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Abstract 

In this article, we improve the behavior of nonparametric Shewhart-type control charts, which employ order statistics and 

multiple runs-type rules. The proposed class of monitoring schemes includes some existing control charts. In addition, new 

distribution-free monitoring schemes that pertain to the class, are set up and examined extensively. Explicit expressions for 

determining the variability and the mean of the run length distribution for the enhanced control charts are additionally 

delivered. As an example, a real-life managerial application is considered, where the proposed framework is implemented in 

order to enhance the provided services of a company under a supply chain management environment. Based on numerical 

comparisons, we draw the conclusion that the new charts outperform their competitors in identifying potential changes in the 

fundamental distribution in almost all cases considered. 

 

Keywords- Average run length, Nonparametric statistical process control, Order statistics, Multiple runs, Supply chain 

management application. 

 

 

 

1. Introduction 
Statistical process control is extensively employed to monitor the quality of a production process, where no 

matter how diligently it is nurtured, inherent variability inevitably arises. Monitoring schemes help the 

professionals tasked with identifying identifiable origins of variability. Whenever the production has been 

changed toward an alternative (undesirable) state, a control chart should quickly identify it and issue an 

out-of-control signal as soon as possible.  

a) It is evident that the preponderance of the monitoring frameworks is based on specific distributional 

assumptions. However, this presumption is not consistently fulfilled in real-life applications. To 

overcome this obstacle while still maintaining the traditional arrangement of the usual monitoring 

framework, several control charts without distributional assumptions have been documented in 

scholarly works and are called distribution-free. They all employ a suitably selected plotting statistic 

and pursue the structure of either Shewhart-type, Cumulative (CUSUM, hereafter) or Exponentially 

Weighted Moving Average (EWMA, hereafter) schemes.  

b) During the previous decade, a few EWMA-type nonparametric monitoring schemes have been 

presented in scholarly works. As an example, Perdikis et al. (2023) introduced an adjusted Phase II 

EWMA scheme, which employs the well-known sign statistic, while Perdikis et al. (2021) suggested a 

nonparametric EWMA‐type framework, which utilizes the Wilcoxon signed rank statistic. Moreover, 

Godase et al. (2022) established deciles-based monitoring schemes, which follow the aforementioned 

structure and seem to be quite capable for identifying changes in the dispersion of the underlying 

process. In addition, Xue et al. (2023) and Xue et al. (2024) proposed EWMA control charts for 

monitoring mixed continuous and count data or mixed continuous and categorical data respectively. A 

comprehensive and current overview of nonparametric EWMA monitoring schemes can be found in 

the work of Triantafyllou and Ram (2021a).  
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c) Moreover, CUSUM-type monitoring schemes have also sparked significant research interest in recent 

times. For instance, Xue and Qiu (2021) proposed a distribution-free CUSUM-type chart, which is 

suitable for controlling multidimensional correlated datasets. On the other hand, Wang et al. (2023) 

introduced nonparametric CUSUM-type control charts, whose aim is to track the dispersion of count 

data by the aid of categorical data analysis tools. In a bivariate framework, Erem and Mahmood (2023), 

Koutras and Sofikitou (2017) proposed nonparametric and semi-parametric control charts based on 

exceedance statistics and order statistics respectively. Some up-to-date advances on the topic have been 

provided by Abbas et al. (2024) and Tang and Li (2024). A comprehensive and current overview of 

nonparametric CUSUM monitoring schemes can be found in the work of Triantafyllou and Ram 

(2021b).  

d) Clearly, the Shewhart-type monitoring framework achieves a high performance, particularly in the 

presence of substantial shifts in the fundamental distribution. In this regard, a few nonparametric charts, 

which employ order statistics have been documented in scholarly works. For instance, Janacek and 

Meikle (1997) proposed two-sided distribution-free charts, whose control limits are calculated based 

on reference data which have been drawn during the in-control phase of the process. Within their 

structure, determining whether the process stays at an in-control state, or it has been shifted to an out-

of-control situation, depends on the median values of test samples which are collected from the 

underlying production. The aforementioned structure has been also investigated and generalized by 

Chakraborti et al. (2004), where several quantiles (apart from the median) has been also considered. 

Advancing this line of research, Balakrishnan et al. (2010) and Triantafyllou and Panayiotou (2020) 

factored in not only where suitably selected order statistics from the available test data are placed, but 

took also into consideration the quantity of test observations that lie between the lower and the upper 

control limit in order to characterize the production as in- or out-of-control. Koutras and Sofikitou 

(2020) established semiparametric bivariate monitoring schemes, which employ order statistics and 

have been proven to be quite efficacious in simultaneously controlling the production for plausible 

changes in either mean or/and variability. 

e) On the other hand, Malela-Majika et al. (2022a) proposed an efficacious and powerful one-sided 

framework by the aid of precedence statistics and advanced runs-type rules, wherein no distributional 

presumptions in either zero- states or steady-states modes are needed to be made. Additionally, 

Panayiotou and Triantafyllou (2023) proposed a monitoring framework which employs order statistics 

and simple runs-type rules. Some up-to-date advances on the topic have been provided by Perdikis et 

al. (2024), and Triantafyllou (2024). For an in-depth research and several intriguing viewpoints on 

distribution-free monitoring structures, we touch on the works of Chakraborti and Graham (2019), or 

Qiu (2018, 2019).  

f) Additionally, it is of some interest to point out that several approaches, which have been already 

introduced in the existing literature, combine the Shewhart framework with the CUSUM or the EWMA 

one. Some advances on the specific topic can be found in Tyagi (2019), Abujiya et al. (2013), Malela-

Majika et al. (2022b), Capizzi and Masarotto (2010), and Wu et al. (2008).  

 

In the present article, we study distribution-free Shewhart-type monitoring schemes, which employ order 

statistics along with signaling multiple runs-type rules. In other words, we implement the structure, which 

has been implemented in the work of Triantafyllou and Panayiotou (2020) and the proposed nonparametric 

chart seems to be improved by adding multiple runs-rules. The implementation of more sophisticated runs-

type decision rules is expected (and finally is confirmed) to result in a more efficient monitoring scheme 

for detecting both smaller or larger shifts in the underlying process distribution. In Section 2, the framework 

of the advanced monitoring schemes is investigated extensively. Explicit expressions for determining the 

mean and variance of the corresponding run length distribution are proved in Section 3. These expressions 

are of high importance since they provide the opportunity to the practitioner to calculate the exact in- and 
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out-of- control performance of the resulting monitoring scheme. In Section 4, an extensive numerical 

experimentation confirms that the suggested charts outmatch their nonparametric contenders in all 

challenges considered. Lastly, the Conclusion section summarizes the novelty of the current article, while 

a few perspectives for forthcoming endeavors are also pointed, while some concluding remarks and a few 

perspectives for forthcoming endeavors are pointed in conclusion section. 

 

2. The General Framework for Constructing the Improved Distribution-Free Structures 
In the present section, we study a class of a modified controlling framework, which employs order statistics, 

wherein multiple runs are also taken into consideration for characterizing the process as in-control or out-

of-control. The control limits of the suggested control schemes utilize reference data, which are collected 

from the production when it is assumed to be in-control. The proposed schemes are born by implementing 

the plotting statistics used by Triantafyllou and Panayiotou (2020) and improving their performance by 

applying additional multiple runs-type rules. 

