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Abstract 

This study contributes valuable insights into linear fractional transshipment problem which is a special class of mathematical 

programming problem. We present the mathematical model for the linear fractional transshipment problem and develop an efficient 

algorithm based on the 'Avoid Maximum Cost Method (AMCM)' for finding an initial basic feasible solution (IBFS) of the given 

model. AMCM is based on the concept of making the maximum possible allocation to either a column or a row of the transportation 

cost matrix in such a way that the allocation to the corresponding cell that has the highest cost will be avoided in the further steps. 

The methodology is composed of the following two steps: firstly, we formulated an equivalent transportation model of the problem 

by considering the cost-profit ratio matrix. Secondly, we apply AMCM to find an IBFS of the problem. In a nutshell, this article 

finds the solution to a linear fractional transshipment model by applying AMCM to the cost-profit ratio matrix. The applicability 

of the proposed approach is illustrated with some suitable numerical examples. The contribution ends by introducing a comparative 

analysis to show the efficiency of the proposed algorithm. 

 

Keywords- Transshipment problem, Fractional programming problem, Avoid maximum cost method. 

 

 

 

1. Introduction  
In this modern-era of ever-increasing competitive market of production, we need to develop more efficient 

and cost-effective solution to the problem of delivering raw materials or in-process inventory or final 

product or related information from the source point or origin to the destination or the final consumption 

points. Logistic management can help us to solve this problem. For every industry, transportation cost is 

one of the crucial cost components of logistics costs and it contributes almost one-third to two-third of the 

total logistics cost (Cano et al., 2020; Mathirajan et al., 2022). To maximize the profit, we need to minimize 

the product cost. The product cost consists of several costs like raw material’s cost, worker’s cost, 

equipment’s charges, and transportation cost. Now-a-days, it’s very difficult to reduce the cost of raw 
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materials, worker and equipment. So, to minimize the product cost, we need to minimize the transportation 

cost involved in the process.  

 

Transportation problem (TP) is one of the most used linear programming models for solving several real-

world problems. The French mathematician Monge (1781) was first to propose the transportation problem. 

In 1920s, Tolstoi (1930) first studied the transportation problem mathematically. This classical 

transportation problem is used when a large amount of homogeneous goods is transported from one side to 

another in a network. A transportation network is defined by its two characteristics, namely vertex and 

edges. Moreover, the vertices are of two types: (i) Source, from where the goods are transported and (ii) 

Sink, to where goods are transported. Edges represent the transportation cost, time, profit, etc. In a general 

framework, not only homogeneous goods but we can transport any kind of homogeneous things like data 

in a transportation network. In the literature, one of the following three solution procedure is followed to 

minimize the transportation cost or time of the TP: (a) developing linear programming (LP) model of the 

TP and solve it using standard LP solution method, (b) developing network model and solve it using 

network approach, and (c) special transportation algorithms which are consists of a simple heuristic 

technique followed by an optimality test of the solution obtained by the heuristic (Mathirajan et al., 2022). 

Several heuristic techniques namely, North-West Corner method (NWCM), Least Cost Method (LCM), 

Vogel’s Approximation Method (VAM) etc. are there in the literature for finding initial basic feasible 

solution (IBFS) of a transportation problem. Recently, Mathirajan et al. (2022) conducted an experimental 

study and performance analysis of 34 recently developed heuristic techniques. 

 

In a transportation model, the homogeneous goods are transported from the sources only and the goods are 

received at destinations. Thus, each vertex in the network model of a TP acts as a shipper or source only or 

as a receiver or sink only. Sometimes, it is observed that the transportation cost can be decreased if the 

transshipment is allowed in the model. For example, let us consider a very small transportation problem 

with two sources (𝑂1, 𝑂2) and one destination (𝐷). The availability at the sources 𝑂1 and 𝑂2 be 100 units 

and 50 units respectively and demand at the destination be 150 units. The unit transportation cost from 

𝑂1 to 𝐷 be 7 units and the transportation cost from 𝑂2 to 𝐷 be 3 units. Then the total transportation cost is 

(7 × 100 + 3 × 50) = 850  units. Now if the transshipment is allowed in the model and the unit 

transportation cost from 𝑂1  to 𝑂2  is 2 units, then the total transportation cost becomes 650 units 

((2 × 100) 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + (3 × 150) 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ) which is 

less than the cost of transportation model. Keeping this point in mind, transshipment model is developed. 

Transshipment model can be viewed as a more generalized version of the transportation model. Orden 

(1956) was the first person who studied the transshipment problem. In a transshipment problem, 

transshipment is permitted with the additional feature that the shipments may go via any sequence of 

vertices in the network rather than being restricted to direct connections from one source to one of the sinks. 

Consequently, in a transshipment network model, all the vertices may act as sources as well as sinks i.e., 

all the vertices of the network can act as transit points. In Figure 1, a transshipment network in which the 

vertices 1, 2, 3  are sources, vertices 7  and 8 are sinks, and vertices 4, 5, 6  are pure transit points, is 

illustrated. Note that in the network, vertices 1, 2, 3, 7, 8 are also acting as transit points. The supplies are 

there at vertices 1, 2, 3 and demands are there at vertices 7 and 8 whereas there are no demand or supply at 

vertices 4, 5, 6 (hence pure transit point). All sources and destinations in a transshipment problem can work 

in any direction. For a transshipment model, it is assumed that a large amount of goods to be shipped is 

available at each vertex and act as stockpile, which can be drawn or replenished. Also, the unit 

transportation cost at a vertex considered as a shipper to the same vertex considered as receiver is set equal 

to zero (Ignizio, 1982). “The solution to the transshipment problem is lies in the fact that withdrawals from 

and compensating additions to the stockpiles are equivalent to transshipment” (Khurana, 2015). Khurana 

(2015) studied various forms of a transshipment problem by considering different real-life scenarios.  
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Figure 1. Transshipment network. 

 

The classical single-objective transshipment problem is a typical linear programming problem where 

network flow cost is optimized. This transshipment technique is also used to determine the shortest route 

between two vertices in a network. King and Logan (1964) use a transshipment model to determine the 

flow of primary products to the final products in the market through processors. Later, Judge et al. (1965) 

extent this model to a multi-regional, multi-product and multi-plant problem and formulate a general linear 

programming model for the problem. Afterwards, several researchers developed alternative formulations 

of the transshipment model and solution methodologies for solving such typical optimization problem 

(Goldberg, 1997; Garg and Prakash, 1985; Ghosh and Mondal, 2017; Hurt and Tramel, 1965). Khurana et 

al. (2012, 2015) modelled three-dimensional time minimizing transshipment problem and developed 

algorithm for solving these models. Khurana (2013) studied multi-index transshipment problems. There are 

number of transshipment models with multiple-objectives also. Among the multi-objective models, bi-

objective programming problems are most used model in practical. As, in our real life, when we buy 

something or make a prediction about something, we mainly focused on two aspects of that product, in 

particular, one is good and the other is bad. For example, if we go to the market to sell a product, we look 

at the profit and cost of that product (Schaible and Shi, 2003). So, two objective functions work together. 

A bi-objective transshipment problem can be tackled by using fractional transshipment model which is a 

single objective model.  

 

Till now very little research has been done regarding fractional transshipment model. Pradhan and Biswal 

(2015) developed two algorithms based on VAM for solving a fractional transportation problem. Recently, 

Garg et al. (2021) have worked on a fractional transshipment model under fuzzy environment. But they 

have considered the model as a two-stage model where transshipment is done through some transit points 

which are not exactly the source or destinations of the network. As per our knowledge, there is no study on 

the linear fractional transshipment model in which all the source and sink points are considered as transit 

point. So, this research gap motivates us to focus on a linear transshipment problem where all the sources 

and the destinations of the network are transit points. The main aim of this contribution is not to cover all 

the ranges of linear transshipment problem but merely to develop a methodology for finding an IBFS of the 

problem using a new heuristic technique, namely Avoid Maximum Cost Method (AMCM). Furthermore, 

the performance of the heuristic technique is analyzed. Besides the theoretical aspects of linear fractional 

transshipment problem, the article also explores the experimental‐based results.  
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The structure of this paper is as follows: Section 2 discusses basic notion of Linear Fractional Programming 

(LFP) model. Mathematical formulation of linear fractional transshipment problem is given in Section 3. 

