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Abstract 

This study addresses a new problem, close to real life on scheduling of non-identical parallel Burn-in ovens (BO) in Semiconductor 

Manufacturing (SM) industry to minimize Total Weighted Tardiness (TWT) of the jobs. Due to computational intractability in 

using mathematical programming approach, many researchers considered Dispatching Rules (DR) based heuristic algorithm in SM 

industry for scheduling of various batch processing machines, including BO. However, there is no study that compares the various 

DR considered for scheduling of BO in general, particularly in (a) Dynamic Scheduling (DS) of Non-identical Parallel Burn-in 

Ovens (NPBO) with Machine Eligibility Restriction (MER) and (b) Real-Time DS (RTDS) of NPBO with MER. To address this 

research gap, this study proposed 25 variants of DR based Heuristic Algorithm (DR-HA). Empirical and statistical performance 

analyses, carried out with 240 test data, revealed that variants of DR-HA that outperform during DS-NPBO with MER also 

outperform in RTDS-NPBO with MER. Furthermore, this study gives an important inference that whenever any RTE occurs in 

RTDS-NPBO, there is no need to modify existing efficient algorithm or no need to develop new algorithm for RTDS-NPBO and 

updating input data related to type of occurred RTE is sufficient before running existing efficient DR-HA for DS-NPBO. 

 

Keywords- Scheduling, Burn-in ovens, Dispatching rules, Total weighted tardiness, Real-time events. 

 

 

 

1. Introduction 
In discrete product manufacturing process, the products are produced either by serial or batch processing. 

In serial processing, jobs are processed in series, i.e., only one job is produced at a time, whereas in batch 

processing, multiple jobs are processed simultaneously in a batch by a machine called Batch Processing 

Machine (BPM) (Mathirajan et al., 2010). The scheduling of BPMs is more complex than scheduling of 

discrete machine as it requires three interrelated decisions: BPM selection, batch formation, and batch 

sequencing to be taken efficiently. From the various BPMs mentioned in Table 1, this study aims to 

schedule Burn-in Oven (BO), a BPM in the testing stage of Semiconductor Manufacturing (SM) industry 

to perform the Burn-in operation. In Burn-in operation, jobs (Integrated Circuits - ICs) are subjected to high 

thermal and electrical stresses over a prolonged time (up to 240 hours) for the reliability test (Uzsoy, 1994). 

Based on the customer requirement, each job requires different processing time in Burn-in operation. Due 

to high processing time, Burn-in operation acts as a bottleneck operation in the testing stage of SM process. 

Hence, developing efficient methodologies for scheduling of BO can improve the overall production rate 

of the SM process (Mönch et al., 2011). 
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BO contains multiple parallel boards to hold the jobs and the capacity of BO is specified by the number of 

boards it contains. A job available for burn-in operation contains multiple chips (ICs) of a single product 

and it occupies some space [in terms of number of boards] in BO. Hence, the size of a job is determined by 

the number of boards it occupies in BO. BO can process different types of jobs in a single batch. Hence, 

multiple jobs are included in a batch till the capacity of BO is utilized up to the maximum possible extent. 

However, the processing time of batch is decided based on the longest processing time of the jobs included 

in the same batch. 

 

Most of the earlier studies on scheduling of BO consider static scheduling scenario where the jobs already 

available in the system are only considered while scheduling the Burn-in operation. However, in practice, 

along with the jobs available in the system, jobs that are expected to arrive in the future from the upstream 

operation for the burn-in operation should also be considered while scheduling the Burn-in operation, which 

is called a Dynamic Scheduling (DS) in the literature. Also, in general, SM shop floor contains multiple 

parallel Burn-in ovens with different capacities and unique technical specifications, i.e., Non-identical 

Parallel Burn-in Ovens (NPBO). Thus, this study considers real-life scenario on DS-NPBO with Machine 

Eligibility Restriction (MER). 

 

Since Burn-in operation is the last operation in SM process, delay in Burn-in operation does not provide 

enough opportunities to cover up and can cause late delivery to customer, which affects the on-time delivery 

performance such as tardy jobs, lower customer satisfaction, loss of goodwill, etc. To avoid these situations 

and considering the importance of on-time delivery performance, this study considers Total Weighted 

Tardiness (TWT) scheduling objective, a due date based objective, which penalizes late jobs with the 

lateness penalty and improves the customer satisfaction by delivering most of the jobs on or before its due-

date. 