 

For building up the proposed control charts, a reference data set of m observations, e.g. 𝑋1, 𝑋2, … , 𝑋𝑚 with 

cumulative distribution function (c.d.f) 𝐹, is collected from the production during its in-control phase. In 

other words, 𝑋1, 𝑋2, … , 𝑋𝑚 are random variables, which share a common c.d.f. If we denote by 𝑋𝑖:𝑚 the 

𝑖 −th ordered statistic of the reference sample, the control limits of the resulting schemes correspond to 

suitably selected data of the respective ordered sample 𝑋1:𝑚, 𝑋2:𝑚, … , 𝑋𝑚:𝑚. 

 

To determine if the production remains in-control or has shifted to out-of-control state, n test observations, 

e.g. 𝑌1
ℎ , 𝑌2

ℎ , … , 𝑌𝑛
ℎ (ℎ = 1,2, … ) with c.d.f 𝐺, are afterwards drawn independently of each other (and also of 

the reference data). Within a stricter statistical terminology, we aim at tracking down plausible changes in 

the production, e.g. to detect possible distributional shifts from 𝐹 to 𝐺.  

 

The main idea of the suggested controlling framework is related to the ordered test data collected from the 

production. Let 𝑌1:𝑛
ℎ , 𝑌2:𝑛

ℎ , … , 𝑌𝑛:𝑛
ℎ  (ℎ = 1,2, …) be the ordered statistics of the ℎ − 𝑡ℎ test sample, the 

monitoring statistics of the proposed charts are actually some data from the ordered 𝑌 − sample. To be 

more precise, we should first choose four ordered reference observations, say 𝑋𝑎:𝑚, 𝑋𝑏:𝑚, 𝑋𝑐:𝑚, 𝑋𝑑:𝑚 with 

1 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 ≤ 𝑚. We next collect two suitably chosen order statistics, say 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ  with 𝑖 < 𝑗, from 

the ℎ − 𝑡ℎ test sample 𝑌1
ℎ , 𝑌2

ℎ , … , 𝑌𝑛
ℎ (ℎ = 1,2, …) and these order statistics are actually the first two plotting 

statistics of the proposed monitoring scheme. Apart from them, we also focus on the amount of observations 

from each test sample, which are placed in the intervals (𝑋𝑎:𝑚, 𝑋𝑏:𝑚) and (𝑋𝑐:𝑚, 𝑋𝑑:𝑚) respectively. If we 

denote by 𝑅1
ℎ = 𝑅(𝑌1

ℎ , 𝑌2
ℎ , … , 𝑌𝑛

ℎ; 𝑋𝑎:𝑚, 𝑋𝑏:𝑚) and 𝑅2
𝑤 = 𝑅(𝑌1

ℎ, 𝑌2
ℎ , … , 𝑌𝑛

ℎ; 𝑋𝑐:𝑚, 𝑋𝑑:𝑚) the number of 

𝑌 −observations that belong to the territories (𝑋𝑎:𝑚, 𝑋𝑏:𝑚) and (𝑋𝑐:𝑚, 𝑋𝑑:𝑚) correspondingly, then the 

random variables 𝑅1
ℎ and 𝑅2

ℎ are two additional monitoring statistics of the proposed scheme, which shall 

be used along with 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ  mentioned earlier. 

 

Moreover, we propose that the process shall be characterized as in-control or out-of-control after observing 

a specified number of multiple runs. Since each group of test observations, which is drawn from the process, 

gives either a good (in-control, IC hereafter) or bad (out-of-control, OOC hereafter) signal, the testing 

procedure can be viewed as a series of binary trials with two plausible results, e.g. IC or OOC. Under this 

framework, a multiple run 𝑀𝑅𝑟,𝑘 is occurred upon the 𝑟 −th appearance of a run of OOC signals with 

length 𝑘, where, 𝑟, 𝑘 are positive integer-valued parameters. In practical terms, the production shall be 

named as out-of-control, when 𝑘 consecutive test samples give an OOC signal not for the first but for the 

𝑟 −th time (Balakrishnan and Koutras, 2002). It is straightforward that the proposed monitoring framework 
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follows the traditional outlet of a distribution-free control chart, e.g. there is no distributional assumption 

therein. In addition, the implementation of some sophisticated runs-type rules seem that it can boost the 

performance of the new charts and make them more efficient in detecting small changes in the underlying 

distribution process. 

 

The random variable that holds paramount significance is the waiting time for the occurrence of a multiple 

run 𝑀𝑅𝑟,𝑘. In the literature, there exist different enumeration approaches while dealing with the distribution 

of the above-mentioned waiting time random variable. The traditional structure for tasks related to runs of 

specified length is the framework provided by Feller (1968). Within the aforementioned argumentation, 

once 𝑘 consecutive OOC signals take place, a OOC run of length 𝑘 is recorded, while the enumeration 

procedure begins a new run. It is straightforward that under this enumeration framework there is no 

overlapping counting. Within the framework of the current work, we tend to follow the aforementioned 

enumeration scheme. 

 

The overall structure of the suggested class of modified monitoring schemes is described below. 

Stage A. Collect m reference observations from the in-control production. 

Stage B. Calculate the control limits of the controlling structure via the respective reference ordered data.  

Stage C. Collect independent test groups of n observations from the production. 

Stage D. Compute the observed values of monitoring statistics 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ , 𝑅1
ℎ and 𝑅2

ℎ based on the 

observations of each test sample.  

Stage E. Activate a multiple run 𝑀𝑅𝑟,𝑘 rule.  

Stage F. Characterize the production as in-control or out-of control with the help of the monitoring statistics 

and the 𝑀𝑅𝑟,𝑘 rule, which has been determined previously. 

 

Before we proceed to prove the main theoretical outcomes for the suggested family of controlling schemes, 

we should succinctly provide some information regarding the plotting statistics, which shall be used and 

how an OOC signal is produced by the new schemes. As mentioned before, the proposed control charts 

utilize four different monitoring statistics, e.g. 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ , 𝑅1
ℎ and 𝑅2

ℎ with 𝑖 < 𝑗. All these statistics are 

calculated for all test samples, which are collected from the production. Under the proposed framework, 

the ℎ −th test sample does not produce a bad signal, whenever the next constraints are met 

𝑋𝑎:𝑚 ≤ 𝑌𝑖:𝑛
ℎ ≤ 𝑋𝑏:𝑚,  𝑋𝑐:𝑚 ≤ 𝑌𝑗:𝑛

ℎ ≤ 𝑋𝑑:𝑚, 𝑅1
ℎ ≥ 𝑟1 and 𝑅2

ℎ ≥ 𝑟2                                                               (1) 

 

where, 𝑟1, 𝑟2 are positive integer-valued parameters. Within the suggested controlling framework which is 

presented in Equation (1) (𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart, hereafter), the production is declared as out-of-control 

once we notice 𝑟 subsequences of 𝑘 bad signals, namely every time that we witness 𝑟 subsequences of test 

groups of length 𝑘, wherein at least one condition stated in Equation (1) has been violated. In simpler words, 

the parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛, 𝑟1, 𝑟2 are design parameters of the proposed monitoring framework providing 

the suitable set of conditions that are needed to be satisfied in order not to produce an out-of-control alarm. 

