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Abstract 

This research article deals with the usefulness of nanobiosensors to treat multiple stenosis in an artery. Nanobiosensors dispersed 

in blood are recognised as nanofluids, and their properties have been used to define the mathematical model. The problem is solved 

using the analytical method given by Sankarsubramanian and Gill to find the temperature and velocity of nanofluid and the transport 

coefficients of nanobiosensors. MATLAB was used plot the graphs and see the variation of different parameters like slip parameter, 

stenosis depth and nanolayer thickness. It was found that once the nanobiosensors were dispersed, the temperature escalated as the 

nanobiosensors hit the stenosis. If the stenosis depths are around 0.1x10(-3) m to 0.3x10(-3) m, in a diseased artery, then nano-

biosensors with a layer thickness of about 30 nm shall be suitable for the temperature range of 310-320K. This mathematical model 

bears possible applications in target detection and drug delivery at stenosed sites. 
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1. Introduction 
Cardiovascular diseases (CVDs) are the prime reason of mortality since many years. In 2021, almost 20.5 

million people suffered from to cardiovascular disorders, reckoning at about one-third of deaths throughout 

the globe. There has been a substantial increase in 12.1 million CVD deaths since 1990. Although there 

have been major developments in medical research and treatment, there has been a decline in CVD related 

deaths, but still not sufficient to meet target laid by the World Health Assembly's (WHA) to reduce 

premature deaths occurring out of noncommunicable diseases (NCDs) to 25% by 2025 (World Heart 

Federation, 2023). Besides, the COVID-19 pandemic, to a great extent, disrupted world health concerns, 

straining healthcare systems and intensifying resource restraints. Thus, developing affordable, convenient, 

and efficient diagnostic tools capable of fast diagnostics and cure is a necessity (Malik et al., 2013). 

 

Research designates that more than 80% of cardiovascular disease related deaths are associated with 

weakened blood flow, mostly due to diseases like atherosclerosis. Atherosclerosis is the buildup of fatty 

deposits in lining of arterial walls, ending up in plaque development that curbs blood flow and serious 

constitute health perils. Stenosis is a condition of narrowing of blood vessels triggered by plaque buildup, 

that intensifies these diseased conditions by further cutting back blood flow. 

 

Improvements in diagnostic skills and technologies for atherosclerosis are vital for an early detection and 

treatment. Conventional approaches such as catheterization, while effective, are often sluggish and 

resource-concentrated. Thus, there is a pressing need to develop rapid, reliable, and cost-effective 

diagnostic tools that hold the capability of detecting atherosclerosis in its premature stage, significantly 

refining patient consequences (Sagadevan and Periasamy, 2014). Biosensors extend a potential resolution 

by coalescing nanomaterials into diagnostic tools, allowing for detailed and effectual detection of ailments. 

https://www.ijmems.in/
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Biosensors have myriad applications, extending from environmental pollution detection, food quality 

monitoring to disease diagnostics. These devices are sensitive to target compounds in samples that do not 

damage them and rather give continuous, reversible responses. A typical biosensor has a bioreceptor layer 

that detects molecular species such as antibodies, enzymes, or proteins and interprets these interactions into 

measurable signals applying various techniques, such as optical or electrochemical signals (Kiran and 

Mahesh, 2016). 

 

The progress in biosensors has advanced over time. In 1956, American biochemist L. L. Clark invented the 

first biosensor to detect oxygen levels in blood (Arndt et al., 2020). Since then, biosensors have evolved 

through five generations. Earlier biosensors focused on detecting the analyte and bioreceptor reaction 

product to produce signals. For example, in the 1960s, Leland Charles Clark Jr. invented an enzyme 

electrode for glucose detection, and further advancements in the 1970s and 1980s caused the development 

of higher sensitive and more reliable biosensors. Today’s biosensors unify nanotechnology for improved 

sensitivity, and cost-efficiency (Huang et al., 2021). 

 

Nanotechnology has restructured biosensing by allowing for better accuracy along with nanoscale size. 

Nanobiosensors, employ nanoscale materials such as carbon nanotubes, graphene, and quantum dots to 

detect diseases early and precisely. These have several advantages, comprising boosted surface-to-volume 

ratios, greater electrical conductivity, and enhanced biocompatibility, making them ideal in diagnostic 

related applications (Naresh and Lee, 2021; Singh and Melnik, 2021). 

 

A notable use of nanobiosensors holds in drug delivery systems. These sensors are target specific, as they 

detect stenosed arteries, and release drugs at the diseased location. Nanobiosensors make use of the 

properties of nanoparticles to increase drug transport, enhance circulation time, and advance targeting 

accuracy (Kulkarni et al., 2022).  

 

The essential concept of a biosensor includes binding a bio analyte to bioreceptors, seizing the subsequent 

physiochemical change, and adapting it into a measurable signal through a transducer (Malik et al., 2023). 

This transducer is frequently attached with nanomaterials to generate nanobiosensors (Ramesh et al., 2023). 

These nanobiosensors in return have a specialized layer that detects the target analyte (Singh et al., 2023). 

Among the several nanomaterials, carbon nanotubes (CNTs) project as an important component for 

biosensor advancement in clinical diagnostics (Lee and Kim, 2024). When united with biological materials 

like enzymes or antibodies, CNTs indicatively boost precise responses. 

 

CNTs are amongst the extensively utilized nanomaterials in biosensors, serving as frameworks to restrain 

biomolecules on their exterior (Tîlmaciu and Morris, 2015). Carbon nanotubes, primarily reported by 

Sumio Iijima in 1991 (Ferrier and Honeychurch, 2021; Gergeroglu et al., 2020), are categorized by their 

hollow, nanoscale construction comprising of carbon atoms. Their extraordinary durability, robustness, and 

capability to provide a platform for arresting biomolecules have made them focal to biosensor progress in 

both medical and research areas. CNTs are roughly 100,000 times compact than a human hair, which allows 

for an enormous possibility for transporting data from the nanoscale to the macroscopic extent. These 

extraordinary characteristics-along with their mechanical power and functionalization abilities-allow for 

the strategy of high-performance biosensors. 

 

For drug delivery uses, nanobiosensors should be prompted by external stimuli, like alterations in 

temperature or pH or surface charge, or concentration, in order to release drugs at the desired target. Thermal 

nanobiosensors are triggered by temperature fluctuations, using the heat energy absorbed or released 

through biochemical reactions. These biosensors quantify the temperature change (ΔT), which is corelated 
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with the enthalpy (ΔH) of the reaction and the number of product molecules (np) produced, as signified by 

the equation ΔT = -(np ΔH)/Cp (Lee and Kim, 2024). This classically includes a flow inoculation 

investigation with a restrained enzyme reactor, where the heat produced in a catalytic reaction is pondered 

by a thermally sensitive nanolayer. Such schemes have numerous advantages, comprising reduced sizes, 

low-cost manufacture, and great sensitivity, making them perfect for clinical uses (Lee and Kim, 2024). 

 

Primary studies by Shah (2009) fixated on particle adhesion dynamics, predominantly in nanomedicine and 

biosensor applications. His mathematical simulation discovered the performance of micro/nano-scale 

particles dispersed in blood in stenotic arteries, placing the basis for forthcoming advances in biosensor 

technology and drug delivery systems. El Koumy et al. (2013) modelled peristaltic motion in a porous 

channel along with electrically conducting Maxwell fluid in a transverse magnetic field and Hall effect, 

examining parameters like porosity and permeability. Results provided understandings of flow dynamics, 

bearing possible applications in considering gall bladder function with stones. Recent research by Bali and 

Prasad (2022) based on the mathematical study of nanoparticle dispersion, precisely associating analytical 

and numerical solutions for nanoparticle performance in arteries with elliptical stenosis. This study 

emphasised the significance of correctly modelling several shapes and sizes of nanoparticles for an 

improved understanding of their circulation in stenotic arteries. 

 

Muthtamilselvan and Gifteena Hingis (2022) contributed to this research by inspecting the flow features of 

nanoparticles in multi-stenosed arteries. Their work focused on the functioning of biosensors and the arterial 

walls, providing perceptions into how nanoparticles can circumnavigate multifaceted geometries to attain 

targeted drug delivery. Another noteworthy influence was made by Alhussain (2022), who modelled the 

thermal conductivity of nanoparticles in multi-stenosed arteries. This work established how thermal 

properties of nanoparticles effect their movement and adhesion inside the bloodstream, additionally 

improving our understanding of nanobiosensor conduct in real biological conditions. 