 

The problem on scheduling of a single Burn-in oven to minimize TWT is proved to be NP-hard in the 

literature (Brucker et al., 1998). Hence, the problem on DS-NPBO, a super set to scheduling of a single 

Burn-in oven, is considered as NP-hard. Therefore, mathematical programming approach is 

computationally intractable in solving real-life large-scale problems on DS-NPBO. Hence, this study 

considers various dispatching rules (DR) used in the SM industry for scheduling of BPM and proposes 

multiple variants of DR based Heuristic Algorithm (DR-HA) for DS-NPBO, as dispatching rules are widely 

used in scheduling various operations in SM industry. 

 

In practical environment, different kinds of unanticipated events (called as Real-Time Events [RTE]) 

related to jobs and burn-in oven occur while operating Burn-in oven. Therefore, apart from the future arrival 

of jobs, the occurrence of RTE must be considered in dynamic scheduling scenario, which is called a Real 

Time Dynamic Scheduling (RTDS). Accordingly, this study triggers randomly the occurrences of RTEs 

while performing RTDS-NPBO using the developed DR-HA, evaluates the robustness of the proposed 

variants of DR-HA in terms of the performance ranking and identifies the efficient variants of DR-HA for 

RTDS-NPBO environment. 

 

This article is structured as follows: problem statement and the underlying assumptions of this research 

article are provided in Section 2. Section 3 highlights the relevant previous literatures. Section 4 deals with 

development of 25 variants of DR-HA for DS-NPBO. Later, the performance of 25 variants of DR-HA is 

evaluated empirically and statistically in Section 5 and identified the efficient variant(s) of DR-HA for DS-

NPBO. Section 6 deals with the study on impact of RTE on the performance of each of the 25 variants of 

DR-HA and identification of the efficient variant(s) of DR-HA for RTDS-NPBO. Finally, a summary and 

future research scope of the current study are discussed in Section 7. 
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Table 1. Sample reference studies related to BPM in discrete parts manufacturing industries. 
 

Batch operation / Processor Industry Sample reference study 
Oven for Hardening Synthetic Parts Aircraft Industry Zee et al. (2001) 
Heat-Treatment Furnace (HTF) Automobile Industry Mathirajan et al. (2014) 
Batch Distillation Process Chemical Industry Tang and Yan (2009) 
Dyeing Machine Clothing Industry Zhang et al. (2017) 
Stress Screening Chamber Electronics Industry Alipour et al. (2020) 
Dry Kiln Furniture Manufacturing Marier et al. (2021) 
Annealing Kiln Glass Container Industry Fachini et al. (2016) 
Tissue Processors Hospital laboratory Leeftink et al. (2020) 
Washer for Reusable Medical Devices Hospital Sterilization Service Tsai and Chou (2016) 
IP Machine used in Clock Industry Ion Plating (IP) Industry Chan et al. (2007) 
Heat-Treatment Furnace Metalworking Industry Dupont and Flipo (2002) 
Bake-out / Box-Oven Ceramic Industry Koh et al. (2005) 
Pottery Kiln Pottery Manufacturing Jia et al. (2020) 
Diffusion Furnace Semiconductor Manufacturing Rani and Mathirajan (2020) 
Burn-in Oven Semiconductor Manufacturing Keshavarz (2021) 
Hole Punching Sheet Metal Industry Oulamara (2007) 
Carousel Shoe Manufacturing Factory Fanti et al. (1996) 
Heat-Treatment Furnace Steel Casting Industry Ravindra and Mathirajan (2014) 
Soaking Bit Furnace Steel Ingot Production Li et al. (2011) 
Heat-Treatment Furnace Steel Manufacturing Zheng and Li (2009) 
Aging Test Operation LCD Screen Manufacturing Chung et al. (2009) 
Tyre Curing / Mold Tyre Manufacturing Bellanger and Oulamara (2009) 

Source: Rani and Mathirajan (2020) 

 

2. Problem Description and Assumptions 
There are n jobs to be scheduled among the m non-identical parallel Burn-in ovens (BO). Each BO has 

finite Batch Capacity (BCm) and unique technical specifications. Due to that, certain machines may be not 

eligible to process all job types, i.e., some jobs may require specific BO for the operation, which is called 

the Machine Eligibility Restriction (MER) in scheduling environment. Every job ‘j’ is characterised by 

distinct - release date (rj), processing time (pj), due date (dj), size (sj), and lateness penalty (lj). Also, job 

release dates and due dates are non-agreeable [i.e., for any two jobs Job-A & Job-B: rA ≤ rB not-implied dA 

≤ dB]. 