 

It is worth mentioning that certain nonparametric monitoring schemes, previously presented in scholarly 

works, can be regarded as constituents of the novel distribution-free class introduced in this work. For 

instance, the control charts introduced by  

• Janacek and Meikle (1997) can be viewed as a 𝑁𝑀𝐶𝐶1,1,𝑎,𝑏,𝑎,𝑏,𝑚𝑒𝑑,𝑚𝑒𝑑 −chart where 𝑚𝑒𝑑 correspond to 

the median of the underlying test sample. 

• Chakraborti et al. (2004) can be viewed as a 𝑁𝑀𝐶𝐶1,1,𝑎,𝑏,𝑎,𝑏,𝑖,𝑖 −chart with 𝑟1 = 𝑟2 = 0. 

• Balakrishnan et al. (2010) can be viewed as a 𝑁𝑀𝐶𝐶1,1,𝑎,𝑏,𝑎,𝑏,𝑖,𝑖 −chart. 
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• Triantafyllou and Panayiotou (2020) can be viewed as a 𝑁𝑀𝐶𝐶1,1,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart. 

• Panayiotou and Triantafyllou (2023) can be viewed as a 𝑁𝑀𝐶𝐶1,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart. 

 

As a concluding remark for the discussion that has unfolded so far, we may readily deduce that the proposed 

class of monitoring schemes is a generalization of some existing nonparametric frameworks, which employ 

order statistics from the test samples to clarify if the production remains in an in-control state, or a shift has 

been occurred. 

 

3. Main Results for the 𝑵𝑴𝑪𝑪𝒓,𝒌,𝒂,𝒃,𝒄,𝒅,𝒊,𝒋 − Monitoring Schemes 

In the current section, we prove some theoretical outcomes for the suggested nonparametric monitoring 

schemes. We study two important features of the run length distribution for the suggested class of 

𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − charts. To be more accurate we prove closed expressions for determining the average 

run length and the respective variance of 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − charts. It is noticeable that, given the great 

quantity of design parameters of the suggested schemes, we offer to the professional the opportunity to 

satisfy any pre-specified requirements by determining appropriately the values of the parameters. 

 

The next proposition offers integral expressions for computing the average run length (ARL) and the 

respective variance (VRL) of the suggested 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − charts.  

 

Proposition 1. (i) The unconditional ARL and the unconditional VRL of the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − scheme 

are determined as  

 

𝐴𝑅𝐿𝑟,𝑘 = ∫ ∫ ∫ ∫
𝑟(1−𝑝𝑘)

(1−𝑝)𝑝𝑘

𝑡1

0
𝑓𝑎,𝑏,𝑐,𝑑(𝑠1, 𝑡1, 𝑠2, 𝑡2)𝑑𝑠1𝑑𝑡1𝑑𝑠2𝑑𝑡2

𝑠2

0

𝑡2

0

1

0
                                                           (2) 

 

and 

𝑉𝑅𝐿𝑟,𝑘 = ∫ ∫ ∫ ∫
𝑟(1−(2𝑘+1)(1−𝑝)𝑝𝑘−𝑝2𝑘+1)

((1−𝑝)𝑝𝑘)2

𝑡1

0

𝑠2

0

𝑡2

0

1

0
 × 𝑓𝑎,𝑏,𝑐,𝑑(𝑠1, 𝑡1, 𝑠2, 𝑡2)𝑑𝑠1𝑑𝑡1𝑑𝑠2𝑑𝑡2                          (3) 

 

respectively, while 

𝑝 = 1 − 𝑞(𝐺𝐹−1(𝑠1), 𝐺𝐹−1(𝑡1), 𝐺𝐹−1(𝑠2), 𝐺𝐹−1(𝑡2); 𝑟1, 𝑟2)  

 

and 

𝑞(𝑣, 𝑤, 𝑡, 𝑧; 𝑟1, 𝑟2) = ∑ ∑ ∑ ∑ 𝑛!
𝑛−𝑐1−𝑗+𝑖−1
𝑐4=max (0,𝑟2+𝑐2+𝑐3−𝑗+𝑖)

min (𝑛−𝑐1−𝑐2−2,𝑗−𝑖−1−𝑐2)
𝑐3=0

min (𝑛−𝑐1−2,𝑗−𝑖−1)
𝑐2=max (0,𝑟1−𝑐1−1)

𝑛−2
𝑐1=0  ×

1

(𝑖−𝑐1−1)!(𝑐1+𝑐2+1)!𝑐3!(𝑗−𝑖−𝑐2−𝑐3+𝑐4)!(𝑛−𝑗−𝑐4)!
 × 𝑣𝑖−𝑐1−1(𝑤 − 𝑣)𝑐1+𝑐2+1(𝑡 − 𝑤)𝑐3(𝑧 − 𝑡)𝑗−𝑖−𝑐2−𝑐3+𝑐4(1 −

𝑧)𝑛−𝑗−𝑐4                                                                                                                                                        (4) 

and 

𝑓𝑎,𝑏,𝑐,𝑑(𝑠1, 𝑡1, 𝑠2, 𝑡2) =
𝑚!

(𝑎−1)!(𝑏−𝑎−1)!(𝑐−𝑏−1)!(𝑑−𝑐−1)!(𝑚−𝑑)!
 × 𝑠1

𝑎−1(𝑡1 − 𝑠1)𝑏−𝑎−1(𝑠2 − 𝑡1)𝑐−𝑏−1(𝑡2 −

𝑠2)𝑑−𝑐−1(1 − 𝑡2)𝑚−𝑑 , 0 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < 1                                                                                    (5) 

 

calls for the joint density function of the random variables 𝑠1, 𝑡1, 𝑠2, 𝑡2. 

 

Proof: Let 𝑇𝑟,𝑘 be the waiting time till the 𝑟 −appearance of a run of 𝑘 consecutive bad signals, namely till 

an out-of-control signal is provided by the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − scheme. It is quite clear that 𝑇𝑟,𝑘 coincides 

with the run length of the resulting control chart. Since the test samples are assumed to be independent from 
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each other and from the reference sample, the random variable 𝑇𝑟,𝑘 follows the negative binomial 

distribution of order 𝑘. The particular terminology was initially coined by Philippou (1984) and since then 

it has garnered significant research attention. Recent progress on the subject is presented by Georghiou et 

al. (2021) and De Souza and Diniz (2022). 

 

Given 𝑋𝑎:𝑚 = 𝑥, 𝑋𝑏:𝑚 = 𝑦, 𝑋𝑐:𝑚 = 𝑧, 𝑋𝑑:𝑚 = 𝑤, the random variable 𝑇𝑟,𝑘 can be considered as the 𝑟 −th 

convolution of the geometric distribution of order 𝑘. The probability generating function of 𝑇𝑟,𝑘 is 

determined as follows  

𝐸(𝑧𝑇𝑟,𝑘) = (𝐺(𝑧))𝑟                                                                                                                                      (6) 

 

where, 𝐺(𝑧) expresses the probability generating function of the waiting time till the occurrence of the first 

run, e.g. if 𝑝 is the success probability of the waiting distribution, then 𝐺(𝑧) can be computed as 

𝐺(𝑧) =
(𝑝𝑧)𝑘

1−(1−𝑝)𝑧𝐴(𝑧)
                                                                                                                                     (7) 

 

where, 

𝐴(𝑧) =
1−(𝑝𝑧)𝑘

1−𝑝𝑧
                                                                                                                                             (8) 

 

Therefore, if 𝐺′(𝑧) and 𝐺′′(𝑧) denote the first and second derivate of 𝐺(𝑧), subsequently the conditional 

expected value and variance of the random variable 𝑇𝑟,𝑘 are given via the next expressions 

