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Abstract  

The paper proposes a hierarchical reliability modelling and assessment approach for a life support system (LSS) that provides 

oxygen to the pilot and is employed in a combat aircraft. The system has the primary function of generating oxygen onboard, and 

it has a backup gaseous oxygen tank as redundancy. An emergency oxygen bottle is also part of the ejection seat for emergency 

use. Both backup oxygen and emergency oxygen have a fixed capacity and a fixed duration of oxygen supply. Therefore, it is 

crucial to assess the reliability of the LSS to ensure its safety and effectiveness of this LSS during a mission by the combat aircraft. 

The proposed reliability model of LSS is developed as a two-level hierarchical model, that captures the inherent randomness in the 

operation of the system. At the lowest level of the hierarchy, Markov chains are used to model the events that may lead to the 

failure of the LSS. The events include the failure of individual components, the depletion of backup oxygen, and the depletion of 

emergency oxygen. The Markov chains consider the interactions between individual components and events during the mission 

profile. At the top level of the hierarchy, a fault tree is used to model the interactions between various events during the mission 

profile. The fault tree considers the interactions between individual events and the effects of redundancy on the reliability of the 

LSS. The results of the Markov chains at the lower level are exported to the higher level modelled via fault tree to find the overall 

system reliability. The reliability model is further extended to incorporate the deterministic nature of the LSS due to the fixed 

capacity of the backup tank and emergency bottle. The work addresses the modelling of six different scenarios of LSS operations. 

The modelling of these scenarios is achieved using Semi-Markov Processes (SMP), which allow the state holding time to be a 

general distribution. 

 

Keywords- Hierarchical reliability modelling, Markov chains, Semi-Markov process, OBOGS. 

 

Acronyms 

BGMS Breathing Gas Management 

System 

BOS Backup Oxygen System 

ECU  Electronic Control Unit 

EOS  Emergency Oxygen System 

EPRD  Electronic Parts Reliability 

Data 

FT  Fault Tree 

LSS  Life Support System 

MTTA Mean Time to Absorption 

MTTF  Mean Time to Failure 

NPRD  Non-electronic Parts Reliability Data 

OBOGS On-Board Oxygen Generating 

System 

RBD  Reliability Block Diagram 

SMP  Semi-Markov Process 

TPM  Transition Probability Matrix 

 

Notation 

βSW1  Switching rate: 21,000 ft cabin 

altitude 

βSW2  Switching rate: Low to High cycle 

βSW3  Switching rate: Forced operation 

βSW4  Switching rate: Low cycle to 

BOS 
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βSW5  Switching rate: High cycle to 

BOS 

λO  Failure rate of Oxygen Sensor 

λECU  Failure rate of ECU 

λOBOGS  Failure rate of OBOGS 

μSW1  Recovery rate: 21,000 ft cabin 

altitude 

μSW2  Recovery rate: High to Low cycle 

μSW3  Recovery rate: From forced operation 

μSW4  Recovery rate: BOS to OBOGS 

L1  Expected time spent above 

21,000 ft in a sortie 

L2  Expected time when OBOGS is 

unable to meet oxygen concentration 

requirement 

L3  Expected time spent in a sortie 

in forced operation 

LB  BOS tank capacity in hours 

LE  EOS tank capacity in hours 

PSW  Probability of successful switching

 

1. Introduction  
The On-Board Oxygen Generating System (OBOGS) is a critical component of the Life Support System 

(LSS) in modern fighter aircraft, which generates oxygen on demand and supplies it to the pilot/crew during 

a flight. The OBOGS system uses a molecular sieve to filter out nitrogen and other gases from the ambient 

air, leaving behind high-purity oxygen, which is then delivered to the pilot/crew through masks or other 

breathing apparatus. During the initial days of aviation, the oxygen was directly inhaled from the ambient 

atmosphere, and later came the gaseous oxygen tanks, followed by the liquid oxygen tanks. But this solution 

also had the limitation of having a fixed capacity and a limited duration. The problem is tackled through 

the idea and implementation of OBOGS coupled with a backup oxygen tank to alleviate such limitations 

and also increase system reliability and the safe return of the aircrew. The objective of this work is to model 

and analyze such critical systems from a reliability engineering perspective. 

 

Obviously, the dynamic behaviour of such complex systems cannot be captured through ubiquitous 

reliability block/logic diagrams (RBD/RLD) or fault tree approaches alone. The proposed reliability model 

is, therefore, developed as a two-level hierarchy, which captures the inherent randomness in the operation 

of the system. At the lowest level of the hierarchy, Markov chains are used to model the events that may 

lead to the failure of the Life Support System (LSS). Semi-Markov Process (SMP) is shown to be a powerful 

technique for complex systems because of its ability to represent general sojourn times. Semi-Markov 

processes, a class of stochastic processes with memory, have emerged as powerful tools for modelling 

reliability systems due to their ability to capture both continuous and discrete states and transitions. 