Section 4 proposes an approach to solve linear fractional transshipment problem. A numerical example is 

described in Section 5 to illustrate the applicability of proposed method. Also, this section analyses the 

experimental results and after that, a comparative study has carried out to validate this result. Finally, 

conclusions are drawn in Section 6. 

 

2. Linear Fractional Programming Problem 
In real-life, most of the decision-making problems are having more than one objective. In literature, these 

problems are addressed by the Multi-Objective Programming problem. If the decision-making problem has 

only two objectives, then it is known as bi-objective problem. One of the efficient ways to solve these bi-

objective problem is the use of fractional programming technique. This technique not only make a single-

objective problem but also gives an insight into the situation of the problem. LFP problems are of great 

interest because of their extensive application areas such as resource allocation, transportation, production, 

finance, location theory, stochastic process, Markov renewal programme, information theory, applied linear 

algebra, large scale programming, game theory, etc. (Ozkok, 2020). To study the relative efficiency of the 

objectives in different fields such as education, hospital administration, court systems, air force 

maintenance units, bank branches, etc., fractional programming are used. Sometimes, decision makers need 

to take decision depending on the optimization of inventory/sales, actual cost/standard cost, 

output/employee, etc with respect to some constraints (Chakraborty and Gupta, 2002). The linear fractional 

(ratio) criteria are frequently encountered in finance as illustrated by the many situations as follows, (i) 

Corporate planning (min (actual cost to standard cost), max (return on investment)); (ii) Bank Balance sheet 

Management (min (risk-assets to capital), max (actual capital to required capital)); etc. (Steuer, 1986). The 

exhaustive overview of theory and application on fractional programming problem can be found in the book 

‘Linear-fractional programming: Theory, methods, applications and software’ (Bajalinov, 2003). 

 

Mathematically, if the objective function of the problem is the ratio of two different linear functions and 

the constraint set contains only the linear functions of the decision variables then the problem is called a 

LFP problem (Pradhan and Biswal, 2015). LFP is a special type of nonlinear programming problem. The 

mathematical model of LFP is developed by the Hungarian mathematician B. Matros and his associates in 

1960. Afterwards, Charnes and Cooper proposed the most used method for solving the LFP problem in 

1962. The method is based on the variable transformation, and the method transforms the LFP to equivalent 

LP (Charnes and Cooper, 1962). The updated objective function method of Bitran and Novaes (1973) is 

also very popular approach for solving a LFP problem. There are several analytical methods and heuristic 

approaches for solving the LFP problem. The solution methodologies are mainly based on two of these 

basic ideas, “Variable Transformation” and “Updated Objective Function”. 

 

Standard mathematical model of a linear fractional programming problem is given by: 

𝐹𝑖𝑛𝑑 X ∈ Rn𝑠𝑜 𝑎𝑠 𝑡𝑜  

max  𝑍(𝑋) =
𝑁(𝑋)

𝐷(𝑋)
=
𝑐𝑇𝑋+𝛼

𝑑𝑇𝑋+𝛽
                                                                                                                        (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝐴𝑋 ≤ 𝑏, 𝑋 ≥ 0                                                                                                                         (2) 

 

where, 𝛼, 𝛽 ∈ ℝ, 𝑐, 𝑑 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚,𝐴 ∈ ℝ𝑚×𝑛. The basic assumption of the model is that the denominator 

of the objective function i.e., 𝑑𝑇𝑋 + 𝛽 is positive over the feasible region. Note that the feasible region of 

the problem is given by 𝑆 = {𝑋 ∈ ℝ𝑛|𝐴𝑋 ≤ 𝑏, 𝑋 ≥ 0, 𝑏 ∈ ℝ𝑚, 𝑑𝑇𝑋 + 𝛽 > 0} which is a nonempty convex 

set (Ozkok, 2020). Also, the fraction objective function 𝑍(𝑋) is continuous on the domain 𝑆.  
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Since, the numerator as well as the denominator of the objective function are linear functions, LFP is a 

pseudo convex programming problem. An LFP problem can be single objective linear fractional 

programming as well as multi-objective linear fractional programming. It has an important role in logistic 

and supply chain management for reducing cost and improving profit. In this article, we studied about the 

single objective linear fractional problem for the transshipment problem. 

 

3. Mathematical Model Formulation 
In this section, we present the mathematical model of a linear fractional transshipment model. Let us 

consider a linear fractional transshipment problem (LFTP) with m sources and n sinks. In this study, we 

consider a transshipment network where all the sources and sinks are transit points and there is no pure 

transit point. So, in this model any source or sink can ship to any other source or sink. To develop the 

mathematical model, it is convenient to number them successively so that the sources are numbered from 

station 1 to 𝑚 and sinks are numbered from station (m + 1) to (m + n). The parameters of the problem 

are given by: 

𝑖, 𝑗: index variable  
𝑚 =  the number of source points  
𝑛 = the number of original sink points   
𝑎𝑖 = availability at station 𝑖;     𝑖 = 1,2, … ,𝑚 (original source points)  
(Note that the availabilities at the sinks are zero. Hence 𝑎𝑖 = 0;    𝑖 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛) 

𝑏𝑗 = demand at station 𝑗;      𝑗 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛 (original sink points)  

(Note that the demands at the sources are zero. Hence 𝑏𝑗 = 0;    𝑗 = 1,2,… ,𝑚) 

𝑐𝑖𝑗 = unit shipping cost from station i to station 𝑗;    𝑖, 𝑗 = 1,2,… ,𝑚 + 𝑛, 𝑖 ≠ 𝑗  

𝑑𝑖𝑗 = unit preference due to the shipping from station i to station 𝑗;    𝑖, 𝑗 = 1,2, … ,𝑚 + 𝑛, 𝑖 ≠ 𝑗  

 = the total fixed cost of the shipment, 

 = the total fixed benefit or profit of the shipment, 

(We assume that 𝑐𝑖𝑖 = 𝑑𝑖𝑖 = 0, ∀ 𝑖 i.e., the shipping cost and the profit from the shipping within the same 

station is zero. Note that 𝑐𝑖𝑗 need not be same as 𝑐𝑗𝑖 and 𝑑𝑖𝑗 need not be same as 𝑑𝑗𝑖.) 

 

For the discussion purpose, we assumed that 𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑  i.e., ∑ 𝑎𝑖
𝑚
𝑖=1 =

∑ 𝑏𝑗
𝑚+𝑛
𝑗=𝑚+1 .  

 

Let Xij be the quantity shipped from station i to station j, i, j = 1,2, . . . , m + n. Then the mathematical model 

of a LFTP is given by: 

minimize 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗+𝛼
𝑚+𝑛
𝑗=1
𝑗≠𝑖

𝑚+𝑛
𝑖=1

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗+𝛽
𝑚+𝑛
𝑗=1
𝑗≠𝑖

𝑚+𝑛
𝑖=𝑖

                                                                                                                        (3) 

 

subject to, 

∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑗=1
𝑗≠𝑖

−∑ 𝑥𝑗𝑖
𝑚+𝑛
𝑗=1
𝑗≠𝑖

= 𝑎𝑖 , 𝑖 = 1,2, . . . , 𝑚                                                                                                 (4) 

∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑖=1
𝑖≠𝑗

−∑ 𝑥𝑗𝑖
𝑚+𝑛
𝑖=1
𝑖≠𝑗

= 𝑏𝑗 , 𝑗 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛                                                                         (5) 