 

Due to very long processing time required for burn-in operation, (a) if any job related RTE (such as change 

in job- due date, release time, lateness penalty, new job addition, job cancellation) occurs then the data 

related to job-characteristic will be updated appropriately before making the decision on constructing a 

batch for scheduling on BO, (b) if any RTE related to resource (such as BO breakdown, operator illness, 

tool failure, shortage of material, defective material) occurs then the data on next availability time of BO 

for scheduling will be updated appropriately before making the decision on a choice of a BO for scheduling, 

and (c) if RTE related to job and RTE related to resource occur simultaneously, then all the relevant input 

data will be updated w.r.t. the type of the RTE before constructing a batch and before choosing a BO for 

scheduling. 

 

With the above description on RTDS-NPBO problem considered in this study, the following assumptions 

are made for developing a scheduling algorithm: 

▪ Each job is independent and all related data are deterministic and known beforehand. 

▪ The size of each job is smaller than the capacity of the BO that has the least capacity among the non-

identical burn-in ovens considered for scheduling (that is, job splitting is not permitted while constructing 

a batch for scheduling BO). 

▪ Burn-in operation cannot be interrupted once the batch operation begins. 
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As per the standard three-field notation scheme developed by (Graham et al., 1979), the current research 

problem on RTDS-NPBO can be represented as: Pm | p-batch, rj, pj, dj, sj, lj, non-agreeable release times 

and due-dates, real time events, machine eligibility restriction  | TWT. 

 

3. A Closely Related Work 
In scheduling literature, (Ikura and Gimple, 1986) were the first to report a study on scheduling of BPM. 

(Mathirajan and Sivakumar, 2006) performed a detailed survey of the studies related to scheduling of BPM 

in SM process. As this study deals with scheduling of parallel BO to minimize a due-date based scheduling 

objective, only the relevant studies are identified from the literature and the same are summarised based on 

the various problem parameters in Table 2. From this table, this study observed that none of the existing 

studies in the literature has performed both DS-NBPO and RTDS-NPBO with considering the machine 

eligibility restriction and non-agreeable release time and due date scenario to optimize due date based 

objective. Hence, to fulfil this literature gap, the current study proposes a heuristic algorithm to solve the 

problem on DS-NPBO and RTDS-NPBO, described in the previous section. 

 

Further, based on the problem-solving approach (methodology), the studies mentioned in Table 2 are 

broadly classified into two classes: (a) exact approach (mathematical model) and (b) simple heuristic and / 

or meta-heuristic algorithms. Ventura and Kim (2000, 2003), Xu and Bean (2015), Hulett et al. (2017) and 

Pujara and Mathirajan (2020) proposed mathematical model to address parallel BO scheduling problem 

with different problem configurations. Ventura and Kim (2000, 2003) schedule identical BO in static and 

dynamic scheduling environments, respectively. Hulett et al. (2017), Pujara and Mathirajan, (2020) and Xu 

and Bean (2015) perform scheduling of non-identical BO with considering lateness penalty parameter. 

Further, as per Table 2, except for Pujara and Mathirajan (2020), no study has considered the machine 

eligibility restriction. 

 

Due to NP-hard nature of the problem, all the studies in Table 2, except for Pujara and Mathirajan (2020), 

have considered the development of simple heuristic or meta-heuristic algorithms for addressing the 

problem on scheduling of parallel BO. Further, it is observed that most of the simple heuristic-based studies 

use dispatching rules (DRs) to perform batching and sequencing tasks in scheduling of BO. DRs are widely 

used in scheduling of BPM in SM industry as they (a) are easy to implement and take less computational 

time, (b) perform effectively across a broad spectrum of machine environments, and (c) can be easily 

modified to incorporate any dynamic changes (Nguyen et al., 2013). Despite the significant benefits and 

wide applications of DRs in SM industry, it is observed that no study in the literature has conducted the 

performance analysis of existing DRs, particularly in the context of scheduling of burn-in ovens with 

problem configuration considered in this study. Hence, to identify the efficient DRs for DS-NPBO, this 

study considers various DRs used in studies related to scheduling of BO (Lee et al., 1992; Kim et al., 2011; 

Chou and Wang, 2012; Li and Chen, 2014; Li et al., 2019). In addition, this study also considers the DRs 

used in the literature for scheduling of other types of BPM such as E-beam writer (Hung, 1998), Etching 

tank (Sung and Kim, 2002), diffusion furnace (Rani, 2018) in the SM industry, as mentioned in Table 3. 