Notwithstanding, the SMP, owing to its generic assumption form, is a useful tool for modelling the 

operation processes of numerous technical objects and systems. Hjelmgren et al. (1998), presented a 

reliability model consisting of separate independent Markov models for the control modules and the sensors 

of a single-engine aircraft Full Authority Digital Engine Control (FADEC). But the analysis was restricted 

to electronic parts only. Cao et al. (2002) presented a transient analysis of the minimum duration of outages 

for the RF (Radio Frequency) channel in cellular systems. The deterministic minimum duration gives rise 

to a stochastic process that is non-Markovian in nature. Yin et al. (2002) presented an application of SMP 

and Continuous Time Markov Chains (CTMC) to evaluate the availability of an uninterrupted power supply 

system. Two approximation models were proposed, wherein the first model employed SMP with the 

assumption that the battery unit would be fully recharged before the next failure occurred, and the second 

model used CTMC. Misra et al. (2012) presented an uncertainty analysis of the remote exploration and 

experimentation system by employing a three-stage hierarchical model to capture failure behaviour. At the 

lowest level, a Markov model captured the failure behaviour of the software subsystem. At the mid-level, 

the failure behaviour of individual components was captured using RBDs. The top-level model was a fault 

tree that captured the interactions between the individual components to provide overall system reliability. 

Mishra et al. (2010) presented a parts count-based reliability prediction of the LSS of a fighter aircraft, 

besides carrying out the FMEA and FMECA. The predicted failure rates in this work are used for the 

numerical results of this paper. Interested readers may refer to Misra (2012) and Trivedi and Bobbio (2017) 
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for not only a detailed description of Markov chains and SMP models but also numerous examples and 

references therein. 

 

The rest of the paper is organized as follows: Section 2 covers a brief description of the system, wherein 

the deterministic nature of the system is explained along with the details of capacity, pressure thresholds, 

and control mechanisms. Section 3 describes the proposed two-level hierarchical reliability model of the 

LSS. Sub-sections 3.1 and 3.2 give the top and lower levels of the model. The overall reliability computation 

of the LSS is covered in Section 4 by taking the partial results of Sub-section 3.2. Section 5 gives the result 

and discussion. Finally, Section 6 concludes the work done in this paper. 

 

2. Brief Description of LSS 
The basic architecture of LSS is shown in Figure 1. The heart of the LSS is the Electronic Control Unit 

(ECU), whose major function is to control, monitor and coordinate the different functions of the LSS.  

 

 

 
 

Figure 1. Basic block diagram of LSS. 

 

The O2 concentration sensor compares the concentration of oxygen from OBOGS with the reference 

concentration level of oxygen. This input from the oxygen sensor is taken by the ECU and compared with 

a look-up table containing the altitude versus the level of oxygen to maintain the required concentration. 

Depending on the level of needed oxygen concentration, the ECU switches to the low or high mode of the 

OBOGS modes. However, in the eventuality of not meeting the required concentration in high mode, the 

ECU switches to the backup oxygen system (BOS). This function of switching between high and low mode 

is achieved through the Breathing Gas Management System (BGMS), which is a solenoid valve used to 

select either OBOGS or BOS. The BOS cylinder capacity is usually about two liters filled with gaseous 

oxygen at a pressure of around 200 bar. It can supply 100% oxygen for roughly 40 minutes. In any OBOGS 
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failure condition, the BGMS automatically selects BOS. Nonetheless, the BOS can also be selected 

manually by the pilot through a ‘100% /Normal’ selection switch inside the cockpit. When the cabin altitude 

reaches a certain altitude, say, 21,000 feet (aircraft altitude1 50,000 feet), the ECU may command the 

BGMS to switch to BOS from OBOGS. The BOS cylinder pressure is continuously monitored by the ECU 

through a pressure sensor. When the pilot starts the engine and if the pressure inside a typical BOS cylinder 

is, say, less than about 190 bar then the ECU gives a warning signal to the pilot that BOS has less oxygen, 

and when the BOS cylinder pressure reaches around 50 bar it gives another warning signal that only ~5 

minutes’ oxygen is left in the BOS cylinder. 

 

The EOS cylinder is located inside the pilot seat. The functioning of the Emergency Oxygen System (EOS) 

is similar to that of the BOS, except for some differences in constructional features. Here, the EOS cylinder 

capacity is usually much less, e.g., 0.45 liters containing oxygen at a pressure of roughly around 180 bar or 

so, which is usually exhausted within seven minutes. the EOS comes into action when both OBOGS and 

BOS fail or there is a requirement for emergency ejection. The input from OBOGS or BOS is sensed by a 

diaphragm with a threshold of about 0.8 bar below which it activates EOS. When the cylinder pressure falls 

below 150 bar, a 5-minute warning signal is received by the pilot.  
 

3. Proposed Hierarchical Reliability Model 
The system reliability model is developed as a 2-level hierarchy (illustrated in Figure 2). The reliability 

model of LSS captures the failure behavior of the LSS system. Reliability models are defined separately 

for different events, which are then combined into an overall system model. At the top level, the system is 

modeled using a fault-tree which considers the interactions between various events during the mission 

profile. The lower level captures the event-level failures while considering the interactions between 

individual components. The reliability measures computed at a lower level using Markov chains become 

an input to the top level.  

 

 
 

Figure 2. Two-level hierarchical model. 