𝑥𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1,2, . . . , 𝑚 + 𝑛; 𝑖 ≠ 𝑗                                                                                                            (6) 
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In the above model, ∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑗=1
𝑗≠𝑖

 represent the amount of outflow from the station 𝑖 and ∑ 𝑥𝑗𝑖
𝑚+𝑛
𝑗=1
𝑗≠𝑖

 represent 

the amount of inflow to the station 𝑖. Hence the constraint given by the Equation (4) is representing the net 

inflow-outflow at the station 𝑖, 𝑖 = 1,2,… ,𝑚; which are the source points of the problem. So, constraints 

given by Equation (4) are the supply constraint of the problem. Similarly, constraints given by the Equation 

(5) are the demand constraints. Equation (6) reflects that the amount transshipped from station 𝑖 to station 

𝑗 cannot be negative. The above model has similar structure of linear fractional transportation problem, but 

in this case the coefficient of ∑𝑥𝑗𝑖  are ‘ − 1’. To convert the model into a linear fractional transportation 

model, let us define 𝑇𝑖 = ∑ 𝑥𝑗𝑖
𝑚+𝑛
𝑗=1
𝑗≠𝑖

, 𝑖 = 1,2, . . . , 𝑚  and 𝑇𝑗 = ∑ 𝑥𝑗𝑖
𝑚+𝑛
𝑖=1
𝑖≠𝑗

, 𝑗 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛 , 

where, 𝑇𝑖 and 𝑇𝑗 represents the total amount of transshipment through the i-th source point and the j-th sink 

point respectively. Let 𝑇 = total availability= total demand. Then we have two constraints 𝑇𝑖 ≤ 𝑇, 𝑖 =
1,2, . . . , 𝑚 and 𝑇𝑗 ≤ 𝑇, 𝑗 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛. Using the nonnegative slack variables 𝑥𝑖𝑖 and 𝑥𝑗𝑗 for 

the respective inequalities, we obtain the equality constraints as, 

∑ 𝑥𝑗𝑖 + 𝑥𝑖𝑖
𝑚+𝑛
𝑗=1
𝑗≠𝑖

= 𝑇, 𝑖 = 1,2, . . . , 𝑚                                                                                                             (7) 

∑ 𝑥𝑗𝑖 + 𝑥𝑗𝑗
𝑚+𝑛
𝑖=1
𝑖≠𝑗

= 𝑇, 𝑗 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛                                                                                    (8) 

 

Table 1. Tabular representation of transshipment problem. 
 

                    To 

          From 
Sources (1 2 ⋯ 𝑖 ⋯ 𝑚) Sink (1 2 ⋯ 𝑗 ⋯ 𝑛) 

Supply 

Sources

(

  
 

1
2
⋮
𝑖
⋮
𝑚)

  
 

 

Source-to-Source 

Submatrix (P) 

(𝑐𝑖𝑗 , 𝑑𝑖𝑗) 

Source-to-Sink 

Submatrix (Q) 

(𝑐𝑖𝑗 , 𝑑𝑖𝑗) 

(

 
 
 

𝑎1  +  𝑇
𝑎2 + 𝑇
⋮

𝑎𝑖 + 𝑇
⋮

𝑎𝑚 + 𝑇)

 
 
 

 

Sinks

(

  
 

1
2
⋮
𝑗
⋮
𝑛)

  
 

 

Sink-to-Source Submatrix (𝑅) 
(not necessarily equals to 𝑄𝑇) 

(𝑐𝑖𝑗 , 𝑑𝑖𝑗) 

Sink-to- Sink 

Submatrix (S) 

(𝑐𝑖𝑗 , 𝑑𝑖𝑗) 

(

  
 

𝑇
𝑇
⋮
𝑇
⋮
𝑇)

  
 

 

Demand (𝑇 𝑇 ⋯ 𝑇 ⋯ 𝑇) (𝑏1 + 𝑇 ⋯ 𝑏𝑛 + 𝑇)  

 
 

Here, 𝑥𝑖𝑖 represent the difference between the total availability and the actual amount of transshipment 

through the i-th source point. 𝑥𝑗𝑗  represent the difference between the total availability and the actual 

amount of transshipment through the j-th sink point. 

 

Combining Equations (3) to (8), we obtain the reformulated model as, 

minimize 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗+𝛼
𝑚+𝑛
𝑗=1
𝑗≠𝑖

𝑚+𝑛
𝑖=1

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗+𝛽
𝑚+𝑛
𝑗=1
𝑗≠𝑖

𝑚+𝑛
𝑖=𝑖

                                                                                                                        (9) 

 

subject to, 

∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑗=1 = 𝑎𝑖 + 𝑇, 𝑖 = 1,2, . . . , 𝑚                                                                                                            (10) 

∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑗=1 = 𝑇, 𝑖 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛                                                                                             (11) 



Pradhan et al.: Avoid Maximum Cost Method for Solving Linear Fractional Transshipment … 
 

 

660 | Vol. 10, No. 3, 2025 

∑ 𝑥𝑖𝑗
𝑚+𝑛
𝑖=1 = 𝑇, 𝑗 = 1,2, . . . , 𝑚                                                                                                                     (12) 

∑ 𝑥𝑖𝑗
𝑚+𝑛

𝑖=1
= 𝑏𝑗 + 𝑇,  𝑗 = 𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑛                                                                                 (13) 

𝑥𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1,2, . . . , 𝑚 + 𝑛; 𝑖 ≠ 𝑗                                                                                                            (14) 

𝑐𝑖𝑖 = 0, 𝑖 = 1,2, . . . , 𝑚 + 𝑛                                                                                                                          (15) 

𝑑𝑖𝑖 = 0,    𝑖 = 1,2, . . . , 𝑚 + 𝑛                                                                                                                       (16) 

𝛼, 𝛽 ∈ ℝ and 𝛼 ≥ 0, 𝛽 > 0                                                                                                                          (17) 

 

Rim condition for the problem is given by: 

∑ 𝑎𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1                                                                                                                                  (18) 

 

The mathematical model given by Equations (9) to (18) represent a standard balanced linear fractional 

transportation problem.  

 

To solve this model using transportation algorithm, we need to construct the matrix form of the problem. 

The matrix form of the linear fractional transshipment problem is given in Table 1. In the matrix form of 

the problem, first 𝑚 rows are corresponding to the supply points and next 𝑛 rows are corresponding to the 

transit points (in this case sinks are acting as transit points). Similarly, first 𝑚 columns are corresponding 

to the transit points (in this case supply points are acting as transit points) and the next 𝑛 columns are 

corresponding to the sink points. Each supply points and each demand points are having their original 

supplies and demands respectively, whereas the transit points don’t have any supply or demand. Note that 

the transshipped amount through the transit points are equals to the maximum amounts of buffer stock i.e., 

𝑇 = max{∑ 𝑎𝑖
𝑛
𝑖=1 , ∑ 𝑏𝑗

𝑚
𝑗=1 }. 

 

Then each transshipment points will have supplies equals to its original supplies + T and demands equals 

to its original demand + T. This ensures that if any transshipment point is a net supplier, then it will have a 

net outflow equal to the point’s original supply, and, similarly, if a transshipment point is a net demander, 

then it will have a net inflow equal to the point’s original demand. Although, we don’t know how much 

will be shipped through each transshipment point, but by the construction of the model we can be assured 

that the total transhipped amount will not exceed T. In the matrix form, each cell of the matrix contains two 

values, one is the unit shipping cost 𝑐𝑖𝑗 and other one is the unit profit from the shipping 𝑑𝑖𝑗. The matrix 

has four blocks. The first block (𝑃 in the Table 1) is consists of the costs and preferences due to the 

transshipment from the sources to sources. Note that the diagonal elements of the block i.e., the unit 

shipping costs and preferences for the transshipment from source 𝑖 to itself are zero. It is true for the fourth 

block 𝑆 also, where the elements represent the shipping costs and preferences for the transshipment among 

the sink points. The second and the third block of the matrix are corresponding to the transshipment from 

source points to the sink points and sink points to source points respectively.  

 

In the next section, we present the algorithm developed for solving the linear fractional transshipment 

model. Note that the cost-preference matrix of the problem has (𝑚 + 𝑛) rows and (𝑚 + 𝑛) columns hence 

the optimal non-degenerated solution of the problem contains 2(𝑚 + 𝑛) − 1 number of basic variables. 