 

Building upon these previous studies, Shamloo et al. (2023) established an in-silico model to simulate the 

transportation of nanocarriers in blood vessels, further enhancing the computational tools essential for 

reviewing nanoparticle dispersion in multi-stenosed arteries. Abdelsalam et al. (2023) explored the flow of 

a non-Newtonian Maxwell fluid over a permeable stretching sheet in a porous medium, integrating the 

Cattaneo-Christov heat flux model to investigate heat transfer in varying viscosity, magnetic fields, and 

thermal effects. Raju et al. (2024) deliberated the character of gold nanoparticles in stenosed arteries. Their 

study employed finite difference calculations to simulate the actions of these particles in dissimilar arterial 

situations, contributing appreciated understandings in the hemodynamics of nanoparticles in the treatment 

of stenosis. Similarly, Karmakar and Das (2024) examined magnetic nanoparticles and their dispersion in 

electroosmotic forces in a stenosed artery. Their study combined electro-magnetic forces and non-

Newtonian blood flow properties, progressing our understanding of how nanoparticles perform in dynamic 

and complex vascular surroundings. Furthermore, Sayah et al. (2024) observed the drug delivery possibility 

of nanoparticles in stenotic arteries, accenting the size and shape of nanocarriers. Their work delivered 

serious visions into the ideal settings for drug delivery systems, directing on the adhesion of nanoparticles 

to atherosclerotic plaque in arteries. Abdelsalam et al. (2024b) studied peristaltic motion of hybrid 

nanofluids in a curved asymmetric channel with heated sinusoidal walls, arising exact solutions in long 

wavelength and low Reynolds number approximations. Abdelsalam et al. (2024a) inspected 

magnetohydrodynamic flow and thermal radiation effects on gold nanoparticle (AuNP) nanofluids in blood 

vessels, concentrating on nanoparticle shapes, peristalsis, and heat transfer properties. Adhikari et al. (2024) 

explored the combination of hybrid nanoparticles and microbes in an elastic artery with stenosis. Raza et 

al. (2024) studied the heat and mass transfer mechanisms in Carreau nano liquid flow over an extendable 

rotating disk, integrating effects of viscous dissipation, Joule heating, and nonlinear thermal radiation. 
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Kumar et al. (2024) observed electrokinetic peristaltic flow of Sutterby nanofluid in an asymmetric porous 

microchannel under transverse magnetic and longitudinal electric fields.  

 

Upon this literature survey, this study is an attempt to fill a gap in present research by exploring the 

dispersion of nanobiosensors in arteries with multiple stenoses. While earlier research has explored 

nanobiosensor performance in single stenosis situations, there is inadequate data on how nanobiosensors 

perform in more complex arterial situations. By applying nonlinear Navier-Stokes equations and using 

carbon nanotubes as the nanobiosensors, this study examines their performance in response to thermal 

stimuli in a multi-stenosis artery model. The mathematical model is constructed on the equations of 

continuity, Navier-Stokes, and diffusion, and the dispersion of carbon nanotubes (Shobha and Muniraj, 

2012) is solved applying the Subramanian and Gill (1973) model. Outcomes are presented graphically using 

MATLAB, delivering understandings that could direct upcoming clinical applications and treatment 

approaches. 

 

The research article is hence an effort to a bridge the gap of theoretical modelling and practical biomedical 

applications. By delivering an inclusive mathematical outline, the study interprets complex fluid dynamics 

into actionable perceptions that can enhance biosensor strategy aimed at real-world situations, such as 

directing the asymmetrical flow in arteries with stenosis. This shall be helpful to engineers and medical 

professionals, to enhance nanobiosensors for applications like targeted drug delivery and diagnostic 

imaging, guaranteeing they perform proficiently under adjustable biological settings. The mathematical 

model offers analytical perceptions that decrease the necessity for extensive experimental trials, controlling 

the advancement of next-generation medical devices for real-time monitoring and nominally invasive 

treatments. Moreover, the research improves the accuracy and productivity of drug delivery systems by 

explicating how features like stenosis depth affect biosensor movement and dispersion, thus refining 

treatment results. It also delivers an outline for supervisory and clinical validation by contributing 

simulations that can be used to design further effective clinical trials. Additionally, this study enables cross-

disciplinary collaboration between mathematicians, engineers, and medical professionals, helping to 

quicken the transformation of theoretical research into practical, patient-centred resolutions. Eventually, 

this work develops to the amalgamation of nanobiosensor-based technologies into clinical practice. It 

contributes to the increasing frame of knowledge on nanotechnology-enabled diagnostics and treatments. 

The conclusions regarding nanolayer on nanobiosensors provide valuable theoretical understandings and 

real-world consequences for evolving more effective diagnostic tools and drug delivery systems, possibly 

refining the management of cardiovascular diseases. 

 

2. Mathematical Formulation 
Mathematical modelling plays a pivotal role in elucidating the dispersion dynamics of nanobiosensors 

within arteries with multiple stenosis, offering valuable insights into their behaviour and potential 

applications in biomedical engineering and healthcare. The approach to develop mathematical model here 

includes the injection of thermal nanobiosensors into the artery which is then analysed under steady state 

conditions. The arterial geometry, blood flow characteristics and nanobiosensors’ nature have been taken 

into consideration to from the model. An artery of length L’ is considered with multiple stenosis (Figure 1). 

Cylindrical co-ordinates (𝑟′, 𝜃′, 𝑧′) are taken into account. Table 1 lists the mathematical symbols to be 

used. 

 

The geometry of stenosis (Muthtamilselvan and Gifteena Hingis, 2022) is given as: 
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Figure 1. Geometrical model. 

 

 

The equations modelling the blood flow with nanobiosensors are:  

 

Equation of continuity  
𝜕𝜌𝑛𝑓
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+

1
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Navier Stokes momentum equation or equation of motion 
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Most current detection methods for low-concentration solutions are modelled by diffusion. The detection 

time t’ is primarily determined by how long it takes for the target molecules to diffuse and interact with the 

probe molecules immobilized on the sensor surface, which are triggered thermally. The equations for this 

are: 
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Diffusion equation for temperature  
1

𝐷𝑛𝑓
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Diffusion equation for concentration  
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where, 𝐷′ signifies nanobiosensors’ diffusivity while 𝑚′ depicts the rate at which nanobiosensors are 

released in the blood or absorbed at the stenosis.  

 

When nanoparticles are dispersed in a fluid, such as blood, the mixture is referred to as a nanofluid. Choi 

(Qiu et al., 2020) is accredited with the groundbreaking progress of nanofluids, which are colloidal systems 

of nanoparticles-such as metals, oxides, and carbon nanotubes-dispersed in a base fluid. These nanoparticles 

hold pointedly higher thermal conductivity than the base fluid unaided, and their size is characteristically 

less than 100 nm. Nanofluids have quickly become a motivation of research due to their improved 

thermophysical properties, comprising amplified thermal conductivity and viscosity, making them chiefly 

appreciated for biomedical uses.  

 

Thermal conductivity is a elementary thermophysical characteristic of nanofluid. Geomorphology, volume 

fraction, thermal conductivity of base fluid, thermal conductivity of nanoparticle dispersed are the features 

that regulate the thermal conductivity of a nanofluid. The first model was given by Maxwell in this regard. 

This was followed by series of experimental and theoretical researches. An advanced model for nanofluid’s 

thermal conductivity was devised by Murshed et al. (2008) that inculcates the thermal conductivity of 

nanolayer also.  
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                                   (8) 

 

where, 𝑘𝑓 is base fluid’s thermal conductivity of base fluid, 𝑘𝑝 is nanobiosensors’ thermal conductivity, 𝑘𝑛𝑙 

is nanolayer’s thermal conductivity, 𝑑𝑛𝑙 is thickness of nanolayer (on biosensor), 𝑟𝑝 is radius of 

nanobiosensor and 𝜙 represents nanobiosensors’ volume fraction. This empirical model is apt for nano 

biosensors as they, have a sensor coating of nanolayer on them to identify and transfer signals. Another 

important property in the hierarchy is viscosity of nanofluids. The prime model was formulated by Einstein. 

Batchelor (1977) proposed a model for viscosity of nanofluids by taking into account the Brownian motion 

of nanoparticles. 

𝜇𝑛𝑓 = 𝜇𝑓(1 + 𝐴1𝜙 + 𝐴2𝜙
2)                                                                                                                      (9) 

 

The factor 𝐴1 represents the coefficient from Einstein’s dynamic viscosity model and 𝐴2 represents 

Huggin’s coefficient that describes the viscosity due to thermal motion of nanoparticle. The value of 𝐴1 is 

13.5 and 𝐴2 is 904.4 for carbon nanotubes.  

 

The model for thermal expansion of nanofluid is written using rule of conservation of mass of two materials 

or species.  

𝜌𝛾𝑛𝑓 = (1 − 𝜙)𝜌𝛾𝑓 + 𝜙𝜌𝛾𝑝                                                                                                                        (10) 

 

The governing Equations (2) to (7) shall assumes: 
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i. Flow is steady, laminar and incompressible. 

ii. Flow is axisymmetric. 

iii. Azimuthal component is zero, thus, the flow is two dimensional. 

iv. The cross-section area is narrow thus describing the flow by low Reynolds number. 

v. The dispersion of nano biosensors takes place in response to temperature stimulus governed by the 

factor H, called the heat source parameter.  

vi. Free convection effects are not considered. 

 

Equations together with their boundary conditions are. 