 

3.1 LSS Top Level Model using Fault Tree 

The fault tree model for the top level of the proposed hierarchical model is illustrated in Figure 3. The LSS 

architecture permits the switching from OBOGS to BOS under three conditions, viz., (i) any failure in 

OBOGS, (ii) switching failure in software logic, and, (iii) manually or forced switch. These become in 

series configuration as either condition will lead to a switchover to BOS. Further, the OBOGS has three 

major sub-components, which may lead to hardware failure: oxygen sensor failure, OBOGS failure, and 

ECU failure. These sub-components are reliable reliability-wise in a series configuration, and constitute the 

hardware failure. Similarly, the switching failure in software logic can be due to either high-low switching 

failure or altitude switching failure. These, in series, constitute the switching failure. The forced switch is 

at the pilot discretion (in case the pilot feels uneasy due to a lack of oxygen) to switch to BOS. 

 
1 Aircraft altitude is the height above sea level that an aircraft is flying, while cabin altitude refers to the pressurized altitude maintained inside the 

aircraft's cabin to ensure passenger comfort and safety. 

Lower Level

Top Level Fault Tree

Markov Chain
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Figure 3. Top-level fault tree model of LSS. 

 

 

3.2 LSS Lower Level Model using Semi Markov Process  
Here, we propose the models under different scenarios during the operation of LSS: 

 

3.2.1 Case I: Altitude Switching Failure 

The state transition diagram for altitude switching is illustrated in Figure 4. The behavior is modelled using 

a 5-state SMP. The states in this model are: 𝑂  represents oxygen supplied by OBOGS, and 𝐵’  state 

represents oxygen supplied by BOS when the aircraft is, say, above 21,000 ft cabin altitude. It is assumed 

that in state 𝐵’, there is no failure in switching software. Once the aircraft is again below 21,000 ft cabin 

altitude, state transits from 𝐵’ to 𝑂. State 𝐵 represents oxygen supplied by BOS when the software failed 

to switch during an altitude change. State E represents oxygen supplied by EOS. State 𝐷 represents the state 

where the oxygen supply is halted. The transitions from SMP states are deterministic and are modelled 

using unit step functions with respective oxygen tank capacities in hours as their threshold. 

 

Therefore, the Transition Probability Matrix (TPM) embedded DTMC is: 

 𝑂     𝐵′      𝐵     𝐸 𝐷 

𝑃 =

𝑂
𝐵′
𝐵
𝐸
𝐷 [

 
 
 
 

0 𝑃𝑂,𝐵′ 𝑃𝑂,𝐵 0 0

𝑃𝐵′,𝑂 0 𝑃𝐵′,𝐵 0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 1]

 
 
 
 

. 
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Figure 4. SMP model for altitude switching. 

 

The entries of the TPM are determined by the minimum of the transition time (Cao et al., 2002): 

𝑝𝑂,𝐵′ = ∫ (1 − 𝐹𝐵(𝑡))𝑑𝐹𝐵′(𝑡)
∞

0
                                                                                                                       (1) 

𝑝𝑂,𝐵′ = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊1]𝑡𝑑𝐹𝐵′(𝑡).

∞

0

 

𝑝𝑂,𝐵′ = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊1]𝑡 . (𝑃𝑆𝑊𝛽𝑆𝑊1)𝑒
−[𝑃𝑆𝑊𝛽𝑆𝑊1]𝑡𝑑𝑡.

∞

0

 

𝑝𝑂,𝐵′ = 𝑃𝑆𝑊𝛽𝑆𝑊1 ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊1+(𝑃𝑆𝑊𝛽𝑆𝑊1)]𝑡𝑑𝑡.

∞

0

 

𝑝𝑂,𝐵′ =
𝑃𝑆𝑊𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
                                                                                                                                      (2) 

 

Similarly, 

𝑝𝑂,𝐵 =
(1−𝑃𝑆𝑊)𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
                                                                                                                         (3) 

 

Now, 

𝑝𝐵′,𝑂 = ∫ 1 − 𝑢(𝜏 − 𝐿1)𝑑𝐹𝑂(𝜏)
𝑡

0
                                                                                                                    (4) 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊1𝑡] − ∫ 𝜇𝑆𝑊1𝑒
−𝜇𝑆𝑊1𝜏𝑑𝜏

𝑡

𝐿1

. 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊1𝑡] − [−𝑒−𝜇𝑆𝑊1𝑡 + 𝑒−𝜇𝑆𝑊1𝐿1]. 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊1𝐿1]                                                                                                                                 (5) 

 

Hence,  

𝑝𝐵′,𝐵 = 𝑒−𝜇𝑆𝑊1𝐿1                                                                                                                                           (6) 

 

We have the following TPM from Equations (2), (3), (5) and (6): 
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𝑂                                   𝐵′                                               𝐵                          𝐸 𝐷 

𝑃 =

𝑂
𝐵′
𝐵
𝐸
𝐷

[
 
 
 
 
 0

𝑃𝑆𝑊𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1 + (1 − 𝑃𝑆𝑊)𝛽𝑆𝑊1

(1 − 𝑃𝑆𝑊)𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1 + (1 − 𝑃𝑆𝑊)𝛽𝑆𝑊1
0 0

1 − 𝑒−𝜇𝑆𝑊1𝐿1 0 𝑒−𝜇𝑆𝑊1𝐿1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1]

 
 
 
 
 

. 