However, among these basic variables 𝑚+ 𝑛 variables appearing in the diagonal cells as they represent the 

remaining buffer stock and if they are omitted, then we end up with exactly (𝑚 + 𝑛 − 1) basic variables of 

our interest. 
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4. Proposed Methodology to Solve Linear Fractional Transshipment Problem 
The mathematical model established in last section can be treated as a linear fractional transportation 

problem. So, we can use well-known transportation algorithms like NWCM, VAM, LCM, Modified VAM 

Methods with some modification for solving the linear fractional transshipment problem. But use of these 

methods is not straight forward. Before applying these heuristic techniques, we need to create a ratio matrix. 

The numerator of the ratio in the ratio matrix is the coefficient of the decision variable in the numerator 

objective function (e.g., cost function) and the denominator of the ratio in the ratio matrix is the coefficient 

of the decision variable in the denominator objective function (e.g., profit function). The ratio of the two 

objective function gives us one objective function (e.g., minimum 𝑧 = min {
𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
}). Then we can 

apply the transportation heuristics to find an IBFS. To find the optimal solution, we can use Modified 

distribution (MODI) or stepping stone method taking IBFS as the starting solution. In our study, we propose 

a new method to find the IBFS for the fractional transshipment problem. The name of the new method is 

AMCM. 

 

4.1 Avoid Maximum Cost Method 
Mutlu et al. (2022) used the avoid maximum cost method for finding the IBFS for the classical 

transportation problem. We adopt this method for solving fractional transshipment problem. At the 

beginning of the methodology, we construct the ratio matrix for the transshipment problem. To construct 

the ratio matrix, we should have 𝑑𝑖𝑗 ≠ 0, ∀ 𝑖, 𝑗, but as per the construction of the model 𝑑𝑖𝑖 = 0, ∀ 𝑖. To 

avoid this situation, at the initial stage, we assume that 𝑑𝑖𝑖 = 1, ∀ 𝑖. On the ratio matrix we apply the AMCM 

which is based on making the allocation to either a row or a column in such a way that the allocation to the 

cell that has the highest ratio (cost/profit) will be avoided in the further steps. After getting an IBFS, we 

proceed for the optimality test where we take 𝑑𝑖𝑖 = 0, ∀ 𝑖 again. The proposed algorithm is depicted below: 

 

Algorithm: Avoid Maximum Cost Method for LFTP 

Input: The number of source points 𝑚; number of sink points 𝑛; availability at the 𝑖-th source point 𝑎𝑖, 𝑖 =
1,2,…𝑚 , (𝑎𝑖 = 0, 𝑖 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛) ; demand at the 𝑗 -th sink point 𝑏𝑗, 𝑗 = 𝑚 + 1,𝑚 +

2,… ,𝑚 + 𝑛, (𝑏𝑗 = 0, 𝑗 = 1,2,… ,𝑚); unit cost and unit profit matrices 𝑐𝑖𝑗 , 𝑑𝑖𝑗 , 𝑖, 𝑗 = 1,2,… ,𝑚 + 𝑛, (𝑐𝑖𝑖 =

0, and 𝑑𝑖𝑖 = 1, 𝑖 = 1,2, … ,𝑚 + 𝑛). 
 

Output: An initial basic feasible solution of the LFTP. 

Step 0: Calculate ∑ 𝑎𝑖
𝑚
𝑖=1  and ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1 ; Set 𝑇 = max{∑ 𝑎𝑖

𝑚
𝑖=1 , ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1 } 

Step 1: Construct the supply vector and the demand vector for the transshipment as 𝒔𝒖𝒑𝒑𝒍𝒚 = 𝒂 + 𝑇 and 

𝒅𝒆𝒎𝒂𝒏𝒅 = 𝒃 + 𝑇, respectively 

Step 2: Test if ∑ 𝑎𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1 , then go to next Step; otherwise 

if ∑ 𝑎𝑖
𝑚
𝑖=1 > ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1  

append a dummy sink or column with 𝑐𝑖(𝑚+𝑛+1) = 0 and 𝑑𝑖(𝑚+𝑛+1) = 1, ∀𝑖 , and append a scalar 

∑ 𝑎𝑖
𝑚
𝑖=1 − ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1  to the vector 𝒅𝒆𝒎𝒂𝒏𝒅 

elseif ∑ 𝑎𝑖
𝑚
𝑖=1 < ∑ 𝑏𝑗

𝑚+𝑛
𝑗=𝑚+1  

append a dummy source or row with 𝑐(𝑚+𝑛+1)𝑗 = 0 and 𝑑(𝑚+𝑛+1)𝑗 = 1, ∀𝑗, and append a scalar 

∑ 𝑏𝑗
𝑚+𝑛
𝑗=𝑚+1 − ∑ 𝑎𝑖

𝑚
𝑖=1  to the vector 𝒔𝒖𝒑𝒑𝒍𝒚 

end 

Step 3: Calculate the ratio matrix 𝒓 = 𝒄./𝒅  

Step 4: Find the maximum ratio cell and consider the row and column corresponding to this cell. If there 

is more than one alternative, consider all the rows and columns corresponding to these alternatives.  
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Step 5: Find the cell with the lowest ratio within these rows and columns selected in Step 4. If there is 

more than one candidate for the minimum ratio, select the cell whose row or column contains the 

highest ratio. 

Step 6: Make the maximum allocation to the selected cell from Step 5 by considering the corresponding 

legitimate row and column capacity. After the allocation, remove the corresponding row or 

column whose legitimate capacity becomes zero, if both the row and column capacity become 

zero, then remove the column only. 

Step 7: If there is only one row or column left, go to Step 8, otherwise go to Step 4. 

Step 8: Make the necessary assignments for the last-left row or column. 

The MATLAB code of the algorithm is given in the Appendix. 

 

5. Numerical Illustration and Result Discussion 
To illustrate the model and methodology presented in the last two sections, we consider a fractional 

transshipment problem with three sources (𝐴, 𝐵, 𝐶) and four destinations (𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉). We extended the 

example of a fractional transportation problem taken by Sirvi et al. (2011) to a linear fractional 

transshipment problem which is a balanced problem. For the extension purpose, we generate the remaining 

data (cost and profit data for source to source and sink to sink transshipment) randomly. Randomly 

generated data for 𝑐𝑖𝑗 and 𝑑𝑖𝑗  is in the ranges [4,13] and [3,17] respectively. The mathematical model of 

the problem is given by: 

 

Find the amount of transshipment 𝑥𝑖𝑗 from station 𝑖 to station 𝑗 so as to, 

𝑚𝑖𝑛: 𝑧 =
∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚+𝑛
𝑗=1

𝑚+𝑛
𝑖=1

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑚+𝑛
𝑗=1

𝑚+𝑛
𝑖=1

                                                                                                                             (19) 

 

subject to 

∑ 𝑥𝑖𝑗
7
𝑗=1 = 𝑎𝑖 + 48, 𝑖 = 1,2,3                                                                                                                     (20) 

∑ 𝑥𝑖𝑗
7
𝑗=1 = 48, 𝑖 = 4,5,6,7                                                                                                                         (21) 

∑ 𝑥𝑖𝑗
7
𝑖=1 = 48, 𝑗 = 1,2,3                                                                                                                             (22) 

∑ 𝑥𝑖𝑗
7
𝑖=1 = 𝑏𝑗 + 48, 𝑗 = 4,5,6,7                                                                                                                   (23) 

𝑥𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1,2,3,4,5,6,7                                                                                                                          (24) 

 

The values of the unit transshipment cost (𝑐𝑖𝑗) and preference (𝑑𝑖𝑗) are given in the matrix form of the 

problem (Table 2). Note that, to start the solution procedure we consider 𝑑𝑖𝑖 = 1, 𝑖 = 1,2,… ,7. 
 

The transshipment cost and preference per unit of transshipment are given by the above table where top left 

corner’s values of each cell represent the transshipment cost per unit and bottom right corner’s values of 

each cell represent the profit cost per unit of transshipment. Our target is to minimize the total transshipment 

cost per unit of profit. The IBFS obtained by using the proposed algorithm (AMCM) is given in Table 3. 

