicability as well as the effectiveness of the models used in this paper, the 

typical time series prediction models such as ARIMA and MLR are comprehensively compared in this 

paper, and the root mean square error (RMSE) as well as the mean absolute percentage error (MAPE) are 

used as the performance metrics of the prediction models (Zhao et al., 2022). In particular, the MLR model 

for time series prediction is 𝑌𝑡
𝑘 = 𝑎0

𝑘 + 𝑎1
𝑘𝑌𝑡−1

𝑘 + 𝑎2
𝑘𝑌𝑡−2

𝑘 + ⋯+ 𝑎𝑚𝑘
𝑘 𝑌𝑡−𝑚𝑘

𝑘 + 𝑒𝑘. 𝑌𝑡
𝑘 is the predicted value 

of the reliability of component k at time t. 𝑎𝑚𝑘
𝑘  is the bias term of the model and 𝑒𝑘 is the error term of the 

model. 𝑚𝑘 is the window length of component k. In this paper, the number of fault data of component k is 

selected as the value of 𝑚𝑘. Finally, the results of the comparison of the performances between different 

prediction models are presented in Figure 11. 

 

 

 
 

Figure 11. Performance comparison between different prediction models. 
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As can be seen from Figure 11, RMES and MAPE of the reliability prediction model used in this paper are 

smaller than those of other models for different LHD components. In other words, compared with other 

typical time series prediction models, the reliability prediction model used in this paper has higher 

prediction accuracy and better fitting performance, which can provide a reference for reasonable reliability 

planning and reliability maintenance activities. 
 

5. Conclusions 
To address some problems in the field of reliability prediction, a reliability estimation and prediction 

method based on Cox model and 1D CNN-BiLSTM model is proposed in this paper. Firstly, taking the 

historical fault data of six components of a typical load-haul-dump (LHD) machine as an example, a 

reliability evaluation method based on Cox model is proposed by comparing LR, SVM and BPNN models. 

On this basis, a reliability prediction method based on 1D CNN-BiLSTM is proposed with the objective of 

minimizing the prediction error. The applicability as well as the effectiveness of the proposed model is 

verified by comparing typical time series prediction models such as ARIMA and MLR. The experimental 

results show that the proposed model is valuable for the development of reliability plans for components of 

repairable systems with small samples and for the implementation of reliability maintenance activities. 

When the historical maintenance records of components are relatively few, the Cox model can be 

considered primarily by engineers to evaluate the reliability of the components. Besides, LR can also be 

used as a decision aid to evaluate the reliability of components. The reliability prediction results based on 

the 1D CNN-BiLSTM model at last can be used as a reference.  

 

Of course, the limitations of the model should be taken into account in the industrial production in practice. 

In order to make the model widely applicable, we have simplified the covariates that affect the occurrence 

of faults in repairable systems. However, in engineering practice, the fault of a system does not only depend 

on its own lifetime, but is also affected by external covariates such as temperature and humidity, as well as 

internal covariates such as wear, aging and corrosion. Managers should fully incorporate the characteristics 

of the repairable systems maintained and add some covariates related to the Cox-based reliability evaluation 

model in order to further improve the accuracy of the reliability prediction model. At the same time, as the 

environment changes, it remains a challenge for the model to autonomously adapt and reconfigure to 

provide managers with real-time decisions. These efforts will be the focus of further consideration in the 

future.  
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