 

The expected number of visits 𝑉𝑗 to state 𝑗 until absorption is given by Kao (1974), Kemeny and Snell, 

(1983), Trivedi and Bobbio, (2017), 

𝑉𝑗 = 𝛼𝑗 + ∑ 𝑉𝑖𝑝𝑖𝑗               𝑗 = 1,2, … . 𝑛𝑛−1
𝑖=1                                                                                                    (7) 

 

where, 𝑗 is the initial probability of state 𝑗, 𝑝𝑖𝑗 is the probability of transition from 𝑖 to 𝑗 and state 𝑛 is the 

absorbing state. In vector form, 

𝑉 =  𝛼 + 𝑉𝑃𝑢                                                                                                                                               (8) 

 

where,  = [j] is the initial probability vector and 𝑉 =  [𝑉𝑗] is the vector of the expected number of visits 

in each state. 𝑃𝑢  is the (𝑛 − 1 ×  𝑛 − 1) partition matrix of TPM over the transient states and is a sub-

stochastic matrix. By computing the average number of visits to state 𝑗, the mean time to absorption is given 

as: 

𝑀𝑇𝑇𝐴 = ∑ 𝑉𝑗ℎ𝑗
𝑛−1
𝑗=1                                                                                                                                          (9) 

 

where, ℎ𝑗 is the mean state holding time in state 𝑗. 

 

Now for the altitude switching SMP model, assuming the initial probability 𝑂  =  1, we have, 

𝑉𝑂 = 1 + 𝑉𝐵′(1 − 𝑒−𝜇𝑆𝑊1𝐿1)                                                                                                                          (10) 

𝑉𝐵′ = 𝑉𝑂.
𝑃𝑆𝑊𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
                                                                                                                   (11) 

 

For states 𝐵 and 𝐸, since they have no return path in the model and they are deterministic, the number of 

visits to the state will be 1, 

 

𝑉𝐵 = 1, and 𝑉𝐸 = 1, Now solving Equation (10), 

𝑉𝑂 = 1 + 𝑉𝐵′(1 − 𝑒−𝜇𝑆𝑊1𝐿1), 

𝑉𝑂 = 1 + 𝑉𝑂 .
𝑃𝑆𝑊𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
(1 − 𝑒−𝜇𝑆𝑊1𝐿1), 

𝑉𝑂 =
1

1−
𝑃𝑆𝑊𝛽𝑆𝑊1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
(1−𝑒−𝜇𝑆𝑊1𝐿1)

                                                                                                (12) 

 

𝐻𝑖(𝑡) is the sojourn time distribution of state 𝑖. Now mean sojourn time in state 𝑖 is given by Pievatolo and 

Valad`e (2003), 

ℎ𝑖(𝑡) = ∫ ∏ (1 − 𝐹𝑗(𝑡)) 𝑑𝑡𝑛
𝑗=1

∞

0
                                                                                                                     (13) 
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Therefore, the mean sojourn times for all states of the altitude switching model are 

ℎ𝑂 = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊1]𝑡. 𝑒−(𝑃𝑆𝑊𝛽𝑆𝑊1)𝑡𝑑𝑡
∞

0
, 

ℎ𝑂 = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊1+(𝑃𝑆𝑊𝛽𝑆𝑊1)]𝑡𝑑𝑡
∞

0
, 

ℎ𝑂 =
1

𝑃𝑆𝑊𝛽𝑆𝑊1+(1−𝑃𝑆𝑊)𝛽𝑆𝑊1
                                                                                                                             (14) 

 

For state 𝐵’, 

ℎ𝐵′ = ∫ 𝑒−𝜇𝑆𝑊1𝑡(1 − 𝑢(𝑡 − 𝐿1))𝑑𝑡
∞

0
, 

ℎ𝐵′ = ∫ 𝑒−𝜇𝑆𝑊1𝑡𝑑𝑡 − ∫ 𝑒−𝜇𝑆𝑊1𝑡𝑑𝑡
∞

𝐿1

∞

0
, 

ℎ𝐵′ =
1−𝑒−𝜇𝑆𝑊1𝐿1

𝜇𝑆𝑊1
                                                                                                                                                     (15) 

 

Finally, for deterministic states, 𝐵 and 𝐸, their mean state holding times become the capacity of BOS and 

EOS respectively. As the aircraft is expected to spend 1 minute above 21,000 ft (values given in Table 1 

below) where BOS will supply oxygen, the remaining capacity, i.e., 39 minutes is taken as the mean state 

holding time for state 𝐵. Likewise, the state holding time for state 𝐸 would be 7-minutes as the EOS has a 

capacity of 7 minutes, i.e., ℎ𝐵 = 39 𝑚𝑖𝑛𝑠 and ℎ𝐸 =  7 𝑚𝑖𝑛𝑠. 

 

The assumed parameters used in the LSS reliability model are summarized in Table 12; the failure rates 

have been taken under airborne conditions from available databases such as Mil-HDBK 217F N2, 

NPRD/EPRD, NSWC, and Relex® library. Therefore, taking values from Table 1 (given below) the MTTF 

(for this system MTTF=MTTA as it is non-repairable in the air during the mission time) is computed using 

Equation (9). 