For this example, we compare the IBFSs obtained by different methodologies (NWCM, LCM, least ratio 

method, VAM, Modified VAM (Sirvi et al., 2011), Modified VAM (Pradhan and Biswal, 2015)) and we 

present the comparison result in the Table 4. From the comparison table, we observe that the proposed 

methodology performed better than the other considered methodologies from the literature although the 

computation time is a bit higher than few of the methods like NW method, LCM, least ratio method. We 

use LINGO 11.0 (Schrage, 2008) to find optimal solution of the mathematical model of the problem given 
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by Equations (19) to (24). The optimal solution of the problem is given in the Table 5. The optimal value 

of the problem is 0.383721. In the optimal solution, we observe that 48 units are transshipped from source 

𝐴 to source 𝐶 again 36 units are transshipped from source 𝐶 to source 𝐴. Similar kind of things happened 

in the transshipment between the sinks 𝐼 and 𝐼𝑉. Although, this solution is an optimal solution of the 

problem but practically it is not a smart solution as it seems to be very odd to transport 48 unit from station 

A to station C and then transport back 36 units from station C to Station A. This happens due to higher 

profit value in the corresponding cells. To make this solution as a smart solution we make some adjustment 

in the allocation. The new solution is given in the Table 6. For the new solution, objective function’s value 

is 0.484772, where the total transshipment cost is 573 units and the corresponding profit is 1182.  
 

Table 2. Linear transshipment model example data. 
  

𝐴 𝐵 𝐶 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 𝑆𝑢𝑝𝑝𝑙𝑦 

𝐴 0 
0 

11 
13 

6 8 
9 
10 

12 
12 

7 
9 12 + 48 

16 6 

𝐵 11 
13 
0 

0 
9 6 

11 
4 

9 
8 

17 
11 19 + 48 

17 6 

𝐶 6 9 0 9 13 11 7 17 + 48 

16 17 0 5 4 3 9 

𝐼 8 
9 
6 

11 
9 0 

0 
9 

15 
5 

6 
5 48 

5 16 

𝐼𝐼 10 
12 
4 

9 
13 9 

15 
0 

0 
6 

8 
12 48 

4 5 

𝐼𝐼𝐼 12 
7 
8 

17 
11 5 

6 
6 

8 
0 

0 
6 48 

3 6 

𝐼𝑉 9 11 7 5 12 6 0 48 

6 6 9 16 5 6 0 

𝐷𝑒𝑚𝑎𝑛𝑑 48 48 48 3 + 48 22 + 48 18 + 48 5 + 48 
 

 
 

Table 3. IBFS by AMCM. 

  
𝐴 𝐵 𝐶 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 

𝐴 31   7 22   

𝐵  48  1  18  

𝐶 17  48     

𝐼    43   5 

𝐼𝐼     48   

𝐼𝐼𝐼      48  

𝐼𝑉       48 

 

 

Table 4. Comparison of IBFS by different methods. 

 
Method: Value of the numerator 

function (𝑁(𝑋)) 
Value of the denominator 

function (𝐷(𝑋)) 
Objective function’s 

value of the IBFS 

Computation 

time (in ‘s’) 

NWCM 1416 1812 0.781457 0.004965 

LCM 369 357 1.033613 0.008917 

Minimum Ratio 369 357 1.033613 0.009537 

VAM 369 357 1.033613 0.024836 

Modified VAM (Sirvi et al., 2011) 369 357 1.033613 0.036518 

Modified VAM (Pradhan and Biswal, 2015) 510 705 0.723404 0.025175 

AMCM 553 996 0.555221 0.021516 
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Table 5. Optimal solution of the problem. 
  

𝐴 𝐵 𝐶 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 

𝐴 12  48     

𝐵  24  3 22 18  

𝐶 36 24     5 

𝐼       48 

𝐼𝐼     48   

𝐼𝐼𝐼      48  

𝐼𝑉    48    

 

 

Table 6. Practical solution of the problem. 
  

𝐴 𝐵 𝐶 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 

𝐴 48  12     

𝐵  24  3 22 18  

𝐶  24 36    5 

𝐼    48    

𝐼𝐼     48   

𝐼𝐼𝐼      48  

𝐼𝑉       48 

 

 

5.1 Experimental Results 
To analyze the performance of the proposed methodology, we conduct experiments in two phases: i) on 40 

small size fractional transshipment problems with different number of sources and sinks and ii) on 64 large 

size fractional transshipment problems with different number of sources and sinks. For both the phases, we 

find the solution of these problems by using well-known methods from the literature (North-West corner 

method, least cost method (LCM), Minimum Ratio method (MRM), VAM, Modified VAM (Sirvi et al., 

2011), Modified VAM (Pradhan and Biswal, 2015)) as well as the new method (AMCM). For the first 

phase, details of the problems and the optimal solutions are given in Table 7. Some of the test problems 

are extension of examples related to the transportation problems taken from the literature. For these 

problems, the data related to 𝑐𝑖𝑗 is generated from the range with the lower bound as the minimum value 

and upper bound as the maximum value of the transportation costs. The preference data 𝑑𝑖𝑗 is generated 

randomly from interval [10, 50]. Rest of the problems are generated randomly. For these problems, average 

unit transportation cost is 500 units, average unit profit is 200 units, and average supply and average demand 

is 120 units. The problems taken from the literature are all balanced whereas the randomly generated 

problems are all unbalanced. The methods used for the comparison are all coded using MATLAB 

(www.mathworks.com), and the experiments were run on a Windows-based PC with a 3.20 GHz Intel 11 

generation i5 quad core processor and 8 GB RAM. The optimal solutions of the problems are obtained by 

using LINGO 11.0 software.  

 

First, we compare the performance of the considered methods based on the relative percentage deviations 

of the IBFS from the optimal solutions. The value of the objective function for the IBFS obtained by using 

different heuristics are presented in Table 8. Although it is not expected that an initial basic feasible solution 

will produce an optimal solution, however finding IBFS close to the optimal solution will reduce the 

computation time and number of iterations to be performed in the second stage (Sirvi et al., 2011) to find 

the optimal solution of the problem. The relative percentage deviations of the test problems obtained from 

each method are given in Table 9. The average relative percentage of deviation for different heuristics are 

given in the last row of the table. We observe that the proposed method is the second-best performer after 
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modified VAM (Pradhan and Biswal, 2015) for the problems considered in the experiment. 

 
Table 7. Details of the test problems and their optimal solutions. 

 
Problem Data source Number of 

customers 

Number of 

suppliers 

Problem size Optimal value 

Pro1 Russell (1969) 5 5 10 × 10 0.2949171 

Pro2 Shafaat and Goyal (1988) 4 6 10 × 10 0.06582403 

Pro3 Kirca and Satir (1990) 3 4 7 × 7 0.392514395 

Pro4 Mutlu et al. (2022) 4 4 8 × 8 0.03547586 

Pro5 

Ahmed et al. (2016) 