𝐸(𝑇𝑟,𝑘|𝑋𝑎:𝑚 = 𝑥𝑎, 𝑋𝑏:𝑚 = 𝑥𝑏 , 𝑋𝑐:𝑚 = 𝑥𝑐 , 𝑋𝑑:𝑚 = 𝑥𝑑) = 𝑟 ∙ 𝐺′(1) = 𝑟 ∙
(𝑝𝑧)𝑟𝑘

(1−(1−𝑝)𝑧𝐴(𝑧))𝑟                           (9) 

 

and 

𝑉𝑎𝑟(𝑇𝑟,𝑘|𝑋𝑎:𝑚 = 𝑥𝑎 , 𝑋𝑏:𝑚 = 𝑥𝑏 , 𝑋𝑐:𝑚 = 𝑥𝑐 , 𝑋𝑑:𝑚 = 𝑥𝑑) = 𝑟 ∙ (𝐺′′(1) + 𝐺′(1) − (𝐺′(1))2) =
𝑟(1−(2𝑘+1)(1−𝑝)𝑝⬚

𝑘 −𝑝⬚
2𝑘+1)

((1−𝑝)𝑝⬚
𝑘 )2

                                                                                                                            (10) 

 

respectively. Under the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − monitoring scheme, the success probability p of the latter 

geometric distribution of order 𝑘 expresses actually the possibility that the group of constraints declared in 

Equation (1) is not met. On the other hand, the particular possibility can be expressed via the next multiple 

sum (Triantafyllou and Panayiotou, 2020). 

∑ ∑ ∑ ∑  𝑛!
𝑛−𝑐1−𝑗+𝑖−1
𝑐4=max (0,𝑟2+𝑐2+𝑐3−𝑗+𝑖)

min (𝑛−𝑐1−𝑐2−2,𝑗−𝑖−1−𝑐2)
𝑐3=0

min (𝑛−𝑐1−2,𝑗−𝑖−1)
𝑐2=max (0,𝑟1−𝑐1−1)

𝑛−2
𝑐1=0 ×

𝑣𝑖−𝑐1−1(𝑤−𝑣)𝑐1+𝑐2+1(𝑡−𝑤)𝑐3(𝑧−𝑡)𝑗−𝑖−𝑐2−𝑐3+𝑐4(1−𝑧)𝑛−𝑗−𝑐4

(𝑖−𝑐1−1)!(𝑐1+𝑐2+1)!𝑐3!(𝑗−𝑖−𝑐2−𝑐3+𝑐4)!(𝑛−𝑗−𝑐4)!
                                                                                 (11) 

 

Combining Equations (9), (10) and (11), the desirable results are readily obtained.  

 

With the results proved in Proposition 1 readily available, the unconditional in-control ARL and VRL of the 

suggested monitoring framework are easily acquired by switching 𝐹 = 𝐺 in the expressions proved 

previously. Table 1 displays the in-control ARL’s of 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − control charts under different 

choices of design parameters.  
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Table 1. In-control ARL of 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − charts for several designs. 
 

Reference sample of size m 

  50 100 200 

ARLo n (r,k,a, b,c, d, i, j, r1, r2) 
Exact 

ARLin 
(r,k,a, b,c, d, i, j, r1, r2) 

Exact 

ARLin 
(r,k,a, b,c, d, i, j, r1, r2) ARLin 

370 5 (3,11,5,14,24,42,1,3,2,3) 370.06 (3,14,6,27,40,70,1,3,2,3) 371.39 (2,14,9,52,121,170,1,3,2,3) 370.05 

 7 (3,9,9,16,25,33,1,4,2,2) 368.15 (3,8,9,16,45,72,1,4,2,2) 372.73 (3,5,9,31,92,135,1,4,2,3) 376.34 

 11 (3,1,9,17,25,31,2,6,2,3) 373.59 (4,7,9,30,65,90,2,5,2,3) 370.97 (4,16,9,33,121,150,1,6,2,3) 368.55 

 15 (4,8,10,19,25,41,3,9,2,4,) 370.99 (3,14,10,19,46,64,3,9,3,4) 368.13 (3,6,15,33,96,126,3,9,3,4) 366.19 

500 5 (3,2,5,14,24,40,1,3,2,3) 504.99 (3,14,9,27,40,70,1,3,2,3) 499.45 (3,7,9,52,90,140,1,3,2,3) 501.17 

 7 (3,9,9,16,26,33,1,4,2,2) 497.82 (3,14,9,16,42,75,1,4,2,3) 497.17 (3,5,9,28,92,135,1,4,2,3) 501.45 

 11 (4,9,9,20,25,31,2,5,2,3) 497.09 (4,13,9,27,65,90,2,5,2,3) 501.09 (4,10,9,33,125,150,1,6,2,3) 502.29 

 15 (3,10,10,19,26,40,3,9,2,4) 502.04 (3,8,10,19,46,62,3,9,3,4) 493.48 (3,19,15,33,96,124,3,9,3,4) 497.96 

 

 

In accordance with the numerical results given at Table 1, the professional could pick up the most suitable 

designs for building up a nonparametric monitoring scheme that fulfills the pre-specified requirements, 

namely the desired in-control ARL-performance. For example, we next contemplate the scenario, where a 

reference data set of 𝑚 = 200 observations is drawn from the in-control process. We next collect 

independently succeeding samples of 𝑛 test observations. Our objective is to build a control chart that brings 

about an in-control ARL in the region of 500. In accordance with Table 1, the latter requirement is fulfilled 

by building up  

• A 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − chart with design parameters 𝑛 = 5, 𝑟 = 3, 𝑘 = 7, 𝑎 = 9, 𝑏 = 52, 𝑐 = 90, 𝑑 =

140, 𝑖 = 1, 𝑗 = 3, 𝑟1 = 2, 𝑟2 = 3. In other words, the practitioner should collect test samples of 5 

observations, while the 9th, 52nd, 90th and 140th ordered reference observation should be chosen as the 

control limits. The resulting 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −scheme brings about an in-control ARL equal to 

501.17, or  

 

• A 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − chart with design parameters 𝑛 = 7, 𝑟 = 3, 𝑘 = 5, 𝑎 = 9, 𝑏 = 28, 𝑐 = 92, 𝑑 =

135, 𝑖 = 1, 𝑗 = 4, 𝑟1 = 2, 𝑟2 = 3. In other words, the practitioner should collect test samples of 7 

observations, while the 9th, 28th, 92nd and 135th ordered reference observation should be chosen as the 

control limits. The resulting 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart brings about an in-control ARL equal to 501.45, 

or  

 

• A 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − chart with design parameters 𝑛 = 11, 𝑟 = 4, 𝑘 = 10, 𝑎 = 9, 𝑏 = 33, 𝑐 =

125, 𝑑 = 150, 𝑖 = 1, 𝑗 = 6, 𝑟1 = 2, 𝑟2 = 3. In other words, the practitioner should collect test samples 

of 5 observations, while the 9th, 33rd, 125th and 150th ordered reference observation should be chosen as 

the control limits. The resulting 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart brings about an in-control ARL equal to 

502.29, or  

 

• A 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − chart with design parameters 𝑛 = 15, 𝑟 = 3, 𝑘 = 19, 𝑎 = 15, 𝑏 = 33, 𝑐 =

96, 𝑑 = 124, 𝑖 = 3, 𝑗 = 9, 𝑟1 = 3, 𝑟2 = 4. In other words, the practitioner should collect test samples of 

5 observations, while the 15th, 33rd, 96th and 124th ordered reference observation should be chosen as 

the control limits. The resulting 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart brings about an in-control ARL equal to 

497.96.  
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4. Numerical Comparisons 
We next conduct thorough numerical experiments to illuminate the effectiveness of the new monitoring 

schemes and their resilience attributes across various out-of-control scenarios. The calculations leverage 

the theoretical findings established in section 3. 