 

Equation of continuity 
𝜕𝜌𝑛𝑓𝑢′

𝜕𝑧′
= 0                                                                                                                                                     (11) 

 

Navier Stokes equation accompanied with its boundary conditions  

−
𝜕𝑃′

𝜕𝑧′
−

1

𝑟′
𝜕

𝜕𝑟′
(𝑟′𝜇𝑛𝑓

𝜕𝑢′

𝜕𝑟′
) + 𝑔(𝜌𝛾)𝑛𝑓(𝑇

′ − 𝑇0) = 0                                                                                   (12) 

 

Since the flow is axis symmetric 
𝜕𝑢′

𝜕𝑟′
= 0 at 𝑟′ = 0                                                                                                                                           (13) 

 

Applying Darcy’s law at arterial boundary of the artery because the nanobiosensors are absorbed at the 

stenosis 

𝑢′ = 𝑢′𝐵 at 𝑟′ = 𝑅0                                                                                                                                       (14) 

𝜕𝑢′

𝜕𝑟′
=

𝜎′

√𝑘′0
(𝑢′𝐵 − 𝑢

′
𝑝 ) at 𝑟′ = 𝑅0                                                                                                               (15) 

 

where, 

𝑢′𝑝 = −
𝑘′0

𝜇𝑛𝑓

𝜕𝑝′

𝜕𝑧′
                                                                                                                                           (16) 

 

is velocity at arterial boundary which is permeable. 

 

where, 𝑢′𝐵 represents velocity of slip, 𝜎′ is parameter of slip, 𝑘′0 represents permeability of arterial wall.  

 

Diffusion equation for temperature and its boundary conditions  
𝜕2𝑇′

𝜕𝑟′2
+

1

𝑟′

𝜕𝑇′

𝜕𝑟′
+

𝐻

𝑘𝑛𝑓
= 0                                                                                                                                  (17) 

 

Temperature is 𝑇0 on surface of artery  
𝑇′ = 𝑇0 at 𝑟′ = 𝑅′(𝑧′)                                                                                                                                  (18) 

 

By axis symmetricity  
𝜕𝑇′

𝜕𝑟′
= 0 𝑎𝑡 𝑟′ = 0                                                                                                                                          (19) 

Diffusion equation for concentration  

𝜕𝑐′

𝜕𝑡′
+ 𝑢′

𝜕𝑐′

𝜕𝑧′
= 𝐷𝑚 (

1

𝑟′
𝜕

𝜕𝑟′
(𝑟

′
𝜕𝑐′

𝜕𝑟′) +
𝜕2𝑐′

𝜕𝑧′
2)                                                                                                    (20) 
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The nano biosensors are distributed uniformly therefore their concentration initially is  

𝑐′(0, 𝑧′, 𝑟′) = 𝜔′(𝑧′)𝜉′(𝑟′) = 𝑐𝑜
′                                                                                                                 (21) 

 

where, 

𝜔′(𝑧′) =
𝑅0𝛿(𝑧

′)

𝑑′2
                                                                                                                                            (22) 

 

𝛿(𝑧′) is the Dirac Delta function 

 

and 

𝜉′(𝑟′) = {
1   0 < 𝑟′ ≤ 𝑑′
0  𝑑′ < 𝑟′ ≤ 𝑅0

                                                                                                                         (23) 

 

where, 𝑑′ is initial distribution or placing of nanobiosensors.  

 

At the onset 

𝑐′(𝑡′, 𝑧′, 𝑟′) = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑡 𝑟′ = 0                                                                                                                (24) 

 

Diffusion of nano biosensors at artery’s wall (Shobha and Muniraj, 2012) is  
𝜕𝑐′(𝑡′,𝑧′,𝑟′)

𝜕𝑡′
= 𝑘0

′ (𝑐′(0, 𝑧′, 𝑟′) − 𝑐′(𝑡′, 𝑧′, 𝑟′))𝜌𝑛𝑓 at 𝑟′ = 𝑅0                                                                     (25) 

 

where, 𝑘0′ is the conductivity of nano biosensors that are conjugated at the stenosis. 

 

Since there are finite number of nano biosensors, hence at any random time  

𝑐′(𝑡′𝑧′, 𝑟′) =
𝜕𝑐′(𝑡′,𝑧′,𝑟′)

𝜕𝑧′
= 0 at 𝑧′ = ∞                                                                                                      (26) 

 

Scheme for nondimensionalization  

𝑟 =
𝑟′

𝑅0
, 𝑧 =

𝑧′

𝑅0
, 𝜃 =

𝑇′

𝑇0
, 𝐺𝑟 =

𝑔𝛾𝑓𝜌𝑓𝑅0
2𝑇𝑜

𝑢𝑎𝑣𝑔𝜇𝑓
, ℎ =

𝐻𝑅0
2

𝑇0𝑘𝑓
, 𝑅𝑒 =

𝑅0𝑢𝑎𝑣𝑔𝜌𝑓

𝜇𝑓
, 𝐷𝑎 =

𝑘′𝑜

𝑅0
2 , 𝑢 =

𝑢′

𝑢𝑎𝑣𝑔
, 𝑝 =

𝑅0𝑝′

𝜇𝑓𝑢𝑎𝑣𝑔
, 𝜎 =

𝜎′

𝑅0
, 𝑡 =

𝐷𝑚𝑡′

𝑅0
2 , 𝑃𝑒 =

𝑅0𝑢𝑎𝑣𝑔

𝐷𝑚
, 𝑐 =

𝑐′

𝑐𝛼
, 𝛽 =

𝑘′0𝑅0

𝐷𝑚
                                                                                              (27) 

 

where, 𝐷𝑎 represents Darcy number, 𝐺𝑟 represents Grashof number, 𝑅𝑒 is Reynolds number, 𝑃𝑒 is Peclet 

number, 𝑢𝑎𝑣𝑔 is reference velocity, 𝑐𝛼 is reference concentration and 𝛽 is non-dimensional wall absorption 

parameter. 

 

The nondimensional equations and boundary conditions are: 

−𝑅𝑒
𝜕𝑝

𝜕𝑧
= 

1

𝑟
 
𝜕

𝜕𝑟
(𝑟𝜇𝑓(1 + 𝐴1𝜙 + 𝐴2𝜙

2)
𝜕𝑢

𝜕𝑟
) + ((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟𝜃                                                  (28) 

𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
+ ℎ

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3

−(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

+1)+(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3

(𝜙(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3

(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3

+(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

−1)]

= 0              (29) 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑧
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

1

𝑃𝑒2
𝜕2𝑐

𝜕𝑧2
                                                                                                                 (30) 
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𝜕𝑢

𝜕𝑟
= 0 at 𝑟 = 0                                                                                                                                           (31) 

𝑢 = 𝑢𝐵 at 𝑟 = 1                                                                                                                                          (32) 

𝜕𝑢

𝜕𝑟
=

𝜎

√𝐷𝑎
(𝑢𝐵 − 𝑢𝑝) at 𝑟 = 1                                                                                                                      (33) 

 

Here 

𝑢𝑝 = −
𝐷𝑎

𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)

𝜕𝑝

𝜕𝑧
 at 𝑟 = 1                                                                                                            (34) 

𝜃 = 1 at 𝑟 = 1                                                                                                                                            (35) 

𝜕𝜃

𝜕𝑟
= 0 at 𝑟 = 0                                                                                                                                           (36) 

𝑐0 = 𝜔(𝑧)𝜉(𝑟) where 𝜔(𝑧) =
𝛿(𝑧)

𝑑2𝑃𝑒
= 𝑐0                                                                                                       (37) 

𝜉(𝑟) = {
1  0 < 𝑟 ≤ 𝑑
0  𝑑 ≤ 𝑟 ≤ 1

 

𝑐 = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑡 𝑟 = 0                                                                                                                                     (38) 

𝜕𝑐

𝜕𝑡
= 𝛽(𝑐𝑜 − 𝑐) 𝑎𝑡 𝑟 = 1                                                                                                                              (39) 

𝑐 =
𝜕𝑐

𝜕𝑧
= 0 at 𝑧 = ∞                                                                                                                                    (40) 

 

3. Solution 
The Equation (29) has been solved analytically using the boundary conditions (35) and (36), and the value 

of 𝜃 or temperature of blood with nanobiosensors in it is obtained as: 

𝜃 = 1 + ℎ
(𝑅2(𝑧)−𝑟2)

4

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3

−(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

+1)+(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3

(𝜙(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3

(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3

+(1+
2𝑑𝑛𝑙

𝑟𝑝
)
3

−1)]

            (41) 

 

Using this value in Equation (28), and applying the boundary conditions (31) to (34), the velocity is found 

to be:  

𝑢 = −𝑅𝑒
𝜕𝑝

𝜕𝑧

𝑟2

4𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)
−

(((1−𝜙)+
𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)

(
𝑟2

4
+ (

𝑟2

4
𝑅2(𝑧) −

𝑟4

16
)
(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

) + 𝜇𝑓(1 + 𝐴1𝜙 + 𝐴2𝜙
2)𝑢𝑝 − (

1

4
−

√𝐷𝑎

2𝜎
)(−𝑅𝑒

𝜕𝑝

𝜕𝑧
+ (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟) + (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

(𝑅2(𝑧) −
1

2
))                  (42) 
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The process of nanoparticle deposition at a target site involves three stages. First, nanoparticles must 

marginate from the bloodstream toward the vascular wall, via convection. The dispersion of nanobiosensors 

in the artery can be described by the convection and diffusion process, and finally when the nanobiosensors 

hit the stenosis, it is governed by diffusion at the permeable walls observed particularly at the nanoscale. 