3 4 7 × 7 0.04197531 

Pro6 3 4 7 × 7 0.4435068 

Pro7 4 4 8 × 8 0.06637168 

Pro8 Tze-San (1986) 3 3 6 × 6 0.04749119 

Pro9 Karagul and Sahin (2020)  5 5 10 × 10 0.3805142 

Pro10 Soydan et al. (2023) 5 5 10 × 10 0.9559556 

Pro11 Random 3 3 6 × 7 1.732678 

Pro12 Random 3 6 10 × 9 1.987512927 

Pro13 Random 4 3 7 × 8 1.142019 

Pro14 Random 3 4 7 × 8 2.14745 

Pro15 Random 3 3 7 × 6 2.143285 

Pro16 Random 3 6 10 × 9 1.614801847 

Pro17 Random 3 3 6 × 7 2.104338 

Pro18 Random 3 4 7 × 8 1.610843 

Pro19 Random 3 4 7 × 8 1.674791859 

Pro20 Random 4 3 7 × 8 1.994896 

Pro21 Random 4 4 8 × 9 1.990392666 

Pro22 Random 3 6 9 × 10 1.862482052 

Pro23 Random 3 5 8 × 9 2.074266612 

Pro24 Random 3 4 7 × 8 1.945059223 

Pro25 Random 3 5 8 × 9 1.951150313 

Pro26 Random 4 6 10 × 11 1.963354123 

Pro27 Random 4 3 7 × 8 1.963338 

Pro28 Random 4 5 10 × 9 1.960253504 

Pro29 Random 4 3 7 × 8 2.00219 

Pro30 Random 4 4 9 × 8 1.927028 

Pro31 Random 4 5 9 × 10 1.856282594 

Pro32 Random 4 4 8 × 9 1.716677483 

Pro33 Random 3 5 8 × 9 1.416936317 

Pro34 Random 4 6 11 × 10 1.941616271 

Pro35 Random 3 4 7 × 8 1.78139715 

Pro36 Random 4 3 7 × 8 1.665374 

Pro37 Random 3 5 8 × 9 1.699302891 

Pro38 Random 4 3 7 × 8 1.699356 

Pro39 Random 4 6 10 × 11 1.676518572 

Pro40 Random 4 6 11 × 10 1.654524568 

 
 

Table 8. Objective function’s values for IBFS obtained by different methods. 
 

Problem NWCM LCM MRM VAM 

Modified 

VAM (Sirvi et 
al., 2011) 

Modified VAM 

(Pradhan and 
Biswal, 2015) 

AMCM 

Pro1 1.73193 0.761356 0.813482 0.760786802 0.802743 0.713508613 0.754058 

Pro2 0.199359 0.12043 0.137868 0.136363636 0.121996 0.122201493 0.125757 

Pro3 1.404553 0.413408 0.414894 0.413407821 0.512821 0.414893617 0.414894 

Pro4 0.188389 0.072937 0.061605 0.067823344 0.067823 0.054716611 0.066805 

Pro5 0.178276 0.065095 0.06051 0.073529412 0.06051 0.057677319 0.062281 

Pro6 1.108632 0.549969 0.549969 0.508266993 0.547489 0.547489413 0.538813 

Pro7 0.190989 0.122881 0.122581 0.113939394 0.141026 0.079051383 0.118684 

Pro8 0.096861 0.065126 0.058623 0.094293194 0.058553 0.058170962 0.06171 
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Table 8 continued… 
 

Pro9 2.025761 0.946083 0.926934 0.534238823 0.757537 0.532079112 0.618839 

Pro10 2.343587 1.434149 1.589281 1.786211067 1.507919 1.439893617 1.371383 

Pro11 2.433579 2.3711 2.362249 1.906764344 1.906764 1.815778646 1.732678 

Pro12 2.274084 2.099846 2.043278 2.11594962 2.13285 2.028442116 2.048091 

Pro13 3.020539 1.625345 1.625345 1.520376792 1.520377 1.520376792 1.179492 

Pro14 2.487469 2.445064 2.4097 2.436775654 2.334663 2.286111509 2.237636 

Pro15 2.87081 2.218373 2.218373 2.218372857 2.2177 2.213141534 2.241344 

Pro16 2.449132 2.509277 1.994649 2.496506959 2.100095 1.989674436 1.704133 

Pro17 2.591478 2.694491 2.526115 2.669865931 2.46939 2.473170222 2.221503 

Pro18 2.531464 1.945741 1.887905 1.944131659 1.893512 1.935764989 1.70152 

Pro19 2.271565 2.784023 2.651662 2.38568761 2.385688 1.950847527 1.771352 

Pro20 2.323161 2.19027 2.089707 2.267834113 2.141447 2.178850076 2.111966 

Pro21 2.28746 2.20892 2.129022 2.33659732 2.197521 2.283373541 2.108779 

Pro22 2.585845 2.268646 2.244842 2.024593674 2.164261 1.874418479 1.999951 

Pro23 2.614645 2.199292 2.187248 2.256012814 2.213307 2.158783165 2.228277 

Pro24 2.415764 2.205139 2.14292 2.063044744 2.063045 2.187707957 2.09173 

Pro25 2.355293 2.31876 2.303997 2.13751212 2.391666 2.003612869 2.099606 

Pro26 2.30542 2.331396 2.232537 2.338139788 2.205581 2.09479983 2.118457 

Pro27 2.50299 2.360691 2.45725 2.057503543 2.154105 1.973006524 2.126543 

Pro28 2.488989 2.342803 2.128711 2.242017859 2.165886 2.107867331 2.124065 

Pro29 2.479793 2.346556 2.295504 2.296084104 2.296084 2.302071113 2.171247 

Pro30 2.464094 2.430009 2.126783 2.454358261 2.231914 2.122961224 2.0899 

Pro31 2.389029 2.389595 2.326611 2.132717814 1.96633 1.966330007 2.018517 

Pro32 2.166096 2.427395 2.260495 2.131079414 2.393028 2.013971128 1.883733 

Pro33 3.076709 2.048467 1.687322 1.741115643 1.759159 1.773758338 1.556882 

Pro34 2.655775 2.555957 2.164503 2.414274224 2.181326 2.189409669 2.133522 

Pro35 3.731177 2.138335 1.881284 1.937546156 1.912156 1.908151691 1.982972 

Pro36 2.290419 1.992561 1.881602 1.937608036 1.848371 1.823565669 1.856142 

Pro37 1.974873 2.051047 1.880886 2.08559872 1.911406 1.849004835 1.897381 

Pro38 2.372701 2.195649 2.195649 2.715215311 2.698051 2.048311261 1.897589 

Pro39 2.498863 1.94437 1.846753 1.796875935 1.878746 1.834683746 1.884151 

Pro40 2.401774 2.624907 1.961537 2.596905161 2.292885 1.949714975 1.870855 

 
 

Table 9. Relative percentage deviation (RPD) from the optimal solutions. 
 

Problem NWCM LCM MRM VAM 
Modified 

VAM (Sirvi et 

al., 2011) 

Modified VAM 
(Pradhan and 

Biswal, 2015) 

AMCM 

Pro1 487.26 158.1593 175.834 157.9663 172.1929 141.9353 155.6847 

Pro2 202.8663 82.95766 109.4488 107.1639 85.33703 85.64876 91.04962 

Pro3 257.8349 5.322971 5.701503 5.322971 30.65012 5.701503 5.701503 

Pro4 431.0347 105.5952 73.65212 91.18168 91.18168 54.23618 88.31242 

Pro5 324.717 55.08021 44.15511 75.173 44.15511 37.40773 48.37461 

Pro6 149.9696 24.00454 24.00454 14.60185 23.44555 23.44555 21.48918 

Pro7 187.7571 85.14125 84.68818 71.66869 112.4786 19.10409 78.81708 

Pro8 103.955 37.13322 23.43954 98.54881 23.29246 22.4879 29.94024 

Pro9 432.3745 148.6327 143.6004 40.39918 99.08242 39.8316 62.6323 

Pro10 145.1565 50.02257 66.25048 86.85084 57.73939 50.62348 43.45679 

Pro11 40.45188 36.84599 36.33513 10.04724 10.04724 4.796081 1.54E-05 

Pro12 14.41856 5.651954 2.805793 6.462182 7.312494 2.059317 3.04792 

Pro13 164.4911 42.32209 42.32209 33.1306 33.1306 33.1306 3.281302 

Pro14 15.83363 13.85895 12.21218 13.47299 8.717937 6.457031 4.199668 

Pro15 33.94441 3.5034 3.5034 3.5034 3.472026 3.259321 4.575156 

Pro16 51.66764 55.39224 23.52283 54.60144 30.05281 23.21477 5.532013 

Pro17 23.14932 28.04459 20.04321 26.87439 17.34761 17.52723 5.567769 

Pro18 57.15152 20.79024 17.1998 20.69033 17.54789 20.17093 5.629153 

Pro19 35.63268 66.231 58.32784 42.44681 42.44681 16.48298 5.765472 

Pro20 16.45523 9.793683 4.752657 13.68182 7.346286 9.221236 5.868462 

Pro21 14.92505 10.97911 6.964905 17.39379 10.40643 14.71975 5.947911 
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Table 9 continued… 
 