 

A conventional method for comparing two alternative control schemes involves defining a shared 

in−control ARL and afterwards to look at the corresponding out−control ARL’s. It is evident that once a new 

monitoring framework is introduced as a generalization of charts already established, the direct contrasting 

against them is strongly advised. Consequently, we next contrast the behavior of the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − 

chart to the one proposed by Triantafyllou and Panayiotou (2020), Panayiotou and Triantafyllou (2023) and 

Balakrishnan et al. (2010). 

 

Table 2 offers several numerical comparisons between the suggested framework and the nonparametric 

schemes established by Triantafyllou and Panayiotou (2020) and Panayiotou and Triantafyllou (2023) 

(Competitive scheme 1 and Competitive scheme 2, respectively).  

 

We next consider the scenario that 𝑚 = 100 reference observations are within reach, while test samples of 

𝑛 = 25 observations are afterwards collected from the production to determine if it remains at an in-control 

state, or it has shifted to an out-of- control situation. All competitive charts are constructed in a way that an 

in-control ARL in the region of 500 is observed. Throughout the lines of Table 2, the in-control distribution 

of the production is presumed to be the Exponential distribution with parameter 𝜆 = 1. The out−of−control 

behavior of the competitive charts is appraised via the respective ARL’s for different changes of the 

distribution.  

 

Table 2. ARL values of the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − schemes against competitors under exponential 

distribution for different shifts θ (m = 100, n = 25). 
 

Exponential distribution (λ) 

Shift 

𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −chart 

𝑟 = 1, 𝑘 = 1, 𝑎 = 10, 𝑏 = 44, 𝑐 = 56, 𝑑 = 83, 

𝑖 = 5, 𝑗 = 20, 𝒓1
⬚ = 2 , 𝒓2

⬚ = 2 

Competitive scheme 1 Competitive scheme 2 

0.000 491.91 497.21 492.12 

0.025 377.66 485.98 402.57 

0.050 286.73 464.96 319.50 

0.075 215.71 434.80 246.08 

0.100 161.47 396.84 184.13 

0.125 120.76 353.09 134.15 

0.150 90.59 306.01 95.51 

0.175 62.44 258.20 66.80 

0.200 46.17 212.12 46.23 

 

 

For instance, we next contemplate the scenario where the production mean has been changed 𝜃 = 0.05 

units. Within the latter scenario, the suggested 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − framework attains an out-of-control 

ARL equal to 286.73 (see Table 2), while the corresponding ARL- values for both competitors are larger 

and more specifically are equal to 464.96 and 319.50 for Competitive scheme 1 and Competitive scheme 2 

respectively. In simpler words, the proposed scheme detects the underlying shift after approximately 287 

test samples, while its competitors are experiencing a delay in identifying the change since Competitive 

Scheme 1 calls for about 465 test samples and Competitive Scheme 2 calls for about 320 test samples in 

order to produce an alarm. 
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In the next lines, we explore the out-of-control behavior of the family of 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − framework 

by offering numerical contrasting versus Competitive scheme 1 and Competitive scheme 2. As previously 

stated, since the suggested 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − framework constitutes a generalization of the monitoring 

schemes introduced by Triantafyllou and Panayiotou (2020) and Panayiotou and Triantafyllou (2023), 

making a direct comparison between them is of significant interest. 

 

Table 3 illustrates a numerical contrasting between the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − scheme and the nonparametric 

charts introduced by Triantafyllou and Panayiotou (2023) and Balakrishnan et al. (2010) (Competitive 

scheme 1 and Competitive scheme 3, respectively). 

 

We next consider the scenario where, 𝑚 = 100 reference data are within reach, while the competitive 

structures are built up such that an in-control ARL in the region of 500 is attained. Throughout the lines of 

Table 3, two distinct cases for the distribution of the production are studied, namely Normal distribution 

and Laplace distribution. 

 

Let us begin with the scenario of a production having normality, e.g. the in-control distribution to be the 

well-known standard Normal distribution with parameters 0 and 1. W suppose that the out-of-control 

distribution is still normal distribution, but plausible changes in mean and/or standard deviation (equal to θ 

units and δ units respectively) are present. 

 

The initial segment of Table 3 distinctly indicates that, assuming the process follows a normal distribution, 

the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − chart performs better than Competitive scheme 1 and Competitive scheme 3, with 

respect to the out-of-control ARL values, in all scenarios studied. For instance, we next focus on the case 

where the production mean has been changed θ=0.25 units. As it is readily concluded with the assistance 

of Table 3, the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − framework achieves an out-of-control ARL equal to 57.31, while the 

respective ARL-value for Competitive scheme 1 and Competitive scheme 3 are equal to 176.43 and 248.92 

respectively. 

 

 
Table 3. ARL values of the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − schemes versus competitors under normal distribution and Laplace 

distribution for given shifts θ, δ (m = 100). 
 

 

  Normal distribution (θ, 1+δ) Laplace distribution (θ, 1+δ) 

θ δ 
𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − 

chart 

Competitive 

scheme 1 

Competitive 

scheme 3 

𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −ch

art 

Competitive 

scheme 1 

Competitive 

scheme 3 

0 0 490.90 475.84 458.07 490.90 475.84 458.07 

0.25 0 57.31 176.43 248.92 84.16 263.59 374.63 

0.5 0 6.78 45.77 81.88 18.2 108.07 257.35 

1 0 4.02 6.30 10.00 9.38 13.82 84.08 

0.25 0.05 28.57 124.01 160.15 44.16 192.43 268.20 

0.5 0.05 6.17 37.91 59.08 23.44 84.65 187.85 

1 0.05 4.02 6.23 8.81 8.71 12.68 65.12 

0.25 0.10 17.32 91.21 109.40 37.55 145.26 198.46 

0.5 0.10 5.73 32.11 44.65 14.92 68.14 141.62 

1 0.10 4.02 6.17 7.90 8.09 11.76 51.92 

0.25 0.15 12.16 69.60 78.44 29.04 112.82 151.09 

0.5 0.15 5.40 27.67 35.01 9.52 56.10 109.75 

1 0.15 4.02 6.10 7.19 7.37 10.99 42.42 

0.25 0.20 9.44 54.74 58.51 14.40 89.79 117.88 

0.5 0.20 5.15 24.19 28.27 10.29 47.09 87.09 

1 0.20 4.02 6.04 6.61 7.07 10.36 35.39 
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On the other hand, at the right part of Table 3, the in-control production distribution is assumed to be 

Laplace distribution with parameters 0 and 1, while the changes we aim to detect are induced by a 

modification in either in the mean or the scale parameter. All competitors are built up such that an in-control 

ARL in the region of 500 is attained. For providing areas comparison between the suggested framework and 

the ones introduced by Triantafyllou and Panayiotou (2020) and Panayiotou and Triantafyllou (2023) 

(Competitive scheme 1 and Competitive scheme 3 respectively), we used a design given by the authors 

themselves.  