 

Thus, by considering all the DRs mentioned in Table 3, this study proposes 25 distinct dispatching-rule 

based heuristic algorithm (DR-HA) for DS-NPBO and development of the same is discussed in the next 

section. 

 

4. Development of Dispatching Rule based Heuristic Algorithm (DR-HA) 
There are three interrelated decisions: BO selection, batch construction, and batch selection involved at 

every decision making time during DS-NPBO. Accordingly, a decision making framework for DS-NPBO 
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is presented in Figure 1. Further, a step-by-step procedure of DR-HA for implementing the decision making 

framework presented in Figure 1 is as follows: 
Table 2. A summary of the studies on parallel Burn-in ovens scheduling problem to minimize the due-date based 

scheduling objective. 
 

Study 

Parallel 

burn-in 

ovens 

Nature of 

scheduling 

Release 

times & 

due-dates 

Machine 

eligibility 

restriction 

(MER) 

Real-

time 

events 

(RTE) W
e
ig

h
ta

g
e Solution 

methodology 

O
b

je
c
ti

v
e
 

fu
n

c
ti

o
n

 

Exact 

approach 

H 

and/or 

MH I NI ST DY A NA 

Lee et al. (1992) √   √ √      √ Lmax, #TJ 

Ventura and Kim (2000) √  √  √     √ √ TE/L 

Ventura and Kim (2003) √   √  √    √ √ TE/L 

Mönch and Unbehaun (2007) √  √  √      √ TE/L 

Condotta et al. (2010) √   √  √     √ Lmax 

Chou and Wang (2012)  √  √  √   √  √ TWT 

Xu and Bean (2015)  √  √  √   √ √ √ TWT 

Hulett et al. (2017)  √ √  √    √ √ √ TWT 

Pujara and Mathirajan (2020)  √  √  √ √  √ √  TWE/L 

This Study  √  √  √ √ √ √  √ TWT 

I- Identical, NI- Non-identical, ST- Static, DY- Dynamic, A – Agreeable, NA- Non-Agreeable, H – Heuristic, MH- Meta-heuristic, 

Lmax - Maximum Lateness, TE/L- Total Earliness/Lateness, TWE/L- Total Weighted Earliness/Lateness, #TJ- Number of Tardy Jobs, 

TWT- Total Weighted Tardiness 

 

 

Table 3. A summary of various dispatching rule used by various studies on scheduling of BPM in SM process with 

due-date based scheduling objectives. 
 

Dispatching rule Sample studies 

Earliest Due-Date (EDD) Lee et al. (1992), Hung (1998), Chou and Wang (2012), Rani (2018), Li et al. (2019) 

Longest Processing Time (LPT) 
Lee et al. (1992), Mönch and Unbehaun (2007), Li and Chen (2014), Parsa et al. (2017), Li et al. 
(2019) 

Shortest Processing Time (SPT) Sung and Kim (2002), Mönch and Unbehaun (2007), Parsa et al. (2017) 

Earliest Release Date (ERD) Chou and Wang (2012), Li et al. (2013) 

Flow Due-Date (FDD) Jayamohan and Rajendran (2000), Rani (2018) 

Operational Due-Date (ODD) Khalouli et al. (2010), Rani (2018) 

Modified Operational Due-Date (MOD) Rani (2018) 

Critical Ratio (CR) Rose (2002), Rani (2018) 

Minimum Slackness first (MS) Rani (2018) 

Minimum Modified Due-Date (MMDD) Mazzini and Armentano (2001), Kim et al. (2011) 

Minimum Modified Slackness (MMS) Pearn et al. (2002), Kim et al. (2011) 

Largest Weight first (LW) Li and Chen (2014), Chen et al. (2016) 

Decreasing order of Size (DECR-S) Parsa et al. (2017) 

Cost OVER Time (COVERT) Mönch and Zimmermann (2004), Rani (2018) 

Apparent Tardiness Cost (ATC) Park et al. (2000), Monch et al. (2006), Rani (2018) 

 

Step 1: At the time of decision making, form a Work-In-Process (WIP) list with all the unprocessed jobs. 

Capture all the input data related to job characteristics of the unprocessed jobs (pj, rj, sj, dj, lj) and 

the available time of each Burn-in oven (BO) (say tm, tm > 0; m = 1,…,M; M= number of BO) along 

with the capacity. 