Pro22 38.83867 21.80768 20.52959 8.704064 16.20307 0.640888 7.380959 

Pro23 26.05153 6.027439 5.446817 8.76195 6.703093 4.074527 7.4248 

Pro24 24.20002 13.37131 10.17246 6.065909 6.065909 12.47513 7.540701 

Pro25 20.71306 18.84065 18.08405 9.551381 22.57722 2.688801 7.608616 

Pro26 17.42254 18.74558 13.71036 19.08905 12.33741 6.694957 7.899873 

Pro27 27.48644 20.23865 25.15674 4.796196 9.716438 0.492453 8.312631 

Pro28 26.97283 19.51531 8.593634 14.37387 10.49011 7.530344 8.356633 

Pro29 23.85404 17.19945 14.64965 14.67863 14.67863 14.97766 8.443629 

Pro30 27.87015 26.1014 10.36597 27.36495 15.82159 10.16764 8.451982 

Pro31 28.69962 28.73011 25.33709 14.89187 5.928376 5.928376 8.739771 

Pro32 26.17953 41.40077 31.67846 24.13977 39.39884 17.31797 9.731352 

Pro33 117.1382 44.57013 19.08244 22.87889 24.15228 25.18264 9.876636 

Pro34 36.78164 31.64071 11.47947 24.34353 12.3459 12.76222 9.883793 

Pro35 109.4523 20.03698 5.607232 8.765536 7.340242 7.115457 11.31557 

Pro36 37.53181 19.64647 12.98378 16.34672 10.98837 9.498867 11.45494 

Pro37 16.21663 20.69929 10.68575 22.73261 12.48176 8.809609 11.65642 

Pro38 39.62354 29.20476 29.20476 59.77908 58.76903 20.53456 11.6652 

Pro39 49.05074 15.97665 10.15402 7.179006 12.06235 9.434144 12.38472 

Pro40 45.164 58.65025 18.55592 56.95779 38.58274 17.8414 13.07507 

Average RPD 98.25734 37.94666 32.00607 34.06458 31.60067 20.64073 21.40192 

 

 

Table 10. Descriptive statistics of the percentage deviation (PD). 
 

Method Minimum RPD 𝑄1 Median (𝑄2) 𝑄3 Maximum RPD 

NWCM 14.41856 25.58865 38.18524 124.1427 487.26 

MCM 3.5034 18.35905 25.05297 45.93324 158.1593 

MRM 2.805793 10.31759 18.81918 32.84263 175.834 

VAM 3.5034 9.923277 19.88969 45.48547 157.9663 

Modified VAM (Sirvi et al., 2011) 3.472026 10.31663 16.77534 38.78676 172.1929 

Modified VAM (Pradhan and Biswal, 2015) 0.492453 6.635475 13.74099 22.66962 141.9353 

AMCM 1.54 × 10−05 5.842714 8.447805 12.55731 155.6847 

 

To check the consistency of the proposed method for LFTP, we complete the descriptive analysis of the 

relative percentage deviation of IBFS from the optimal solution. The summary statistics is given in the 

Table 10. From Table 10, we can conclude that the proposed method produces a very consistent result. In 

fact, for the considered problems, the proposed methodology produces the most consistent result. 

 

To analyse the time complexity of the proposed algorithm, we do an analysis of the computational time 

taken for producing the IBFS for different problems. The details of the computation time taken by different 

methodologies for finding IBFS are presented in Table 11. Last row of the table indicates the average time 

taken for finding IBFS of a problem. Here, we observe that the proposed method takes less average 

computation time than the computation time taken by the methods based on VAM for finding an IBFS of a 

problem. 

 

In the second phase of the experiment, we consider the problems with large number of sources and sinks. 

To do so, we set up an experimental design similar to the design defined in Mathirajan et al. (2022). The 

summary of this experimental design is given in Table 12. The experiments are conducted on the above-

mentioned system configurations using the same software. We developed a MATLAB code for randomly 

generating problem instances using the given experimental design. For each combination of the problem 

factors: problem size (m x n) where m: number of sources and n: number of sinks, cost structure – range 

(CR), profit structure – range (DR), and degree of imbalance (K), we consider 10 problem instances which 

are randomly generated for performance evaluation of the heuristic methods pertaining to a fractional 

transshipment problem. In total 640 fractional transshipment problem instances are randomly generated 
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following the experimental design and note that each of the randomly generated problems are unbalanced. 

 

 
Table 11. Computation time (in ‘s’) for finding IBFS using different heuristics. 

 

Problem NW rule MCM MRM VAM 
Modified VAM 
(Sivri et al., 

2011) 

Modified VAM 
(Pradhan and 

Biswal, 2015) 

AMCM 

Pro1 0.004644 0.007998 0.00789 0.008294 0.02662 0.034304 0.022887 

Pro2 0.003928 0.00757 0.007007 0.006918 0.022119 0.027657 0.019725 

Pro3 0.003693 0.007374 0.006972 0.006897 0.020403 0.028393 0.019138 

Pro4 0.003599 0.007131 0.007051 0.007035 0.022596 0.027745 0.020044 

Pro5 0.005806 0.011306 0.00764 0.00787 0.023795 0.042166 0.032827 

Pro6 0.005428 0.008381 0.009766 0.010251 0.023703 0.027909 0.022118 

Pro7 0.005333 0.011876 0.01315 0.009001 0.033666 0.034297 0.022337 

Pro8 0.003916 0.008167 0.010596 0.010547 0.031095 0.027286 0.020515 

Pro9 0.004135 0.007318 0.007901 0.007149 0.033776 0.050026 0.033147 

Pro10 0.005269 0.010332 0.011722 0.012199 0.04046 0.049348 0.024093 

Pro11 0.003708 0.006678 0.006458 0.006811 0.019307 0.020766 0.022281 

Pro12 0.000008 0.000059 0.000085 0.000058 0.001337 0.002579 0.000824 

Pro13 0.000007 0.000083 0.000083 0.000073 0.002071 0.003063 0.001376 

Pro14 0.000007 0.000077 0.000065 0.000069 0.001427 0.002349 0.001226 

Pro15 0.000007 0.000083 0.000073 0.000075 0.001857 0.003084 0.00265 

Pro16 0.000007 0.000083 0.000069 0.000075 0.003022 0.00255 0.00142 

Pro17 0.000008 0.000064 0.000058 0.000061 0.001069 0.001556 0.000824 

Pro18 0.000402 0.00175 0.00231 0.001749 0.007877 0.017025 0.008762 

Pro19 0.000012 0.000093 0.00009 0.000089 0.001308 0.001891 0.000981 

Pro20 0.000007 0.000074 0.000057 0.000061 0.000862 0.001466 0.000691 

Pro21 0.000008 0.000061 0.000052 0.000055 0.000932 0.001519 0.000774 

Pro22 0.000008 0.00007 0.000064 0.000064 0.003455 0.002371 0.001067 

Pro23 0.000009 0.000061 0.000053 0.000056 0.00101 0.001555 0.00081 

Pro24 0.000164 0.000217 0.000209 0.000213 0.003734 0.002058 0.001106 

Pro25 0.000008 0.000136 0.000055 0.000057 0.001014 0.001497 0.000763 

Pro26 0.000007 0.000066 0.000061 0.000072 0.001154 0.002815 0.000986 

Pro27 0.000008 0.00006 0.00006 0.000067 0.001076 0.001375 0.00081 

Pro28 0.000009 0.000068 0.000059 0.000084 0.001858 0.001777 0.001128 

Pro29 0.000008 0.00007 0.000056 0.00007 0.000932 0.001453 0.001603 

Pro30 0.00001 0.000145 0.000053 0.000143 0.00095 0.002451 0.002073 

Pro31 0.000008 0.000065 0.000074 0.000061 0.001173 0.001816 0.000951 

Pro32 0.000008 0.000074 0.000065 0.000068 0.002554 0.002384 0.001997 

Pro33 0.000052 0.000069 0.000062 0.000063 0.001196 0.002628 0.001083 

Pro34 0.000007 0.000071 0.00006 0.000064 0.001202 0.001883 0.00095 

Pro35 0.000007 0.000068 0.000062 0.000064 0.001155 0.001828 0.000959 

Pro36 0.000007 0.000073 0.000062 0.000067 0.002499 0.002168 0.001187 

Pro37 0.000007 0.000049 0.000048 0.000048 0.001257 0.004016 0.000679 

Pro38 0.000008 0.000074 0.000066 0.000067 0.001905 0.007047 0.001161 

Pro39 0.000007 0.00008 0.000073 0.000076 0.002163 0.004163 0.001884 

Pro40 0.000006 0.000075 0.000068 0.00007 0.001389 0.003627 0.001222 

Average 
computation 

time 

0.001257 0.002453725 0.002420275 0.00877445 0.011397275 0.007526475 0.0070559 

 