 

As it is readily deduced, the 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 −  framework is, under Laplace distribution, better than its 

competitors in all scenarios considered. As an example, we assume that the production mean of the in-

control distribution has been changed 0.5 units and the corresponding scale parameter has also shifted 0.05 

units, 𝑁𝑀𝐶𝐶𝑟,𝑘,𝑎,𝑏,𝑐,𝑑,𝑖,𝑗 − monitoring scheme achieves (Table 3) an out-of-control ARL equal to 23.44, 

while the respective ARL-values for Competitive scheme 1 and Competitive scheme 3 are worse and more 

specifically equal to 84.65 and 187.85 respectively. 

 

5. An Illustration Example of the New Monitoring Framework in Supply Chain Management 

Environment 
We next implement the suggested monitoring scheme to a real-life application. Generally speaking, supply 

chain management oversees and controls all the processes involved in transforming raw materials into 

finished products, which are subsequently sold to end-users. Its primary objective is to supervise the 

planning, design, manufacturing, inventory management, and distribution stages necessary for the 

production and sale of a company's products. One of the key aims of supply chain management is to enhance 

efficiency by synchronizing the activities of the different entities within the supply chain. This can 

ultimately improve the quality of the products, potentially leading to increased sales. Recent progression 

on the field is presented in the works provided by Kafeel et al. (2023), Gupta et al. (2023), Das et al. (2021), 

Mishra et al. (2023).  

 

Let us next consider a supply chain management example involving a company that produces and sells 

smartphones. The particular application is related to an international company, which engages in 

production, transportation and exports of mobile phones. The available data refer to a production period 15 

years ago. The main steps of the process are given briefly as follows: 

 

Stage 1. Raw material sourcing: The supply chain starts with the procurement of raw materials, such as 

metals, plastics, and electronic components. 

Stage 2. Manufacturing: The raw materials are transported to the manufacturing facility where they are 

assembled into smartphones. 

Stage 3. Distribution: Once the smartphones are manufactured, they are distributed to warehouses located 

in different regions. 

Stage 4. Retailers: Retailers place orders based on demand forecasts. 

Stage 5. Customer sales: Customers purchase smartphones from retailers or through online channels. 

Stage 6. Reverse logistics: The supply chain also includes a system for handling returns and defective 

products. 

Stage 7. Information flow: Throughout this process, there is a constant flow of information facilitated by 

technology. This includes real-time tracking of inventory, demand forecasting, and communication between 

suppliers, manufacturers, distributors, and retailers. 
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Efficient supply chain management in this example involves optimizing each stage to minimize costs, 

reduce lead times, and improve overall responsiveness to changes in demand. We shall next investigate 

how the proposed monitoring scheme can contribute to the above-mentioned supply chain management 

scheme. Generally speaking, the supply chain management environment refers to the complex network of 

activities, resources, technologies, and stakeholders involved in the production and distribution of goods 

and services from suppliers to end customers. The proposed monitoring framework aims at enhancing the 

logistics and transportation part of the procedure, but also it is expected to result in some improvements 

concerning the manufacturing and production facilities. 
 

As it concerns the aforementioned case study, we are aware that there are 3 eight-hour daily work shifts at 

the factory. Table 4 displays the average number of devices (per work shift) whose assembly is completed. 

The reporting time period corresponds to 160 working days. These data refer actually to the manufacturing 

stage, e.g. Stage 2.  
 

Table 4. The average number of devices (per work shift) whose assembly is completed for 160 consecutive days. 
 

Day Average number of 

devices (per work shift) 

Day Average number of 

devices (per work shift) 

Day Average number of 

devices (per work shift) 

Day Average number of 

devices (per work shift) 

1 109.1 41 94.4 81 102.2 121 90.2 

2 90.2 42 102.2 82 107.3 122 93.3 

3 102.2 43 94.4 83 103.6 123 103.3 

4 107.2 44 101.1 84 80.4 124 107.9 

5 89.2 45 100.7 85 70.9 125 111.2 

6 99.7 46 95.6 86 78.9 126 82.2 

7 108.4 47 94.4 87 83.5 127 109.5 

8 110.2 48 102.2 88 100.2 128 110.1 

9 90.7 49 99.9 89 92.2 129 80.9 

10 102.2 50 95.5 90 95.5 130 90.9 

11 107.2 51 94.4 91 105.5 131 100.8 

12 90.2 52 104.4 92 103.2 132 110.9 

13 96.5 53 108.8 93 109.1 133 105.6 

14 110.1 54 101.2 94 100.2 134 95.6 

15 108.8 55 80.2 95 105.5 135 85.6 

16 109.9 56 85.4 96 108.3 136 95.2 

17 108.3 57 90.2 97 102.7 137 88.8 

18 107.7 58 103.5 98 108.1 138 98.7 

19 109.1 59 104.5 99 92.9 139 89.1 

20 109.1 60 107.7 100 91.1 140 102.2 

21 108.8 61 80.9 101 101.2 141 109.3 

22 98.6 62 90.9 102 103.8 142 111.2 

23 99.2 63 87.5 103 108.8 143 90.2 

24 100.2 64 81.1 104 111.2 144 104.4 

25 94.4 65 92.2 105 104.4 145 99.9 

26 90.2 66 94.4 106 109.4 146 100.2 

27 106.2 67 88.8 107 89.7 147 88.2 

28 102.2 68 101.1 108 93.9 148 78.9 

29 98.8 69 102.1 109 106.4 149 95.2 

30 107.2 70 100.9 110 105.2 150 105.7 

31 108.1 71 80.2 111 112.2 151 112.4 

32 107.2 72 78.7 112 113.9 152 105.2 

33 94.7 73 85.5 113 107.5 153 99.9 

34 94.4 74 90.9 114 80.5 154 103.2 

35 94.4 75 100.0 115 90.2 155 90.1 

36 104.5 76 109.8 116 89.6 156 78.9 

37 97.7 77 102.1 117 85.2 157 95.2 

38 107.2 78 101.8 118 80.6 158 105.7 

39 107.9 79 103.9 119 78.4 159 112.4 

40 107.2 80 104.2 120 84.1 160 105.2 
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We know that, during the first 48 days of the aforementioned period, the assembly process was operating 

satisfactorily and in compliance with factory specifications. However, from Day 49 onwards, some changes 

in the workforce of the factory caused a disruption in the production process, and the quality manager 

observed that the assembly process no longer meets his requirements. Based on these facts, data reported 

in Days 1 to 48 can be viewed as 𝑚 = 48 reference data.  

 

We tend to apply the proposed monitoring scheme in order to figure out whether the disruption that has 

occurred from Day 49 onwards can be detected by the control chart or not. We first determine the design 

parameters of the suggested monitoring framework such as its in-control ARL to be in the region of 500. 

Indeed, if we specify the values of the remaining parameters as given below  

𝑎 = 3, 𝑏 = 7, 𝑐 = 27, 𝑑 = 31, 𝑛 = 8, 𝑖 = 2, 𝑗 = 5, 𝑟1 = 1, 𝑟2 = 2, 𝑟 = 2, 𝑘 = 3  

 

the resulting scheme, which includes four different control charts, attains an in-control ARL-value equal to 

499.36. The abovementioned design indicates practically the following: 

• 𝑚 = 48 reference observations are drawn when the production is said to be in-control. 