𝑀𝑇𝑇𝐴 = 𝑀𝑇𝑇𝐹 = 𝑉𝑂ℎ𝑂 + 𝑉𝐵′ℎ𝐵′ + 𝑉𝐵ℎ𝐵 + 𝑉𝐸ℎ𝐸 = 1000.7993 ℎ𝑟𝑠. 

 

Reliability for altitude switching model for an assumed mission time of 3 hours, 

𝑅 = 𝑒−
1

𝑀𝑇𝑇𝐴
𝑡
                                                                                                                                                      (16) 

𝑅 = 99.70%. 

Table 1. Assumed values of LSS model. 
 

Symbol Meaning  Value Unit 

O Failure rate of Oxygen Sensor 3.64 x 10-4 hr-1 

OBOGS Failure rate of OBOGS 2.16 x 10-4 hr-1 

ECU Failure rate ECU 1.74 x 10-4 hr-1 

PSW Probability of successful switching  0.98 -- 

SW1 Switching rate: cabin altitude 21,000 ft 0.001 hr-1 

SW2 Switching rate: Low to High cycle 0.1 hr-1 

SW3 Switching rate: Forced operation  0.005 hr-1 

SW1 Recovery rate: cabin altitude 21,000 ft 0.001 hr-1 

SW2 Recovery rate: High to Low cycle 0.1 hr-1 

SW3 Recovery rate: Forced Operation 0.005 hr-1 

SW4 Recovery rate: BOS to OBOGS 0.1 hr-1 

L1 Expected time spent above 21,000 ft in a sortie 1 min 

L2 Expected time when OBOGS is unable to meet oxygen concentration requirement 5 min 

L3 Expected time spent in a sortie in forced operation 1 min 

 

 
2 The failure rates are taken from previous work on reliability prediction on the same system (Table 1 pp. 22 of Mishra et al., 

2010). The other values are assumed and real-world values can be obtained specific to the aircraft the LSS is installed on. 
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3.2.2 Case II: High-Low Switching 

The state transition diagram for High-Low switching is illustrated in Figure 5. The behavior is modelled 

using a 6-state SMP. The state 𝑂𝐿  represents the OBOGS working in low mode. In the event of a low 

concentration of oxygen, the ECU commands the high mode of OBOGS which is represented by state 𝑂𝐻. 

The State 𝐵’ represents oxygen supplied by BOS when even the high mode is unable to generate the 

required concentration of oxygen. State 𝐵 represents oxygen supplied by BOS once software encounters a 

failure. Here, State 𝐸 represents oxygen supplied by the EOS. State 𝐷 represents the absorbing state where 

the oxygen supply is halted. 

 

 
 

Figure 5. SMP model for high-low switching. 

 

We have the following transition probability matrix for High-Low switching by finding the minimum of 

the transition times, 

 

𝑃 =

[
 
 
 
 
 
 
 0

𝑃𝑆𝑊𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊2+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
0

(1−𝑃𝑆𝑊)𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
0 0

𝑃𝑆𝑊𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊2+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
0

(1−𝑃𝑆𝑊)𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
0 0 0

0 1 − 𝑒−𝜇𝑆𝑊4𝐿2 0 𝑒−𝜇𝑆𝑊4𝐿2 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1]

 
 
 
 
 
 
 

. 

 

Now for the High-Low switching SMP model, assuming the initial probability 𝑂𝐿
= 1, we have from 

Equation (7), 

𝑉𝑂𝐿
= 1 + 𝑉𝑂𝐻

 𝑃𝑆𝑊𝜇𝑆𝑊2

 𝑃𝑆𝑊𝜇𝑆𝑊2+(1−𝑃𝑆𝑊)𝜇𝑆𝑊2
                                                                                                          (17) 

𝑉𝑂𝐻
= 𝑉𝑂𝐿

𝑃𝑆𝑊𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊2+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
+ 𝑉𝐵′(1 − 𝑒−𝜇𝑆𝑊4𝐿2)                                                                                (18) 

𝑉𝐵′ = 𝑉𝑂𝐻

(1−𝑃𝑆𝑊)𝜇𝑆𝑊2

 𝑃𝑆𝑊𝜇𝑆𝑊2+(1−𝑃𝑆𝑊)𝜇𝑆𝑊2
                                                                                                                   (19) 
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𝑉𝐵 = 𝑉𝑂𝐿

(1−𝑃𝑆𝑊)𝛽𝑆𝑊2

𝑃𝑆𝑊𝛽𝑆𝑊2+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
+ 𝑉𝐵′(𝑒−𝜇𝑆𝑊4𝐿2)                                                                                       (20) 

𝑉𝐸 = 1 and 𝑉𝐷 = 1. 

 

The state holding times for the SMP become using Equation (12), 

ℎ𝑂𝐿
=

1

𝑃𝑆𝑊𝛽𝑆𝑊2+(1−𝑃𝑆𝑊)𝛽𝑆𝑊2
                                                                                                                     (21) 

ℎ𝑂𝐻
=

1

 𝑃𝑆𝑊𝜇𝑆𝑊2+(1−𝑃𝑆𝑊)𝜇𝑆𝑊2
                                                                                                                   (22) 

ℎ𝐵′ =
(1−𝑒−𝜇𝑆𝑊4𝐿2)

𝜇𝑆𝑊4
                                                                                                                                    (23) 

For state 𝐵 in this case, the expected time for which the OBOGS is unable to meet the oxygen requirement 

is 5 minutes (refer Table 1). Hence state holding time becomes 35 minutes. State 𝐸 remains the same as in 

the previous case, 

ℎ𝐵 =  35 𝑚𝑖𝑛𝑠, and ℎ𝐸 =  7 𝑚𝑖𝑛𝑠. 