Now, in order to solve the equation for dispersion, the method employed by Sankarasubramanian and Gill 

(1973) is used, which will result in three transport coefficients explaining this phenomenon. 

 

A series solution is assumed for c as 

𝑐 = ∑ 𝜓𝑖
𝜕𝑐𝑚

𝜕𝑧𝑖
∞
𝑖=0                                                                                                                                            (43) 

 

where, mean concentration of nanobiosensors 𝑐𝑚 is 

𝑐𝑚 = 2∫ 𝑐𝑟 𝑑𝑟
1

0
 and 𝜓𝑖(𝑡, 𝑟), 𝑖 = 0,1,2, has time and radial distance as parameters                                 (44) 

 

Equation (30) after being multiplied with 2𝑟 and integrated for 𝑟 for limits 0 to 1 
𝜕𝑐𝑚

𝜕𝑡
=

1

𝑃𝑒2
𝜕2𝑐𝑚

𝜕𝑧2
+ 2

𝜕𝑐

𝜕𝑟
|
𝑟=1

− 2
𝜕

𝜕𝑧
∫ 𝑢𝑐𝑟 𝑑𝑟
1

0
                                                                                               (45) 

 

The dispersion equation in 𝑐𝑚 along with time dependable transport coefficient by using Equation (43) in 

Equation (45) 
𝜕𝑐𝑚

𝜕𝑡
= ∑ 𝐾𝑖

∞
𝑖=0

𝜕𝑖𝑐𝑚

𝜕𝑧𝑖
                                                                                                                                     (46) 

 

Here  

𝐾𝑖 =
𝛿𝑖2

𝑃𝑒2
+ 2

𝜕𝜓𝑖

𝜕𝑟
|
𝑟=1

− 2∫ 𝜓𝑖−1
1

0
𝑢𝑟 𝑑𝑟, 𝑖 = 0, 1, 2, ……., 𝜓−1 = 0                                                        (47) 

Here 𝛿𝑖𝑗 = {
1    𝑖 = 𝑗
0   𝑖 ≠ 𝑗

                                                                                                                                  (48) 

 

The final dispersion model is  
𝜕𝑐𝑚

𝜕𝑡
= 𝐾0𝑐𝑚 + 𝐾1

𝜕𝑐𝑚

𝜕𝑧
+ 𝐾2

𝜕2𝑐𝑚

𝜕𝑧2
                                                                                                               (49) 

 

Here,  

𝐾𝑖 =
𝛿𝑖2

𝑃𝑒2
+ 2

𝜕𝜓𝑖

𝜕𝑟
|
𝑟=1

− 2∫ 𝜓𝑖−1
1

0
𝑢𝑟 𝑑𝑟, 𝑖 = 0, 1, 2                                                                                 (50) 

 

The transport coefficient 𝐾0 indicates the presence of nanobiosensors at the artery wall where they hit the 

stenosed site, 𝐾1 arises out of the convections of nano biosensor and 𝐾2 signifies dispersion coefficient 

which is the combined effect of diffusion and nanobiosensors’ velocity in blood. 𝐾𝑖 for 𝑖 = 3,4,5. provide 

no significant contribution as dispersion reaches the steady state. 

The nanobiosensors’ concentration is 

𝑐 = ∑ 𝜓𝑖
2
𝑖=0

𝜕𝑖𝑐𝑚

𝜕𝑧𝑖
                                                                                                                                           (51) 

 

For solving Equations (48) and (49), the boundary conditions need to be found. Using Equation (49) in 

Equation (30). Equating coefficients of 
𝜕𝑙𝑐𝑚

𝜕𝑧𝑙
 for 𝑙 = 0,1,2 and obtaining 

𝜕𝜓𝑖

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓𝑖

𝜕𝑟
) − 𝑢𝜓𝑙−1 +

1

𝑃𝑒2
𝜓𝑙−2 − ∑ 𝐾𝑖𝜓𝑙−𝑖

𝑙
𝑖=0     
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where, 𝑙 = 0, 1, 2                                                                                                                                       (52) 

 

and 

𝜓−1 = 𝜓−2 = 0                                                                                                                                          (53) 
 

Conditions designated with the help of Equations (37) to (40), as 

𝑐𝑚 = 2𝜔∫ 𝜉𝑟 𝑑𝑟
1

0
 at 𝑡 = 0                                                                                                                       (54) 

𝜓0 =
𝜉

2∫ 𝜉𝑟 𝑑𝑟
1

0

 at 𝑡 = 0                                                                                                                               (55) 

𝜓𝑙 = 0, 𝑙 = 1,2 at 𝑡 = 0                                                                                                                             (56) 

𝜕𝜓𝑙

𝜕𝑟
= 0, 𝑙 = 0,1,2 at 𝑟 = 0                                                                                                                         (57) 

𝜕𝜓𝑙

𝜕𝑡
= 𝛽(𝜓0 − 𝜓𝑙), 𝑙 = 1,2 at 𝑟 = 1                                                                                                           (58) 

𝑐𝑚 =
𝜕𝑐𝑚

𝜕𝑧
= 0 at 𝑧 = ∞                                                                                                                              (59) 

 

Using Equation (52) in Equation (49), one more condition is obtained 

∫ 𝜓𝑙  𝑟 𝑑𝑟
1

0
=

1

2
𝛿𝑙0 for 𝑙 = 0,1,2                                                                                                                  (60) 

 

where, 𝛿𝑙0 is defined by Equation (47) 

 

The value of 𝜓0 and 𝐾0 are not dependent of nanofluid velocity, hence are obtained directly applying the 

boundary conditions (52) 
𝜕𝜓0

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓0

𝜕𝑟
) − 𝐾0𝜓0                                                                                                                         (61) 

 

With an additional condition on 𝜓0 as ∫ 𝜓0
1

0
𝑟 𝑑𝑟 = 1/2                                                                          (62) 

 

Solution to non- homogeneous boundary value problem (61) employing Bessel equation fulfilling 

conditions (54) - (59) along with Equation (62) is found now.  

Let 𝜓0(𝑡, 𝑟) = 𝑒
 {−∫ 𝐾0(𝜂)𝑑𝜂

𝑡

0
}𝜚(𝑡, 𝑟)                                                                                                          (63) 

 

Using this transformation (63), equation of 𝜚(𝑡, 𝑟) is found that should fulfil 
𝜕𝜚

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝜚

𝜕𝑟
                                                                                                                                              (64) 

𝜚(0, 𝑟) = 𝜓0(0, 𝑟) =
𝜉(𝑟)

2 ∫ 𝑟𝜉(𝑟)𝑑𝑟
1

0

                                                                                                                (65) 

𝜕𝜚

𝜕𝑟
(𝑡, 1) = 𝛽(𝜚(0,1) − 𝜚(𝑡, 1))                                                                                                                 (66) 

𝜚(𝑡, 0) = 𝑓𝑖𝑛𝑖𝑡𝑒                                                                                                                                         (67) 

 

Assume solution to be as 

𝜚(𝑡, 𝑟) = ∑ 𝐴𝑚𝑒
−𝜆𝑚

2 𝑡∞
𝑚=0                                                                                                                            (68) 
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Using (Philip, 1957) identity  

(
𝜕𝜚

𝜕𝑡
)𝑟(

𝜕𝑟

𝜕𝜚
)𝑡 = −(

𝜕𝑟

𝜕𝑡
)𝜚                                                                                                                                  (69) 

 

Converting Equation (64) as 

−
1

2

𝜕𝑟2

𝜕𝑡
=

𝜕

𝜕𝜚
(𝑟

𝜕𝜚

𝜕𝑟
)                                                                                                                                      (70) 

 

Integrating with respect to 𝜚 gives 

−
1

2

𝜕

𝜕𝑡
∫ 𝑟2𝑑𝜚
𝜚

𝜚0
= (𝑟

𝜕𝜚

𝜕𝑟
)                                                                                                                             (71) 

 

Substituting Equation (68) into Equation (71), solution to 𝜚(𝑡, 𝑟) is found after equating coefficients of 

either side, solution of Equations (64) to (67) is  

𝜚(𝑡, 𝑟) = ∑ 𝐴𝑚𝐽0(𝜆𝑚𝑟)𝑒
−𝜆𝑚

2 𝑡∞
𝑚=0                                                                                                              (72) 

 

Now, using Equation (68), we get  

𝜓0 =
∑ 𝐴𝑚𝐽0(𝜆𝑚𝑟)𝑒

−𝜆𝑚
2 𝑡∞

𝑚=0

2∑ (
𝐴𝑚
𝜆𝑚

)𝐽1(𝜆𝑚)𝑒
−𝜆𝑚

2 𝑡∞
𝑚=0

 where, 𝐽0 and 𝐽1 represent Bessel functions                                                  (73) 