• the ordered observations at the 3rd, 7th, 27th and 31st position of the reference, e.g. the observed values 

𝑋3:48 = 91.1, 𝑋7:48 = 94.3, 𝑋27:48 = 102.6, 𝑋31:48 = 103.7 are utilized as control limits for the schemes 

with plotting statistics 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ  (see also (1)). 

• 𝑛 = 8 test observations are collected from the production. 

• the 2nd and the 5th ordered observation (e.g. 𝑌2:8
ℎ , 𝑌5:8

ℎ ) of each test sample is detected (ℎ = 1,2, … ,20). 

• the observed values of all monitoring statistics are computed for the test ℎ −th sample (ℎ = 1,2, … ,20), 

namely the values of 𝑌2:8
ℎ , 𝑌5:8

ℎ , 𝑅1
ℎ, 𝑅2

ℎ are calculated for all available test data. 

 

Afterwards, we construct four monitoring schemes, which compose the suggested framework and the 

results are displayed at Figures 1-4. 

 

Under the proposed framework, the ℎ −th test sample does not produce a bad signal, if the conditions hold 

true 

𝑋3:48 ≤ 𝑌2:8
ℎ ≤ 𝑋7:48, 𝑋27:48 ≤ 𝑌5:8

ℎ ≤ 𝑋31:48, 𝑅1
ℎ ≥ 𝑟1 and 𝑅2

ℎ ≥ 𝑟2 

 

or equivalently  

91.1 ≤ 𝑌2:8
ℎ ≤ 94.3, 102.6 ≤ 𝑌5:8

ℎ ≤ 103.7, 𝑅1
ℎ ≥ 1 and 𝑅2

ℎ ≥ 2                                                              (12) 

 

 

 
 

 
 

Figure 1. The monitoring statistic 𝑌2:8
ℎ  for device 

assembly data. 

Figure 2. The monitoring statistic 𝑌5:8
ℎ  for the device 

assembly data. 
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Figure 3. The monitoring statistic 𝑅1
ℎ for the device 

assembly data. 

Figure 4. The monitoring statistic 𝑅2
ℎ for the device 

assembly data. 

 

 

Figure 1 is related to the first mentioned condition provided in Equation (12), while Figure 2 illustrates the 

statistic 𝑌5:8
ℎ . In simpler words, Figure 1 displays the 2nd ordered observation of each test sample, which is 

drawn from the process. It is easily observed that there exist plenty test samples that exceed the control 

limits of the particular chart, namely there are a few test samples, where the 2nd ordered test observation is 

greater than the upper control limit or less than the lower control limit of the chart. 

 

In a similar way, Figure 2 depicts the 5th ordered observation of each test sample. It is readily deduced that 

there exist three test samples that exceed the control limits of the particular chart. In addition, Figure 3 

displays the third restriction, while Figure 4 is connected to monitoring statistic 𝑅2
ℎ. In both figures, it 

seems that in many cases the random variables 𝑅1
ℎ, 𝑅2

ℎ take on values out of limits. This is evident since the 

sampling values of the aforementioned monitoring statistics are greater than 1 and 2 respectively, e.g. 

exceed the control limit of the corresponding chart.  

 

Thereof, under the proposed monitoring scheme the production is described as out-of-control once we 

detect 𝑟 = 2 subsequences of 𝑘 = 3 bad signals, namely once we detect 𝑟 = 2 subsequences of test samples 

of length 𝑘 = 3, wherein at least one condition stated in Equation (12) has been violated. As it is readily 

observed, while the Phase I samples (Days 1 to 48) are not producing an out-of-control event (as predicted 

since we know that this period was a good one), the new nonparametric scheme gives an alarm in the 

prospective phase (Days 49 onwards). More precisely, we scrutinize that an out-of-control signal appears 

upon the 6th test sample (or 11th overall) since at that time 2 subsequences of 3 bad signals have already 

been reported. Based on the above results, the quality manager may deduce that the underlying changes in 

the workforce of the factory really caused a disruption in the production process and the assembly process 

no longer meets his requirements. It is noticeable that the proposed scheme, which has been applied for 

monitoring the process, detects promptly the undesirable alteration of the process status. 

 

In addition, the proposed framework can be proved useful at Stage 3 of the aforementioned supply chain 

management scenario. More precisely, our interest focuses now on the days spent till the devices arrive at 

their ultimate destination, namely at warehouses located in different regions. For this reason, the company 

collaborates with two carriers A and B. We know that carrier A is a reliable one and its collaboration with 

the company has always been harmonic. On the other hand, the collaboration with carrier B has just started 

and the manager needs to supervise the distribution procedure in order to verify whether the time required 
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for the devices to reach their destination (by the aid of carrier B) is comparable with the one reported for 

carrier A. 

 

Table 5 displays time (in hours) required for the device batches to reach their destination. The available 

data correspond to 112 product batches, which have been drawn from the process. These data refer actually 

to the distribution stage, e.g. are related to Stage 3. Note that batches 1 to 35 have been transferred with 

carrier A, while the remaining ones, e.g. batches 36 to 112 have been transported with carrier B.  

 
Table 5. Time (in hours) required for 112 device batches to reach the warehouses. 

 

Device 
batch 

Time (in hours) Device 
batch 

Time (in hours) Device 
batch 

Time (in hours) Device 
batch 

Time (in hours) 

1 40.5 29 40.5 57 25.5 85 30.2 

2 43.2 30 70.2 58 79.2 86 40.9 

3 75.0 31 65.6 59 72.2 87 93.3 

4 92.9 32 50.5 60 63.5 88 77.5 

5 58.2 33 70.2 61 65.4 89 71.2 

6 60.2 34 70.2 62 69.9 90 49.6 

7 87.6 35 5.4 63 55.2 91 60.1 

8 70.2 36 22.3 64 90.9 92 55.5 

9 95.2 37 47.0 65 81.5 93 90.2 

10 90.5 38 49.2 66 77.7 94 70.3 

11 15.0 39 55.4 67 66.4 95 73.3 

12 40.5 40 66.8 68 54.3 96 75.6 

13 50.5 41 79.9 69 44.4 97 56.3 

14 68.8 42 83.3 70 31.1 98 40.1 

15 54.4 43 50.0 71 33.3 99 88.2 

16 18.6 44 40.0 72 43.4 100 72.2 

17 74.3 45 30.4 73 45.5 101 43.4 

18 62.2 46 20.5 74 92.2 102 47.8 

19 40.5 47 71.2 75 77.2 103 49.2 

20 54.5 48 77.7 76 70.9 104 62.3 

21 63.7 49 78.2 77 69.6 105 67.1 

22 10.0 50 33.3 78 60.6 106 60.2 

23 47.5 51 47.2 79 50.1 107 70.9 

24 56.2 52 50.1 80 40.1 108 65.3 

25 120.0 53 62.2 81 30.9 109 55.1 

26 78.4 54 71.5 82 72.2 110 30.1 

27 54.4 55 71.1 83 70.1 111 20.9 

28 80.0 56 82.5 84 90.0 112 100.5 

 

 

Since the first 35 batches have been transferred by carrier A, which is supposed to be reliable and trusty, 

we face these data as a reference sample of size 𝑚 = 35. We next apply the suggested framework for 

clarifying whether the fact that we changed the carrier has affected time required for the device batches to 

reach their destination or not. In other words, we shall encounter batches 36 to 112 as test data and our goal 

shall be the timely and accurate identification of possible undesired changes in the process.  