Step 2: Select the BO available at the earliest: 
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i. If all the burn-in ovens have the same available time, select the one with the greatest capacity. 

ii. If there is still a tie after considering available time and capacity, choose the BO with machine 

eligibility restriction. 

iii. If a tie persists across available time, capacity, and machine eligibility, select the BO randomly. 
 

 

 
 

Figure 1. A decision making framework for DS-NPBO problem. 

 

Step 3: Store the available time (t) and batch capacity (BC) of selected BO. 

Step 4: Form a list of available unprocessed jobs for batch formation as follows: 

If selected BO is without MER, then except for ‘jobs with MER’, consider all unprocessed jobs 

available for batch formation. 

Else, when selected BO is with MER, then consider all unprocessed jobs (all jobs including jobs 

with MER) available for batch formation. 

Step 5: Compute the Job-Priority-Index (JPI) of each available unprocessed job as per the considered 

dispatching rule (DR). 

Step 6: Sort all the jobs in ascending or descending order (as per DR) based on their JPI and make the 

Sorted List of Available Unprocessed Jobs (SLAUJ). 

Step 7: Considering the SLAUJ, form the temporary batches using the full batch strategy (Mönch et al., 

2006). 

Step 8: Set the release time of each temporary batch as max (t, highest release time of all the jobs in given 

temporary batch). 

Step 9: Compute the Batch-Priority-Index (BPI) of each temporary batch as per the considered 

dispatching rule (DR). 

Step 10: For each temporary batch, calculate the starting time and compare the same, 

If the completion time of any temporary batch is less than the starting time of all other temporary 

batches, then select such batch. 

Else identify a batch with the highest or lowest BPI (as per DR) among all the temporary batches 

and select such batch. 
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Step 11: Allocate the selected batch, identified in step 10, to the selected BO. 

Step 12: Compute the value of the output parameters related to scheduled batch (such as starting time of 

the batch, processing time of batch, completion time of batch and job completion time) and based 

on that, compute the weighted tardiness of each job in scheduled batch. 

Step 13: Update the work in process list by excluding the jobs processed in the latest batch. Also, update 

the available time of selected BO (‘t’) as completion time of batch assigned to selected BO. 

Step 14: Follow the procedure from Step 1 repeatedly as long as there are unscheduled jobs. 

 

In the above step-by-step procedure for DS-NPBO, there are (i) batch construction for selected BO- where 

the proposed DR-HA computes the JPI of jobs using a dispatching rule and prioritizes the jobs based on 

their respective JPI value; later, the proposed DR-HA forms a batch by selecting the high priority jobs in 

succession till BO capacity is utilized up to the maximum extent; and (ii) batch selection for selected BO- 

where the proposed DR-HA computes the BPI of batches using a dispatching rule and selects a batch with 

the highest (or lowest) BPI value to process on selected BO. 

 

Considering the proposed DR-HA, multiple variants of the same DR-HA are proposed with changes in 

dispatching rule considered for computing (a) JPI as well as order of sorting jobs after computing JPI in 

batch formation stage, and (b) BPI as well as order of sorting after computing BPI in batch selection stage. 

Accordingly, Step 5, Step 6, Step 9, and Step 10 are changed in the proposed DR-HA with different 

dispatching rules and sorting criteria, and thus 25 variants of DR-HA for DS-NPBO are obtained. The 

summary details of proposed 25 variants of DR-HA are presented in Table 4. All variants of DR-HA are 

coded in Python. Further, the formulas and the detailed explanation of all the dispatching rules, considered 

in proposed variants of DR-HA, are provided in Annexure-I. 

 

5. Performance Evaluation of Proposed 25 Variants of DR-HA 
For performance evaluation, we need to perform computational experiment and performance analysis. The 

specific details of these are as follows: 

 

5.1 Computational Experiment 
Any computational experiment for performance evaluation requires (a) test data, (b) a benchmark procedure 

and its solution to compare the proposed variants of DR-HA, and (c) performance measure(s), and the 

details of each of these are presented as follows: 

 

Test data - Experimental Design: In the absence of real-life data sets, a good research process is to define 

a suitable experimental design for randomly generating test data. Accordingly, this study proposes an 

experimental design (Table 5) by considering the job and machine parameters mentioned in the research 

problem configuration and the existing experimental designs in the literature. Using the experimental design 

presented in Table 5, one can randomly generate medium to large-scale test data of problem sizes varying 

from 25 to 100 jobs. Further, the values of all job parameters (rj, sj, pj, dj, lj) are generated using the uniform 

distribution as it is a high variance distribution that allows the variants of DR-HA to be evaluated in both 

favorable and unfavorable conditions. Thus, using the code developed for the proposed experimental design 

in Python, we randomly generated 240 test data, representing 5 instances for each of the 48 problem 

configurations. 