 

Hence, the mean time to failure using values from Table 1 and Equation (9), 

𝑀𝑇𝑇𝐹 = 502.8036 ℎ𝑟𝑠. 

 

Reliability for high-low switching model for an assumed mission time of 3 hours using Equation (15), 

𝑅 = 99.40%. 

 

3.2.3 Case III: Oxygen Sensor Failure 

The state transition diagram for the oxygen sensor is illustrated in Figure 6. The failure behavior of the 

oxygen sensor is modelled using a 4-state SMP. The state 𝑂 represents oxygen supplied by OBOGS. The 

𝐵 state represents oxygen supplied by BOS after the failure of the oxygen sensor, 𝐸 state represents supply 

from EOS. State 𝐷 represents the absorbing state where the oxygen supply is halted. Let the transition from 

𝑂 to 𝐵 is governed by an exponential distribution with failure rate 𝑂. The transition from 𝐵 to 𝐸 and 𝐸 to 

𝐷 is governed by deterministic distribution with parameter 𝐿𝐵  and 𝐿𝐸 respectively (time to exhaustion for 

BOS and EOS).  

 

 
 

Figure 6. SMP model for oxygen sensor. 
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We have the following transition probability matrix, since all states have no return path, 

𝑂 𝐵 𝐸 𝐷 

𝑃 =

 𝑂
 𝐵 
𝐸
𝐷

[

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

]. 

 

Now for the oxygen sensor SMP model, assuming the initial probability O = 1, using Equation (7) we have, 

𝑉𝑂 = 1, 𝑉𝐵 = 1 and 𝑉𝐸 = 1. 

 

The mean state holding times for the SMP become, 

ℎ𝑂 = 
1

𝜆𝑂
, ℎ𝐵 =  40 𝑚𝑖𝑛𝑠 and ℎ𝐸 =  7 𝑚𝑖𝑛𝑠. 

 

Finally, taking values from Table 1, the mean time to failure is computed using Equation (9), 

𝑀𝑇𝑇𝐹 =  2749.8577 ℎ𝑟𝑠. 

 

Reliability for Oxygen sensor model for an assumed mission time of 3 hours using Equation (15), 

𝑅 = 99.89%. 

 

3.2.4 Case IV: OBOGS Failure 

The state transition diagram for OBOGS failure is illustrated in Figure 7. The failure behavior of the 

OBOGS is modelled using a 4-state SMP. The state 𝑂 represents oxygen supplied by OBOGS. The state 𝐵 

represents oxygen supplied by the BOS after the failure of the OBOGS, 𝐸 state represents supply from EOS. 

The state 𝐷 represents the absorbing state where the oxygen supply is halted. It is assumed that the transition 

from state 𝑂 to state 𝐵 is governed by an exponential distribution with failure rate OBOGS. The transition 

from 𝐵 to 𝐸 and 𝐸 to 𝐷 is governed by deterministic distribution with parameter 𝐿𝐵  and 𝐿𝐸  respectively 

(time to exhaustion for BOS and EOS).  

 

 
 

Figure 7. SMP model for OBOGS. 

 

Now, for the OBOGS SMP model everything remains the same as the previous case except for the value of 

the failure rate. Assuming the initial probability O = 1, we have the mean time to failure using values from 

Table 1 and Equation (9), 
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𝑀𝑇𝑇𝐹 =  4637.8171 ℎ𝑟𝑠. 
 

And, reliability for the OBOGS model for an assumed mission time of 3 hours using Equation (15), 

𝑅 = 99.93%. 

 

 

3.2.5 Case V: ECU Failure 

The state transition diagram for ECU failure is illustrated in Figure 8. The failure behavior of ECU is 

modelled by using a 4-state SMP. The state 𝑂  represents oxygen supplied by OBOGS. The state 𝐵 

represents oxygen supplied by BOS after the failure of ECU, 𝐸 state represents supply from EOS. State 𝐷 

represents the absorbing state where the oxygen supply is halted. The transition from state 𝑂 to state 𝐵 is 

governed by an exponential distribution with failure rate 𝐸𝐶𝑈. The transition from 𝐵 to 𝐸 and 𝐸 to 𝐷 is 

governed by deterministic distribution with parameter 𝐿𝐵  and 𝐿𝐸 respectively (time to exhaustion for BOS 

and EOS).  

 

 
 

Figure 8. SMP model for ECU. 

 

Now, for the ECU SMP model, assuming the initial probability O = 1, we have the mean time to failure 

using values from Table 1, 

𝑀𝑇𝑇𝐹 =  5750.2095 ℎ𝑟𝑠. 

 

And, the reliability for the ECU model for an assumed mission time of 3 hours using Equation (15), 

𝑅 = 99.94%. 