 

and 𝜆𝑚 are roots of equation given below  

𝑒−𝜆𝑚
2 𝑡(𝛽 − 𝜆𝑚

2 ) = 𝛽𝐽0(𝜆𝑚), 𝑚 = 0, 1,2, …                                                                                               (74) 

 

Also,  

𝐴𝑚 =
2

[𝐽1(𝜆𝑚)]
2 ∫ 𝑟 ∑ 𝐴𝑚𝐽𝑜(𝜆𝑚𝑟)𝐽𝑜(𝜆𝑚𝑟)𝑑𝑟

∞
𝑚=0

1

0
, 

𝑚 = 0, 1,2,…                                                                                                                                              (75) 
 

𝐾0 is found as 

𝐾0 = 2
𝜕𝜓0

𝜕𝑟
|
𝑟=1

= −
∑ 𝐴𝑚𝜆𝑚𝐽1(𝜆𝑚)𝑒

−𝜆𝑚
2 𝑡∞

𝑚=0

∑ (
𝐴𝑚
𝜆𝑚

)𝐽1(𝜆𝑚)𝑒
−𝜆𝑚

2 𝑡∞
𝑚=0

                                                                                               (76) 

 

In case of steady state, 𝑡 → ∞, thus, Equations (50) and (66) give the value of function 𝜓0 and 𝐾0 as 

lim
𝑡→∞

𝜓0 =
𝜆0

2𝐽1(𝜆0)
𝐽0(𝜆0𝑟) and lim

𝑡→∞
𝐾0 = −𝜆0

2                                                                                             (77) 

 

where, 𝜆0 is smallest root of Equation (74) 
 

Since it is a steady flow, value of 𝐾𝑖, i=1, 2 is found from value of nanofluid velocity in Equation (42). 𝜓𝑖, 
i=1,2 in steady state condition is 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓𝑙

𝜕𝑟
) + 𝜆0

2𝜓𝑙 = 𝑢𝜓𝑙−1 −
1

𝑃𝑒2
𝜓𝑙−2 +∑ 𝐾𝑖𝜓𝑙−𝑖

𝑙
𝑖=1 + 𝐾𝑙𝜓0 where, 𝑙=1,2                                         (78) 

 

and 

𝜓−1 = 0                                                                                                                                                      (79) 

  

𝐾𝑖, i=1,2 reduce to under steady state 

𝐾𝑙 =
𝛿𝑙2

𝑃𝑒2
+ 2

𝜕𝜓𝑖

𝜕𝑟
|
𝑟=1

− 2∫ 𝑟𝑢𝜓𝑙−1 𝑑𝑟
1

0
, 𝑙 = 1,2                                                                                       (80) 
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Conditions for 𝜓𝑙 , 𝑙 = 1,2  

𝜓𝑙 = 𝑓𝑖𝑛𝑖𝑡𝑒 or 
𝜕𝜓𝑙

𝜕𝑟
= 0 at 𝑟 = 0, 𝑙 = 1,2                                                                                                  (81) 

𝜕𝜓𝑙

𝜕𝑡
= 𝛽(𝜓0 − 𝜓𝑙) at 𝑟 = 1 , 𝑙 = 1,2                                                                                                        (82) 

∫ 𝜓𝑙𝑟 𝑑𝑟 = 0
1

0
, 𝑙 = 1,2                                                                                                                              (83) 

 

Equation (79) is the Strum-Liouville boundary value problem, solution for which is obtained applying 

orthogonality of eigen functions. The eigen function shall be orthogonal to Equation (80) with weight 

function r. So, solution to Equation (80) i.e.  
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓𝑙

𝜕𝑟
) + 𝜆0

2𝜓𝑙 = 0                                                                                                                             (84) 

 

𝜓𝑙 is calculated by Bessel’s function of zeroth order as 𝜓𝑙 = 𝐽0(𝜆0𝑟). Let it be represented eigen function 

𝜙𝑛 = 𝐽0(𝜆0𝑟)                                                                                                                                              (85) 

 

Multiplying both sides of Equation (80) by 𝑟𝜙𝑛, left- side of Equation (80) nullifies and by the trait of 

orthogonal functions, 𝐾𝑙 is found. Value of exchange coefficients 𝐾𝑙 , 𝑙 = 1,2 is in terms of 𝜓𝑙 , 𝑙 = 1,2  

𝐾𝑙 =
∫ 𝑟𝐽0(𝜆0𝑟)(
1

0
𝑢𝜓𝑙−1−

1

𝑃𝑒2
𝜓𝑙−2+∑ 𝐾𝑖𝜓𝑙−𝑖

𝑙
𝑖=1 )𝑑𝑟

∫ 𝜓0𝑟𝐽0(𝜆0𝑟)𝑑𝑟
1

0

,  𝑙 = 1,2                                                                                (86) 

 

The value of 𝐾1  

𝐾1 =
∫ 𝑟𝐽0(𝜆0𝑟)𝑢
1

0
𝜓0𝑑𝑟

∫ 𝜓0𝑟𝐽0(𝜆0𝑟)𝑑𝑟
1

0

=−
2𝜆0

2

(𝜆0
2+𝛽2)𝐽0

2(𝜆0)
∫ 𝑢𝑟𝐽0

2(𝜆0𝑟)𝑑𝑟
1

0
                                                                              (87) 

 

The value of 𝜓1  
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓1

𝜕𝑟
) + 𝜆0

2𝜓1 = 𝑢𝜓0 + 𝐾1𝜓0                                                                                                           (88) 

 

The boundary condition for 𝜓1 

𝜓1 = 𝑓𝑖𝑛𝑖𝑡𝑒 at 𝑟 = 0                                                                                                                                 (89) 

𝜕𝜓1

𝜕𝑡
= 𝛽(𝜓0 − 𝜓1) at 𝑟 = 1                                                                                                                       (90) 

∫ 𝜓1𝑟 𝑑𝑟 = 0
1

0
                                                                                                                                            (91) 

 

Putting 𝐾𝑙 in Equation (86), we get 𝜓1 fulfilling Equations (90) to (92) as 

𝜓1 = ∑ 𝐵𝑚𝐽0(𝜆𝑚𝑟)
∞
𝑚=0                                                                                                                              (92) 

 

where, expansion coefficient 𝐵0 by using Equations (91) and (92) is found in terms of 𝐵𝑗 (j=1,2,…) as 

𝐵0 = −
𝜆0

𝐽1(𝜆0)
∑ 𝐵𝑚

𝐽1(𝜆𝑚)

𝜆𝑚

∞
𝑛=1                                                                                                                      (93) 

 

Using Equation (93) in Equation (92) 

𝜓1 = ∑ 𝐵𝑚(𝐽0(𝜆𝑚𝑟)
∞
𝑚=0 −

𝜆0

𝐽1(𝜆0)

𝐽1(𝜆𝑚)

𝜆𝑚
𝐽0(𝜆0𝑟)                                                                                        (94) 
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where, 

𝐵𝑚 =
2𝜆𝑚

2

(𝜆0
2−𝜆𝑚

2 )(𝜆𝑚
2 +𝛽2)𝐽0

2(𝜆𝑚)
∫ (𝑢 + 𝐾1)𝜓0𝑟𝐽0(𝜆𝑚𝑟)𝑑𝑟
1

0
                                                                            (95) 

 

The dispersion coefficient 𝐾2 using Equations (87), (94) and (95) is 

𝐾2 =
1

𝑃𝑒2
−

4𝜆0𝐽1(𝜆0)

(𝜆𝑚
2 +𝛽2)𝐽0

2(𝜆𝑚)
∫ (𝑢 + 𝐾1)(𝜓 − 𝜓1)𝑟𝐽0(𝜆0𝑟)𝑑𝑟
1

0
                                                                     (96) 

 

Thus,  

𝐾1 = −2∫ 𝑟 𝑢 𝑑𝑟
1

0
                                                                                                                                      (97) 

 

𝐾1 = −𝑅𝑒
𝜕𝑝

𝜕𝑧

1

8𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)
+

(((1−𝜙)+
𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)

[
 
 
 
 
 
 

1

12
+

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

𝑅2(𝑧)

8
−

(
𝑘𝑝
𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓

)𝜙𝑘𝑛𝑙(2(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

−(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

+1)+(
𝑘𝑝
𝑘𝑓
+2
𝑘𝑛𝑙
𝑘𝑓

)(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

(𝜙(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

(
𝑘𝑛𝑙
𝑘𝑓

−1)+1)

[(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

(
𝑘𝑝
𝑘𝑓
+2
𝑘𝑛𝑙
𝑘𝑓

)−(
𝑘𝑝
𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓

)𝜙((1+
𝑑𝑛𝑙
𝑟𝑝

)

3

+(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

−1)]

32

]
 
 
 
 
 
 

−[[𝜇𝑓(1 + 𝐴1𝜙 + 𝐴2𝜙
2)𝑢𝑝 − (

1

4
−

√𝐷𝑎

2𝜎
)(−𝑅𝑒

𝜕𝑝

𝜕𝑧
+ (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟) + (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

(𝑅2(𝑧) −
1

2
))]]                     (98) 

 

Now, 

𝐾2 =
1

𝑃𝑒2
− 2∫ 𝑟 𝑢(𝜓 − 𝜓1)𝑑𝑟

1

0
                                                                                                               (99) 