 

We first determine the design parameters of the suggested framework such as its in-control ARL to be in 

the region of 500. Indeed, if we specify the values of the remaining parameters as given below, 

𝑎 = 8, 𝑏 = 12, 𝑐 = 26, 𝑑 = 29, 𝑛 = 7, 𝑖 = 2, 𝑗 = 5, 𝑟1 = 2, 𝑟2 = 1, 𝑟 = 2, 𝑘 = 2  

 

The resulting scheme, which includes four different control charts based on statistics, attains an in-control 

ARL-value equal to 490.07. The abovementioned design indicates practically the following:  

• 𝑚 = 35 reference observations are drawn when the process is said to be in-control. 
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• The ordered observations at the 8th, 12th, 26th and 29th position of the reference, e.g. the observed values 

𝑋8:35 = 40.5, 𝑋12:35 = 50.5, 𝑋26:35 = 70.2, 𝑋29:35 = 78.4 are utilized as control limits for the schemes 

with plotting statistics 𝑌𝑖:𝑛
ℎ , 𝑌𝑗:𝑛

ℎ  (see also Equation (1)). 

• 𝑛 = 7 test observations are collected from the production. 

• The 2nd and the 5th ordered observation (e.g. 𝑌2:7
ℎ , 𝑌5:7

ℎ ) of each test sample is detected (ℎ = 1,2, … ,16) 

• The observed values of all monitoring statistics are computed for the test ℎ −th sample (ℎ = 1,2, … ,16), 

namely the values of 𝑌2:7
ℎ , 𝑌5:7

ℎ , 𝑅1
ℎ, 𝑅2

ℎ are calculated for all available test data. 

 

Afterwards, we construct four schemes, which compose the suggested monitoring framework and the 

results are displayed in Figures 5-8.  

 

  
 

Figure 5. The monitoring statistic 𝑌2:7
ℎ  for device 

assembly data. 

 

 
 

 

Figure 6. The monitoring statistic 𝑌4:7
ℎ  for the device 

assembly data. 
 

 
 

  
 

Figure 7. The monitoring statistic 𝑅1
ℎ for the device 

assembly data. 

 

Figure 8. The monitoring statistic 𝑅2
ℎ for the device 

assembly data. 

 

 

Under the proposed framework, the ℎ −th test sample does not produce a bad signal, if the conditions hold 

true 

𝑋8:35 ≤ 𝑌2:7
ℎ ≤ 𝑋12:35, 𝑋26:35 ≤ 𝑌5:7

ℎ ≤ 𝑋29:35, 𝑅1
ℎ ≥ 𝑟1 and 𝑅2

ℎ ≥ 𝑟2 

 

or equivalently  

40.5 ≤ 𝑌2:7
ℎ ≤ 50.5, 70.2 ≤ 𝑌5:7

ℎ ≤ 78.4, 𝑅1
ℎ ≥ 2 and 𝑅2

ℎ ≥ 1                                                                (13) 
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Under the proposed monitoring scheme the process is described as out-of-control once we detect 𝑟 = 2 

subsequences of 𝑘 = 2 bad signals, namely once we detect 𝑟 = 2 subsequences of test samples of length 

𝑘 = 2, wherein at least one condition stated in Equation (13) has been violated.  

 

As it is readily observed, while the Phase I samples (batches 1 to 35) are not producing an out-of-control 

event (as predicted since we know that transferring procedure was reliable during this period), the suggested 

framework gives signal in the prospective phase (batches 36 onwards). 

 

 More precisely, we see that an out-of-control signal appears upon the 5th test sample (or 10th overall) since 

at that time 2 subsequences of 2 bad signals have just been reported. The above results provide some 

evidence to the quality manager that the time required for the devices to reach their destination does not 

meet, by the aid of carrier B, the requirements stated by the company. It is noticeable that the proposed 

scheme, which has been applied for monitoring the transporting procedure, detects promptly once again the 

undesirable alteration of the process status. 

 

Figure 5 is related to the first mentioned condition provided in Equation (13), while Figure 6 displays the 

statistic 𝑌5:7
ℎ . In simpler words, Figure 5 displays the 2nd ordered observation of each test sample, which is 

drawn from the process. It is easily observed that there exist four test samples that exceed the control limits 

of the particular chart, namely there are four test samples, where the 2nd ordered test observation is greater 

than the upper control limit or less than the lower control limit of the chart. 

 

In a similar way, Figure 6 depicts the 5th ordered observation of each test sample. It is readily deduced that 

there exist some test samples that exceed the control limits of the particular chart. In addition, Figure 7 

displays the third restriction, while Figure 8 is connected to monitoring statistic 𝑅2
ℎ. In both figures, it 

seems that in many cases the random variables 𝑅1
ℎ, 𝑅2

ℎ take on values out of limits. This is evident since the 

sampling values of the aforementioned monitoring statistics are greater than 2 and 1 respectively, e.g. 

exceed the control limit of the corresponding chart.  

 

6. Discussion 
The present article provides a nonparametric monitoring framework, wherein multiple runs are utilized for 

the first time in the relative literature. The implemented runs-type rules are combined with a distribution-

free monitoring statistic and the results seem to be encouraging. In addition, a nice real life application in 

the field of supply chain management is also illustrated. More precisely, a new family of nonparametric 

Shewhart-type framework which relies on order statistics and multiple runs is proposed. The plotting 

statistics coincide with appropriately chosen order statistics of the reference data, while the decision 

whether the production remains at an in-control state, or it has shifted to an out-of- control situation is 

reached by employing additional multiple runs rules.  

 

7. Conclusion 
The run length of the suggested distribution-free framework is studied for both in control and out-of- control 

scenarios. In accordance with the numerical investigation conducted, we deduce that the suggested 

framework can detect quite fast plausible changes of the production. The practitioner can use the designs 

provided in the tables of the current work for constructing the most suitable monitoring scheme for the 

underlying application. For instance, the proposed monitoring scheme performs well under both location 

and scale parameters shifts. This is readily observed, by looking at the numerical investigation provided in 

section 3 of the present manuscript. In addition, on a more theoretical basis, we may conclude that the 

implementation of sophisticated runs-type rules has proved to be efficient in providing a capable monitoring 



Triantafyllou: Distribution-Free Control Charts Based on Multiple Runs: Advances… 
 

 

753 | Vol. 9, No. 4, 2024 

framework under several distributional assumptions. Indeed, the proposed methodology uses multiple runs 

along with order statistics and the final result seems attain the desired level of in- and out-of-control 

performance. 

 

Moreover, the numerical investigation, which has been carried out, reveals that the proposed performs better 

than its competitors. More precisely, the out-of-control behavior of the new class of distribution-free control 

charts has been compared to the corresponding performance of existing charts based on order statistics. The 

results confirm that the proposed monitoring scheme detects faster both smaller and larger distribution shifts 

than the competitive charts under different process distribution. 

 

Throughout the lines of the paper, it is highlighted how the proposed control charts can be proved helpful 

in the supply chain management environment. Indeed, the new nonparametric monitoring scheme was 

proved to be quite helpful in several stages of the aforementioned managerial application, such as the 

underlying logistics or the pure industrial part of the project. 

 

It sounds quite intriguing for forthcoming work, to employ scans- or runs-type rules to other distribution-

free schemes for enhancing their ability to detect possible changes in the underlying distribution or 

alternatively to modify existing distribution-free control charts by adding more advanced runs- or scans- 

type rules. 
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