 

3.2.6 Case VI: Forced Operation 

The state transition diagram for forced operation is illustrated in Figure 9. The behavior is modelled using 

a 5-state SMP. The state 𝑂 represents oxygen supplied by OBOGS. 𝐵’ state represents oxygen supplied by 

BOS when the pilot manually selects BOS. It is to be noted that in state 𝐵’ there is no failure in the system. 

Once the pilot again selects OBOGS, state transitions take place from state 𝐵’ to state 𝑂. State 𝐵 represents 

oxygen supplied by BOS when switching fails after manual selection. State 𝐸 represents oxygen supplied 

by EOS. The state 𝐷 represents the absorbing state where oxygen supply is halted. The transitions from 

SMP states is deterministic and are modelled using unit step functions with respective oxygen tank 

capacities in hours as their threshold. 
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Figure 9. SMP model for forced operation. 

 

 

The entries of the TPM of the embedded DTMC are as follows: 

𝑝𝑂,𝐵′ = ∫ (1 − 𝐹𝐵)𝑑𝐹𝐵′(𝑡)
∞

0
                                                                                                                         (24) 

𝑝𝑂,𝐵′ = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊3]𝑡𝑑𝐹𝐵′(𝑡)
∞

0
, 

𝑝𝑂,𝐵′ = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊3]𝑡. (𝑃𝑆𝑊𝛽𝑆𝑊3)𝑒
−[𝑃𝑆𝑊𝛽𝑆𝑊3]𝑡𝑑𝑡

∞

0
, 

𝑝𝑂,𝐵′ = 𝑃𝑆𝑊𝛽𝑆𝑊3 ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊3+(𝑃𝑆𝑊𝛽𝑆𝑊3)]𝑡𝑑𝑡
∞

0
, 

𝑝𝑂,𝐵′ =
𝑃𝑆𝑊𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
                                                                                                                    (25) 

 

Similarly, 

𝑝𝑂,𝐵 =
(1−𝑃𝑆𝑊)𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
                                                                                                                      (26) 

 

Now,  

𝑝𝐵′,𝑂 = ∫ 1 − 𝑢(𝜏 − 𝐿3)𝑑𝐹𝑂(𝜏)
𝑡

0
                                                                                                                 (27) 

𝑝𝐵′,𝑂 = ∫ 1 − 𝑢(𝜏 − 𝐿3)𝜇𝑆𝑊3𝑒
−𝜇𝑆𝑊3𝜏𝑑𝜏

𝑡

0
, 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊3𝑡] − ∫ 𝜇𝑆𝑊3𝑒
−𝜇𝑆𝑊3𝜏𝑑𝜏

𝑡

𝐿3
, 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊3𝑡] − [−𝑒−𝜇𝑆𝑊3𝑡 + 𝑒−𝜇𝑆𝑊3𝐿3], 

𝑝𝐵′,𝑂 = [1 − 𝑒−𝜇𝑆𝑊3𝐿3].                                                                                                                                  (28) 

 

Hence,  

𝑝𝐵′,𝐵 = 𝑒−𝜇𝑆𝑊3𝐿3                                                                                                                                       (29) 
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We have the following TPM, 

                          𝑂                                   𝐵′                                                 𝐵                        𝐸 𝐷 

𝑃 =

𝑂
𝐵′
𝐵
𝐸
𝐷

[
 
 
 
 
 0

𝑃𝑆𝑊𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3 + (1 − 𝑃𝑆𝑊)𝛽𝑆𝑊3

(1 − 𝑃𝑆𝑊)𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3 + (1 − 𝑃𝑆𝑊)𝛽𝑆𝑊3
0 0

1 − 𝑒−𝜇𝑆𝑊3𝐿3 0 𝑒−𝜇𝑆𝑊3𝐿3 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1]

 
 
 
 
 

. 

 

Now for the forced operation SMP model, assuming the initial probability 𝑂  =  1 , we have using 

Equation (7): 

 

𝑉𝑂 = 1 + 𝑉𝐵′(1 − 𝑒−𝜇𝑆𝑊3𝐿3)                                                                                                                         (30) 

𝑉𝐵′ = 𝑉𝑂.
𝑃𝑆𝑊𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
                                                                                                                  (31) 

𝑉𝐵 = 1. 

𝑉𝐸 = 1. 

 

Now, on solving Equation (29), 

𝑉𝑂 = 1 + 𝑉𝑂 .
𝑃𝑆𝑊𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
(1 − 𝑒−𝜇𝑆𝑊3𝐿3). 

𝑉𝑂 =
1

1−
𝑃𝑆𝑊𝛽𝑆𝑊3

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
(1−𝑒−𝜇𝑆𝑊3𝐿3)

. 