 

𝐾2 =
1

𝑃𝑒2
− 2(𝜓 − ∑ 𝐵𝑙

2𝜆0𝐽1(𝜆𝑙)

𝐽1(𝜆0)(𝜆𝑙)
)∞

𝑙=1 [−𝑅𝑒
𝜕𝑝

𝜕𝑧

1

8𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)
+

(((1−𝜙)+
𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

𝜇𝑓(1+𝐴1𝜙+𝐴2𝜙
2)

[
 
 
 
 
 
 

1

12
+

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

𝑅2(𝑧)

8
−
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(
𝑘𝑝
𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓

)𝜙𝑘𝑛𝑙(2(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

−(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

+1)+(
𝑘𝑝
𝑘𝑓
+2
𝑘𝑛𝑙
𝑘𝑓

)(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

(𝜙(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

(
𝑘𝑛𝑙
𝑘𝑓

−1)+1)

[(1+
𝑑𝑛𝑙
𝑟𝑝

)

3

(
𝑘𝑝
𝑘𝑓
+2
𝑘𝑛𝑙
𝑘𝑓

)−(
𝑘𝑝
𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓

)𝜙((1+
𝑑𝑛𝑙
𝑟𝑝

)

3

+(1+
2𝑑𝑛𝑙
𝑟𝑝

)

3

−1)]

32

]
 
 
 
 
 
 

−

(

 
 
𝜓 − ∑ 𝐵𝑙

2𝜆0𝐽1(𝜆𝑙)

𝐽1(𝜆0)(𝜆𝑙)
)∞

𝑙=1 [𝜇𝑓(1 + 𝐴1𝜙 +

𝐴2𝜙
2)𝑢𝑝 − (

1

4
−

√𝐷𝑎

2𝜎
)(−𝑅𝑒

𝜕𝑝

𝜕𝑧
+ (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟) + (((1 − 𝜙) +

𝜙𝜌𝑝𝛾𝑝

𝜌𝑓𝛾𝑓
)𝐺𝑟)

(
𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙𝑘𝑛𝑙(2(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
−(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
+1)+(

𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)(1+

𝑑𝑛𝑙

𝑟𝑝
)
3
(𝜙(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑛𝑙
𝑘𝑓
−1)+1)

[(1+
𝑑𝑛𝑙

𝑟𝑝
)
3
(
𝑘𝑝

𝑘𝑓
+2

𝑘𝑛𝑙
𝑘𝑓
)−(

𝑘𝑝

𝑘𝑓
−
𝑘𝑛𝑙
𝑘𝑓
)𝜙((1+

𝑑𝑛𝑙

𝑟𝑝
)
3
+(1+

2𝑑𝑛𝑙

𝑟𝑝
)
3
−1)]

(𝑅2(𝑧) −
1

2
))]

]
 
 
 
 

             (100) 

 

Equation (49) is found applying conditions (54) and (59) to get 

𝑐𝑚 =
1

2𝑃𝑒√𝜋𝑇
exp (Λ −

𝑧1
2

4𝑇
)                                                                                                                       (101) 

 

where, 

Λ(t) = ∫ 𝐾0(𝜂)𝑑𝜂
𝑡

0
                                                                                                                                    (102) 

𝑧1(𝑡, 𝑧) = 𝑧 + ∫ 𝐾1(𝜂)𝑑𝜂
𝑡

0
                                                                                                                        (103) 

𝑇(𝑡) = ∫ 𝐾2(𝜂)𝑑𝜂 
𝑡

0
                                                                                                                                   (104) 

 

Since steady state is under examination, approximately Equations (94) to (96) for large time is 

Λ(t)~𝐾0𝑡                                                                                                                                                  (105) 

𝑧1(𝑡, 𝑧)~𝑧 + 𝐾1𝑡                                                                                                                                      (106) 

𝑇(𝑡)~𝐾2𝑡                                                                                                                                                 (107) 

 

4. Graphical Results and Discussions 
Nano biosensors find great use in medical applications like detection of tumours and plaques. Nano 

biosensors have an advantage of high sensitivity because they can decipher small changes in biological 

element for sensing (Lee and Kim, 2024). Thus, to mathematically explore its applications, this paper 

studies the dispersion of nano biosensors in an artery with multiple stenosis. Nano biosensors in the form 

of carbon nanotubes with a coating of nanolayer is dispersed in the stenosed artery. Temperature provides 

a stimulus for the detection of stenosis. The nanolayer on the carbon nanotube detects the diseased site.  

 

For the analysis of the phenomenon, graphs have been plotted for temperature as well as velocity of nano 

biosensors in blood against radial direction. Further, the transport coefficients of nano biosensors in blood 

have also been plotted against wall absorption parameter to study the dispersion. Figures 2-13 show these 

variations that have been plotted in MATLAB. The values of thermophysical parameters used for 

calculation are given in Table 2 in appendix.  
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Figure 2 is a graph displaying the temperature (θ) of nanobiosensors in the blood as a function of radial 

position (r), with the heat source parameter (h) acting as variable. Substantially, the heat source parameter 

has a central part in regulating the thermal performance of nanobiosensors, with its value affected by 

features such as the temperature of adjacent tissues (e.g., diseased arteries) and the thermal conductivity of 

blood. This constraint directly influences the nanobiosensors' thermal response, which is crucial for their 

functionality in numerous biomedical uses (Raza et al., 2024). The graph shows that as the heat source 

parameter rises, the temperature of the nanobiosensors increases too. This trend has physical significance 

because it advocates on regulating the heat source parameter can control the thermal environment near the 

sensors. Such regulation is mainly valuable in thermal-responsive path-tracing procedures, where the 

nanobiosensors' movement is traced based on temperature differences. By regulating the heat source 

parameter, researchers can affect the trajectory and performance of nanobiosensors in the bloodstream, 

delivering an influential means for precision tracking and supervision. This ability is particularly imperative 

in applications like targeted drug delivery, where knowing the precise position and movement of 

nanobiosensors can advance therapeutic exactness. Earlier studies by Hussain et al. (2023, 2024) have also 

testified to comparable findings, accentuating the important role of the heat source parameter in the 

nanobiosensor dynamics. Inclusively, understanding the thermal properties administered by this parameter 

improves the probability for improving nano biosensor-based knowhows in medical treatments. 

 

Figure 3 shows a graph portraying the temperature (θ) of nanobiosensors in blood across the radial direction 

(r) for changing values of nanolayer thickness (dnl). These nanobiosensors are covered with a nanolayer 

for detection and signal transfer, hence the properties of this nanolayer play a decisive role in defining the 

efficacy of nanobiosensor perception skills. The graph divulges a clear tendency: as the thickness of the 

nanolayer growths, the temperature also increases. This phenomenon can be accredited to the decrease in 

interparticle distance arising from a thicker nanolayer. Therefore, there is an improvement in Brownian 

motion amid the nanoparticles, causing an inclusive growth in temperature in the blood. It is clear from 

these observations that the thickness of the nanolayer must be cautiously adjusted to align with the proposed 

purpose of the nanobiosensors. By choosing an apt nanolayer thickness, researchers can confirm optimal 

sensing performance while evading possible overheating problems. This underlines the significance of 

reflecting nanolayer properties in the strategy and development of nanobiosensors for biomedical uses. 

Prior studies, by Ramya et al. (2018) and Bandyopadhyay et al. (2020) have also emphasised the role of 

nanolayer in defining nanobiosensor efficacy, further accentuating the consequence of this parameter in 

sensor design and optimization. 

 

Figure 4 is a graph showing the velocity (u) of nanobiosensors in blood across the radial direction (r) for 

different nanolayer thicknesses (dnl). The nanobiosensors are coated with a nanolayer for bio-sensing uses, 

and the thickness of this layer differs across different uses and biological situations. A prominent trend 

detected in the graph is that as the nanolayer thickness growths, the velocity of the nanobiosensors declines. 

This phenomenon can be qualified to the weakening interparticle distance ensuing from the thicker 

nanolayer. Consequently, the regularity of Brownian collisions between the nanoparticles is increased, 

causing a total decrease in velocity in the blood. This conclusion underlines the importance of controlling 

the thickness of the nanolayer for greater biosensing abilities. By cautiously choosing the suitable nanolayer 

thickness, researchers can attain optimal velocity while guaranteeing effectual bio-sensing performance. 

This shows the vital role of nanolayer thickness in the design and optimization of nanobiosensors for 

biomedical applications, as underscored in previous studies (Ramya et al., 2018). 

 

Figure 5 is the effect of the Darcy number (Da) on the velocity (u) of nanobiosensors in blood. The Darcy 

number is an essential parameter that characterizes the relative significance of a medium's permeability and 

its cross-sectional area of flow. In real terms, a higher Darcy number indicates a medium with superior 



Prasad: Mathematical Study of Dispersion of Nano Biosensors in an Artery with … 
 

 

692 | Vol. 10, No. 3, 2025 

permeability, permitting more effectual flow of fluids. Therefore, when the Darcy number reinforces, it 

represents amplified permeability, the velocity of nanobiosensors in the blood also increases (El Koumy et 

al., 2013). This relationship holds decisive implication in many biomedical applications where 

nanobiosensors are applied for diagnostic or therapeutic uses. Understanding how fluctuations in the Darcy 

number affect nanobiosensor velocity delivers appreciable understandings into optimizing their 

performance in biomedical settings. By controlling the relationship between the Darcy number and 

nanobiosensor velocity, researchers can improve the productivity and efficacy of nanobiosensor-based 

technologies for biomedical applications, such as targeted drug delivery or disease diagnosis. 