All the considered methodologies of the study are performed for each of the 640 problem instances. Then 

to measure the efficiency of the heuristics, we calculated average relative percentage error (ARPD) with 

respect to the optimal solution. The ARPD score over 320 instances for every cost structure range (CR), 

profit structure range (DR), and degree of imbalance (K) are presented graphically in Figures 2(a) to 2(f). 

The ARPD scores over 640 instances (that is irrespective of the cost structure or any other factor) for 

different heuristics are calculated and presented graphically in Figure 3. The average computational time 

to obtain IBFS of the problems for different heuristics are presented in Figure 4.  
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Figure 2. Average performance of the heuristics with respect to the optimal solution. 
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Table 12. Summary of the experimental design. 
 

Problem factor No. of levels Values 

Problem size (𝑚 × 𝑛) 8 
{10 × 10; 10 × 20; 10 × 40; 10 × 60} 

{20 × 10; 20 × 20; 20 × 40; 20 × 60} 

Cost structure – range (CR) 2 {100, 500} 

Profit structure – range (DR) 2 {100; 200} 

Degree of imbalance (K) 2 {1, 2} 

Number of problem configurations (8 x 2 x 2 x 2) = 64 

Number of instances per configuration 10 

Number of problem instances 640 

Cost Structure (𝑪𝒊𝒋): Uniform Distribution: 𝑈(𝑪𝒊𝒋: 𝑀𝑒𝑎𝑛 𝐶𝑜𝑠𝑡 −  𝑪𝑹/2,𝑀𝑒𝑎𝑛 𝐶𝑜𝑠𝑡 +  𝑪𝑹/2) 

Profit Structure (𝑫𝒊𝒋): Uniform Distribution: 𝑈(𝑫𝒊𝒋: 𝑀𝑒𝑎𝑛 𝑃𝑟𝑜𝑓𝑖𝑡 −  𝑫𝑹/2,𝑀𝑒𝑎𝑛 𝑃𝑟𝑜𝑓𝑖𝑡 +  𝑫𝑹/2) 

where Mean Cost = 500 and Mean Profit =  

Supply (𝒂𝒊): Uniform Distribution: 𝑈(𝒂𝒊: 0.75 ×  𝑀𝑒𝑎𝑛 𝑆𝑢𝑝𝑝𝑙𝑦, 1.25 ×  𝑀𝑒𝑎𝑛 𝑆𝑢𝑝𝑝𝑙𝑦), 
where Mean Supply = [(K × n × Mean Demand)/m] and Mean Demand = 100 

Demand (𝑏𝑗): Uniform Distribution: 𝑈(𝒃𝒋: 75, 125) 

 

 

From the graphs, it is clear that the proposed heuristic is a very consistent method to find initial basic 

feasible solution of a fractional transshipment problem. In the first phase i.e., for the smaller problem 

instances, the modified AMCM was the second-best performer but in this phase, we observe that for the 

larger problem instances the method’s performance is just behind the variations of VAM. To get a better 

view the comparison, we present a graphical representation of the performances of the heuristics with 

respect to the ARPD and computational time (in millisecond) in Figure 5. From the graph it is observed 

that, with respect to the ARPD and computational time trade-off, the proposed modified AMCM is a very 

good heuristic along with the VAM (Pradhan and Biswaal, 2015) to find an initial basic feasible solution 

of a fractional transshipment problem.  

 

 

 
 

Figure 3. Average relative percentage deviation for different heuristics. 
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Figure 4. Average computational Time for different heuristics. 

 

 

 
 

Figure 5. Performance evaluation of the heuristics. 

 

 

6. Conclusion 
In this study, we have investigated a special class of LFTP and its mathematical model. Moreover, we have 

studied about the matrix formulation of LFTP. It has been observed that LFTP is optimized by taking ratio 

of two linear functions subject to some linear constraints. This fact led us to investigate a single objective 

linear fractional problem for the transshipment problem. For this purpose, we have proposed an algorithm 

based on ‘AMCM’ for finding an IBFS of the LFTP. To demonstrate the process of proposed method, we 

have considered a fractional transshipment problem with two sources and three destinations. The obtained 

IBFS is compared with the solution obtained by other existing methods which establishes the validity and 

feasibility of the proposed method. 

 

Regarding the future line of research, we will develop an efficient algorithm for optimizing the LFTP with 

multi-objective linear fractional functions. It will be interesting to apply this method to various real-life 

decision-making situations.  
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Appendix 

 
function [X, v, N, D] = amcm(c,d,A,B) 

X = zeros(size(c)); 

tot_dem = sum(B); 

r = c./d; % Ratio matrix 

temp = r; 

tempc = c; 

tempd = d – eye(size(d)); 

iteration = 0; 

while(tot_dem>0) 

    iteration = iteration+1; 

    KE=max(max(r)); 

    [KR, KC]=find(r==KE); 

    [row_ind, col_ind]=selection1(r,KR,KC); 

    alloc=min(A(row_ind),B(col_ind)); 

    A(row_ind)=A(row_ind)-alloc; 

    B(col_ind)=B(col_ind)-alloc; 

    if (B(col_ind)==0 && A(row_ind)==0) 

        r(row_ind,:)=NaN; 

        r(:,col_ind)=NaN; 

    elseif(A(row_ind)==0) 

        r(row_ind,:)=NaN; 

    elseif(B(col_ind)==0) 

        r(:,col_ind)=NaN; 

    end 

    X(row_ind,col_ind)=alloc; 

    tot_dem=tot_dem-alloc; 

end 

N = sum(sum(tempc.*X)); 

D = sum(sum(tempd.*X)); 

v = N/D; 

end 

 

function [KRA, KCA] = selection1(a,KR,KC) 

%Find minimum of the all the selected rows and column 

miniDetail = []; 

secondMax = -1; 

for i = 1:length(KR) 
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    s1 = min(a(KR(i),:)); 

    s2 = min(a(:,KC(i))); 

    s(i) = min(s1,s2); 

    col_ind = find(a(KR(i),:)== s(i)); 

    row_ind = find(a(:,KC(i))== s(i)); 

    for j = 1:length(col_ind) 

        miniDetail = [miniDetail; s(i) KR(i) col_ind(j)]; 

        colMax = max(a(:,col_ind(j))); 

        if(colMax>secondMax) 

            KRA = KR(i); 

            KCA = col_ind(j); 

        end 

    end 

    for j = 1:length(row_ind) 

        miniDetail = [miniDetail; s(i) row_ind(j) KC(i)]; 

        rowMax = max(a(row_ind(j),:)); 

        if(isempty(col_ind)~=1) 

            if(rowMax>colMax) 

                KRA = row_ind(j); 

                KCA = KC(i); 

            end 

        else 

            if(rowMax>secondMax) 

                KRA = row_ind(j); 

                KCA = KC(i); 

            end 

        end 

    end 

end 

miniDetail; 

KRA; 

KCA; 

end 
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