 

Therefore, mean sojourn times for all states of the forced operation model using Equation (12) are: 

ℎ𝑂 = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊3]𝑡. 𝑒−(𝑃𝑆𝑊𝛽𝑆𝑊3)𝑡𝑑𝑡
∞

0
, 

ℎ𝑂 = ∫ 𝑒−[(1−𝑃𝑆𝑊)𝛽𝑆𝑊3+(𝑃𝑆𝑊𝛽𝑆𝑊3)]𝑡𝑑𝑡
∞

0
, 

ℎ𝑂 =
1

𝑃𝑆𝑊𝛽𝑆𝑊3+(1−𝑃𝑆𝑊)𝛽𝑆𝑊3
                                                                                                                                   (32) 

 

For state 𝐵’, 

ℎ𝐵′ = ∫ 𝑒−𝜇𝑆𝑊3𝑡(1 − 𝑢(𝑡 − 𝐿3))𝑑𝑡
∞

0
, 

ℎ𝐵′ = ∫ 𝑒−𝜇𝑆𝑊3𝑡𝑑𝑡 − ∫ 𝑒−𝜇𝑆𝑊3𝑡𝑑𝑡
∞

𝐿3

∞

0
, 

ℎ𝐵′ =
1−𝑒−𝜇𝑆𝑊3𝐿3

𝜇𝑆𝑊3
                                                                                                                                             (33) 

 

and, 

ℎ𝐵 = 39 𝑚𝑖𝑛𝑠, and ℎ𝐸 =  7 𝑚𝑖𝑛𝑠. 

 

Finally, taking values from Table 1, the MTTF is computed using Equation (9), 

𝑀𝑇𝑇𝐹 = 200.7993 ℎ𝑟𝑠. 
 

Reliability for forced operation model for a mission time of 3 hours using Equation (15), 

𝑅 = 98.51%. 
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4. Overall System Reliability 

The overall system reliability is computed by importing results from the lower-level Markov chains to the 

higher ones. The hardware failure is computed from the results of the Oxygen sensor, OBOGS, and ECU 

SMP models. Hence for hardware failure for an assumed mission time of 3 hours: 

𝑅𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑅𝑂 × 𝑅𝑂𝐵𝑂𝐺𝑆 × 𝑅𝐸𝐶𝑈 = 99.77%. 
 

Similarly, for software failures: 𝑅𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 = 𝑅𝐻𝑖𝑔ℎ−𝐿𝑜𝑤 × 𝑅𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 99.10%. 

 

From the fault tree (illustrated in Figure 3), the overall system comprises hardware failures, forced 

operation, and software failures. Hence the overall system reliability for a mission time of 3 hours is given 

by: 

𝑅𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑅𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 × 𝑅𝐹𝑜𝑟𝑐𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑅𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 = 97.41%. 

 

5. Result and Discussion  
In this paper, a 2-level hierarchical model of an oxygen generation system used in military aircraft has been 

proposed to analyze the reliability of a life support system employed in a combat aircraft. The top level of 

the proposed model was a fault tree while the lowest level consisted of Markov chains. Six situations have 

been considered under the different scenarios during the operation of LSS. The overall system reliability 

was computed by importing the results from the lowest-level Markov chains. The results showed that the 

overall system reliability for predicted failure rates from databases and a typical flight time of three hours 

was estimated to be 97.41%.  

 

  
 

Figure 10. System reliability for different mission time. 

 

In Figure 10, we plot the overall system reliability curve for a single mission time. The assumed flight time 

is usually short in comparison to the MTTF of the components, meaning that the expected time for a 

component to fail is much longer than the flight time. As a result, the effect of the component failure rate 

on the overall system reliability is not significant over the assumed mission time, and the reliability plot 

appears to be linear.  
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This observation is important because it indicates that the overall system reliability is not sensitive to the 

failure rate of the individual components for the assumed mission time. However, it should be noted that 

for longer mission times, the effect of the component failure rate on the overall system reliability may 

become more significant.  

 

The hierarchical approach proposed in this paper was found to be more effective in capturing the real 

scenarios of the oxygen generation system in comparison to ubiquitous RBD or FT alone. This is because 

the model considered the dependencies of various subsystems resulting in a better estimate of the overall 

system reliability emphasizing the need for a hierarchical model. 

 

6. Conclusion 

In this paper, a 2-level hierarchical model has been proposed with the top level as a fault tree, and the basic 

events of the fault tree were modelled using Markov chains. The SMP has been used, as it permits the state 

holding times following a general distribution and capture the realistic nature of the system. The results 

from the lowest level Markov chains were imported to top-level fault tree to obtain the overall system 

reliability, considering the dependencies of various subsystems. If the dependencies of the subsystems are 

not considered, then with the same failure rates data of OBOGS, the reliability turned out to be 99.93%. 

However, the overall system reliability considering dependencies for an assumed flight time of 3 hours, is 

estimated to be 97.41%. This significant variation in reliability emphasizes the importance of considering 

dependencies among subsystems while analyzing the reliability of a life-critical system. In conclusion, we 

can say that the hierarchical approach captures the real scenarios in a better manner than the conventional 

models such as RBD or FT alone. In conclusion, we can say that the hierarchical approach is a better 

approach to modelling such systems than conventional models such as RBD or FT alone. 

 

While the proposed model provided a good approximation of the overall system reliability of the LSS, there 

are several areas for future improvement. Firstly, the proposed model assumes that the failure rates of the 

various components are constant over time, which may not be true in practice. The use of time-varying 

failure rates could provide a more accurate estimate of the system’s reliability. The model presented in this 

paper does not consider the effects of maintenance and repair on system reliability. The inclusion of 

maintenance and repair models could help predict the impact of maintenance activities on system reliability 

and inform maintenance scheduling decisions. Further, the integration of semi-Markov processes with other 

modelling formalisms (e.g., Bayesian networks, Petri nets) could also be explored for modelling the 

dynamic scenarios of such systems critical to defense applications.  
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