 

Figure 6 shows the variation of the velocity (u) of nanobiosensors in the blood and the slip parameter (σ). 

The slip parameter enumerates the difference in velocities between adjacent fluid layers in laminar flow, 

presenting perceptions about the fluid dynamics within bloodstream. Physically, the slip parameter governs 

the efficiency of nanobiosensors as they move through blood by affecting the interaction between the fluid 

layers and the sensors. The trend detected through the study shows that as the slip parameter rises, the 

velocity of the nanobiosensors reduces. This behaviour can be described by the fact that slip at the boundary 

between fluid layers diminishes the total shear forces within the flow. Subsequently, the reduced shear force 

slows down the nanobiosensors. Basically, when there is more slip (less friction between layers), the fluid's 

capacity to transfer momentum reduces, causing a decrease in velocity of the nanobiosensors. 

Understanding this relationship is necessary to optimize the functionality of nanobiosensors in biomedicine 

(Abdelsalam and Zaher, 2023). By taking the slip parameter into consideration, researchers can control the 

behaviour of nano biosensors, providing for enhanced control of their movement in the blood. This is 

important for applications such as targeted drug delivery, where exact control of nanobiosensor velocity 

significantly impacts the exactness and efficiency of treatment, or in disease monitoring, where reliable 

sensor performance is important for accurate diagnosis. Eventually, a deeper understanding of the slip and 

velocity allows the advancement of more effective biomedical technologies. 

 

Figure 7 shows the relationship between the velocity (u) of nanobiosensors in blood and stenosis depth (δ). 

Stenosis depth is the measurement of narrowing or constriction in the artery, that alters the flow blood flow 

dynamics. As the graph depicts, an upsurge in stenosis depth causes a rise in nanobiosensor velocity. This 

can be elucidated by Bernoulli's principle, which states that a decrease in cross-sectional area within a fluid 

flow system brings about an increase in velocity. For stenosed arteries, the narrowing of the arterial lumen 

raises blood pressure upstream of the stenosis, increasing the blood and nanobiosensors flow through the 

diseased region. Understanding the stenosis depth effect on flow is needed for refining the targeting 

precision and efficacy of nanobiosensor-based technologies. In applications like targeted drug delivery, 

disease monitoring, and diagnostic imaging, these flow behaviours can influence the accuracy with which 

nanobiosensors reach target areas in the diseased artery. By integrating an examination of multiple stenosis 

geometries, researchers can develop more sophisticated approaches to optimize sensor performance in real-

world biomedical circumstances. 

 

Figure 8 depicts the relationship between the velocity (u) of nanobiosensors in blood and the Grashof 

number (Gr). The Grashof number is representative of the ratio of buoyant forces to viscous forces in a 

fluid. With the increase in Grashof number, the graph illustrates an equivalent increase in nanobiosensor 

velocity, which is because of the domination of buoyant forces over viscosity. In simpler terms, a greater 

Grashof number shows that buoyancy-driven forces are stronger in relation to viscous forces (Abdelsalam 

and Zaher, 2023). This implies that as Gr growths, the buoyant forces on the nanobiosensors drive them 

more efficiently through the blood, ensuing in a clear rise in their velocity. When buoyant forces become 

larger than viscosity, the nanobiosensors experience resistance to a lesser extent, letting them disperse freely 

in the fluid. This improved motion is predominantly used in the framework of nanobiosensors in the blood, 
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where regulating their course is important for biomedical usage. By regulating the environments that affect 

the Grashof number, such as temperature gradients or fluid properties, researchers can better regulate the 

velocity and trajectory of nanobiosensors, refining the accuracy. The physical validation delivered by the 

Grashof number is a central reason of how buoyant forces effect sensor behaviour, and this understanding 

can be used to fine-tune the design of nanobiosensors in medical treatments. 

 

Figure 9 shows the variation of the transport coefficient (-K0) and the wall absorption parameter (β). The 

transport coefficient (-K0) characterises the rate of nanoparticle flux at the wall of artery, showing the 

effectiveness of nanobiosensors reaching the target. The observed trend in the graph shows that as the wall 

absorption parameter (β) increases, there is an upsurge in the transport coefficient (-K0). This phenomenon 

can be accredited to the increasing number of nanobiosensors reaching the stenosed arterial wall because 

of increased absorption at the wall. This relationship between the wall absorption parameter and the 

transport coefficient is necessary to optimize the targeting ability of nanobiosensors to diseased site. By 

enhancing the wall absorption parameter, researchers can expand the effectiveness of nanobiosensors in 

reaching the target, eventually improving the accuracy in disease detection. 

 

Figure 10 depicts the relationship between the transport coefficient (-K1) and the wall absorption parameter 

(β) for various thicknesses of the nanolayer (dnl). The transport coefficient (-K1) signifies the rate of 

convection occurring due to nanobiosensors in the bloodstream. The trend as per the graph directs that as 

the thickness of the nanolayer (dnl) increases, there is a decline in the transport coefficient (-K1). This is 

because of the decrease in convections arising out of thicker nanolayer. As the nanolayer thickens, the 

velocity of nanobiosensors or their convections in the blood reduce, leading to a decline in the transport 

coefficient. Thus, the nanolayer thickness and the transport coefficient is quantified for optimization in 

design and performance of nanobiosensor. By following the influence of nanolayer thickness on convection, 

researchers can progress towards more effective approaches to control nanobiosensor trajectory in the 

bloodstream, eventually improving the efficiency. 

 

Figure 11 illustrates the graph of the transport coefficient (-K1) and the wall absorption parameter (β) for 

various stenosis depths (δ). The transport coefficient (-K1) characterizes the rate of convection due to 

nanobiosensors movement in the blood. The trend in the graph reflects that as the stenosis depth (δ) growths, 

there is a corresponding rise in the transport coefficient (-K1). This is because of the higher velocity of 

nanobiosensors in the blood as the stenosis depth rises. By considering the effect of stenosis depth on 

nanobiosensor transport, researchers can develop more effective tactics for monitoring nanobiosensor 

movement in the blood. This parameter can ultimately augment the exactness and efficiency in targeted 

drug delivery. 

 

Figure 12 shows the graph of the transport coefficient (-K2) and the wall absorption parameter (β) for 

different thicknesses of the nanolayer (dnl). The transport coefficient (-K2) symbolizes the rate of 

convection and dispersion of nanobiosensors in the bloodstream. The detected trend in the graph designates 

that as the thickness of the nanolayer (dnl) growths, there is a reduction in the transport coefficient (-K2). 
This happens because of the reduction in velocity associated with the thicker nanolayer. As the nanolayer 

thickness growths, the velocity of nanobiosensors reduces, impeding their flow and dispersion in the 

bloodstream. By reflecting upon the influence of nanolayer thickness on convection and dispersion, 

researchers can progress to make more effective approaches for governing nanobiosensor movement in the 

bloodstream. This understanding can ultimately improve the precision in drug delivery. 

 

Figure 13 exhibits the graph of the transport coefficient (−K2) and the wall absorption parameter (β) for 

various stenosis depths (δ). The transport coefficient (−K2) measures the rate of convection and dispersion 
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of nanobiosensors in the bloodstream. The trend in the graph directs that as the stenosis depth (δ) rises, 

there is a corresponding growth in the transport coefficient (−K2). This is because of enhanced convection 

and dispersion of nanobiosensors due to greater velocity in the blood as stenosis depth surges. By reflecting 

upon these multiple stenosis, one can better comprehend how stenotic depth effect nanobiosensor transport 

and dispersion. This is decisive for designing nanobiosensor-based biomedical devices that are augmented 

for real-world conditions, where the exact control of sensor motion is essential.  

 

 
 

Figure 2. Graph of temperature θ of nano biosensors with radial direction r for heat source parameter h. 
 

 

 
 

Figure 3. Graph of temperature θ of nano biosensors with radial direction r for thickness of nanolayer dnl. 
 

 

 
 

Figure 4. Graph of velocity u of nano biosensors with radial direction r for thickness of nanolayer dnl. 
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Figure 5. Graph of velocity u of nano biosensors with radial direction r for Darcy number Da. 

 

 

 
 

Figure 6. Graph of velocity u of nano biosensors with radial direction r for slip parameter σ. 

 

 

 
 

Figure 7. Graph of velocity u of nano biosensors with radial direction r for stenosis depth δ. 
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Figure 8. Graph of velocity u of nano biosensors with radial direction r for Grashof number Gr. 
 

 
 

 
 

Figure 9. Graph of transport coefficient -K0 of nano biosensors with wall absorption parameter β. 

 

 

 

 
 

Figure 10. Graph of transport coefficient -K1 of nano biosensors with wall absorption parameter β for thickness of 

nanolayer dnl. 
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Figure 11. Graph of transport coefficient- K1 of nano biosensors with wall absorption parameter β for thickness of 

nanolayer δ. 

 

 

 
 

Figure 12. Graph of transport coefficient -K2 of nano biosensors with wall absorption parameter β for thickness of 

nanolayer dnl. 

 

 

 
 

Figure 13. Graph of transport coefficient -K2 of nano biosensors with wall absorption parameter β for stenosis depth 

δ. 
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4.1 Sensitivity Analysis 
Nanobiosensors hold immense potential for targeted drug delivery and diagnostics, but their performance 

can be significantly affected by factors such as nanolayer thickness and stenosis depth. To better understand 

the impact of these parameters, we have employed sensitivity analysis using the partial differentiation 

method. Equations (98) and (100) were differentiated partially with respect to 𝑑𝑛𝑙 and 𝛿 to measure the 

fluctuations in these parameters that affect the transport coefficients K1 and K2, which direct the convection 

and dispersion of nanobiosensors in the blood. The sensitivity analysis outcomes for the transport 

coefficients K1 and K2 designate that both coefficients are significantly affected by the nanolayer thickness 

and stenosis depth. 

 

(i) Effect of Nanolayer Thickness: As the nanolayer thickness growths, there is a clear reduction in the 

transport coefficients K1 and K2. This inverse relationship advocates that a thicker nanolayer causes a larger 

resistant to the motion of nanobiosensors, thus reducing the total effectiveness of their dispersion in the 

blood. The declined movement is possibly due to the amplified interaction between the nanolayer and the 

flow, impeding the convection and diffusion progressions. 

 

(ii) Effect of Stenosis Depth: In contrast, both K1 and K2 display a positive association with stenosis depth. 

As the stenosis depth surges, there is a surge in the values of K1 and K2. This behaviour is due to the 

narrowing of the arterial lumen, which quickens flow of blood, improving the convection and dispersion of 

nanobiosensors. The improved velocity in the stenosed regions assists in transporting the biosensors more 

effectually, leading to greater values of the transport coefficients. 

 

5. Conclusion 
Nanotechnology has notably progressed biosensing technology by presenting improved abilities of different 

nanomaterials such as metal nanoparticles, nanotubes, nanorods, and nanowires. These nanomaterials offer 

an outstanding platform to diagnose cardiovascular diseases. 

 

This research explores the features of nano-biosensors dispersed in a diseased artery with multiple stenoses. 

Nano-biosensors have substantial physical significance due to their capability to perceive precise biological 

signals and respond to biological fluctuations in real-time. They can cross the intricate vascular environment 

and interact with biological tissues on a nanoscale level, thus making them perfect for targeted diagnostics, 

disease monitoring, and drug delivery. Specifically, this study inspects the effect of nanolayer thickness on 

nano-biosensor behaviour upon temperature stimulation. The model is developed using the equation of 

continuity, Navier-Stokes equation (or equation of motion), and the diffusion equation. The mathematical 

model is solved analytically, and graphs of temperature, velocity, and transport coefficients are plotted using 

MATLAB. 

 

The physical implication of nano-biosensors lies in their capacity of responding to confined or local 

environments within the bloodstream, such as temperature deviations, pressure gradients, or chemical 

signals. This permits them to perform exact functions, like perceiving inflammation or releasing drugs at 

the target sites or diseased site. 

 

The mathematical consequences of this study can be recapitulated as: 

(1) Temperature: The temperature of nano-biosensors rises with a rise in the heat source parameter and the 

thickness of the nanolayer. This advocates that factors such as heat needed to trigger the nanobiosensors 

and thicker nanolayers influence the thermal response of nano-biosensors.  
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(2) Velocity: The velocity rises with greater Grashof and Darcy numbers, while it declines with increasing 

nanolayer thickness, slip parameter, and stenosis depth. This illustrates that fluid flow dynamics and arterial 

conditions strongly effect the motion and dispersion of nano-biosensors.  

 

(3) Transport Coefficients: The transport coefficients K0 and K1 surge with the wall absorption parameter, 

while K2 declines. This signifies that a greater interaction between the biosensors and the arterial wall 

improves nanoparticle transport while reducing dispersion, which is applicable for targeted drug delivery.  

 

(4) Nanolayer and Stenosis Impact: Both K1 and K2 rise with diminishing nanolayer thickness and growing 

stenosis depth. This shows the significance of nanolayer properties and arterial conditions in regulating 

biosensor motion.  

 

(5) For stenosis depths extending from 0.1x10(-3) m to 0.3x10(-3) m, nano-biosensors bearing a layer 

thickness of 30 nm shall be optimal in the temperature range of 310K-320K.  

 

Although the conclusions are promising, it is significant to recognize some limitations and challenges 

intrinsic to the modelling process. For instance, the complex geometry of arteries having multiple stenoses 

presents possible uncertainties in the dispersion of nano-biosensors. These probabilities may be reflected 

upon in further investigations when interpreting the study's consequences and applying them to biomedical 

practices. 

 

To sum up, this research offers a strong groundwork for the development nano-biosensors to treat, diagnose 

and manage cardiovascular disease. Incorporating the study’s considerations shall allow the development 

of more robust, dependable, and clinically feasible biosensing technologies. Further investigation of 

nanobiosensor sensitivity and stimuli response will also help expand their functionality in dynamic 

biological environments, improving their possibility for effective incorporation into biomedical systems, 

practices and treatment strategies. 
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Appendix 

 
Table 1. List of symbols. 

 
Symbol Meaning 

𝑟′ Dimensional radial direction 

𝜃′ Dimensional azimuthal direction 

𝑧′ Dimensional axial direction 

𝑅′(𝑧′) Dimensional radius of artery 

𝑅𝑜 Radius of non-stenosed artery 

𝛿𝑖
′ Dimensional stenosis depth 
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Table 1 continued… 
 

𝑑𝑖
′ Dimensional stenosis location 

𝑆𝑖
′ Dimensional stenosis width 

𝐿′ Dimensional length of arterial section 

𝜌𝑛𝑓 Density of nanofluid 

𝑢′ Dimensional axial velocity 

𝑣′ Dimensional radial velocity 

𝑤′ Dimensional azimuthal velocity 

𝑡′ Dimensional time 

𝐹𝑟′, 𝐹𝜃′, 𝐹𝑧′ Dimensional body forces in respective directions 

𝑃′ Dimensional pressure 

𝐷𝑛𝑓 Thermal diffusivity of nanofluid 

𝑇′ Dimensional temperature 

𝐻 Heat source parameter 

𝑘𝑛𝑓 Thermal conductivity of nanofluid 

𝑐′ Dimensional concentration of nanobiosensors 

𝐷′ Dimensional diffusivity of nanobiosensors 

𝑚′ Rate at which nanoparticles are released or absorbed 

𝑑𝑛𝑙 Thickness of nanolayer (on biosensors) 

𝑘𝑓 Thermal conductivity of blood 

𝑘𝑝 Thermal conductivity of nanobiosensor 

𝑘𝑛𝑙 Thermal conductivity of nanolayer 

𝑟𝑝 Radius of nanobiosensor 

𝜙 Volume fraction of nanobiosensor 

𝜇𝑛𝑓 Viscosity of nanofluid 

𝜇𝑓 Viscosity of blood 

𝐴1, 𝐴2 Shape parameter of nanoparticle 

𝜌𝛾𝑛𝑓 Thermal expansion of nanofluid 

𝜌𝛾𝑓 Thermal expansion of blood 

𝜌𝛾𝑝 Thermal expansion of nanobiosensor 

𝑔 Acceleration due to gravity 

𝑢𝐵
′  Dimensional velocity of slip 

𝑢𝑝
′  Dimensional velocity at the arterial boundary 

𝜎′ Dimensional slip parameter 

𝑘𝑜
′  Dimensional permeability at the arterial boundary 

𝑇𝑜 Temperature on the surface of the artery 

𝐷𝑎 Darcy number 

𝐺𝑟 Grashof number 

𝑃𝑒 Peclet number 

𝑢𝑎𝑣𝑔 Reference velocity 

𝑐𝛼 Reference concentration 

𝛽 Wall absorption parameter 

𝜃 Non- dimensional temperature 

𝑢 Non- dimensional axial velocity 

𝐾0 , 𝐾1 , 𝐾2 Transport coefficients 

The symbols without dash represent non-dimensional quantities. 

 

 

 

Table 2. Thermophysical values for properties of blood and carbon nanotubes used for calculations. 
 

Physical properties Blood (Bali and Prasad, 2022) Carbon nanotubes (Ferrier and 

Honeychurch, 2021) 

Heat Capacitance (𝑐𝑝) 3594 J/Kg K 550 J/Kg K 

Thermal Conductivity (𝑘) 0.492W/m_ K 3000 W/m K 

Density (𝜌) 1060 Kg/m3 1300 Kg/m3 

Thermal expansion coefficient (𝛾) 0.18 X 10-5 K-1 2.1 X 10-5 K-1 
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