 

Benchmark Procedure and its Solution: This study considers one of the estimated optimal solution 

procedures presented in (Rardin and Uzsoy, 2001) as benchmark procedure. To obtain the estimated optimal 

solution, which is the benchmark solution, each of the 240 test data is solved using each of the 25 variants 

of DR-HA, resulting in [240 × 25] TWT score matrix. Later, the estimated optimal value (EOV) for each 
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of the 240 test data is computed using the Weibull distribution based estimated optimal solution procedure 

presented in (Rardin and Uzsoy, 2001), which considers the TWT score matrix to compute EOV for each 

test data. Thus, for each of the 240 randomly generated test data, EOV is obtained as a benchmark solution. 
 

Table 4. A summary of the proposed 25 variants of DR-HA. 
 

S. No. 
Proposed variants 

of DR-HA  

Step 5: 

computation of JPI 

is based on 

Step 6: 

sorting order of 

JPI 

Step 9: 

computation of BPI 

is based on 

Step 10: 

sorting order of 

BPI 
1. DR-HA1 ERD Ascending Batch-ERD Ascending 
2. DR-HA2 LPT Descending Batch-LPT Descending 
3. DR-HA3 LPT Descending Batch-EDD Ascending 
4. DR-HA4 EDD Ascending Batch-EDD Ascending 
5. DR-HA5 MDD Ascending Batch-MDD Ascending 
6. DR-HA6 MDD Ascending Batch-MS Ascending 
7. DR-HA7 Job Size Descending WTB Descending 
8. DR-HA8 Largest Weight Descending WTB Descending 
9. DR-HA9 SPT Ascending WTB Descending 
10. DR-HA10 LPT Descending WTB Descending 
11. DR-HA11 FDD Ascending WTB Descending 
12. DR-HA12 ODD Ascending WTB Descending 
13. DR-HA13 MOD Ascending WTB Descending 
14. DR-HA14 MS First Ascending WTB Descending 
15. DR-HA15 COVERT Descending WTB Descending 
16. DR-HA16 ATC- Vepsalainen Descending WTB Descending 
17. DR-HA17 ATC-Farhad 1 Descending WTB Descending 
18. DR-HA18 ATC-Farhad 2 Descending WTB Descending 
19. DR-HA19 ATC-Farhad 3 Descending WTB Descending 
20. DR-HA20 ATC-Farhad 4 Descending WTB Descending 
21. DR-HA21 ATC-Bala Descending BATC-Bala Descending 
22. DR-HA22 ATC-Monch Descending BATC-Monch Descending 
23. DR-HA23 ATC-Li Descending BATC-Li Descending 
24. DR-HA24 ATC-Li Descending BATC-Monch Descending 
25. DR-HA25 ATC-Vimala Descending BATC-Vimala Descending 

 
Table 5. A summary of the experimental design considered to generate the test data. 

 

Parameters Number of levels Level wise values 
Number of Burn-in ovens (M) 2  2, 4 

Burn-in oven Capacity (BC) 1 
[20, 26]; if M = 2 

[20, 26, 24, 22]; if M = 4  

Available time of Burn-in oven (AT) 1 
[2, 4]; if M = 2 

[2, 4, 5, 7]; if M = 4 
Machine that handles the Jobs with MER 1 Burn-in oven 2 

No. of jobs (n) 3 25, 50, 100 
Size of jobs (sj) 2 U[4,10], U[4,14] 

Release date of jobs (rj) 2 U[1,20], U[1,30] 
Processing time of jobs (pj) 1 U[1,10] 

Due-date of jobs (dj) 2 rj + pj + U[1,30], U[1,45]  
Lateness penalty of jobs (lj) 1 U[1,10] 

Number of problem configurations 3 × 2 × 2 × 2 × 2 × 1 × 1 × 1 × 1 × 1 = 48  
Number of test instances per configuration 5 
Total numerical instances or test instances 48 × 5 = 240 

 

 

Performance Measure for Empirical Analysis: The standard performance measure: Average Relative 

Percentage Deviation (ARPD), which measures the average case performance of each variant of DR-HA, 

is considered. To compute the ARPD score for any variant of DR-HA, the first step is to compute the 
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Relative Percentage Deviation (RPDij) value for every pair of test data (𝑖 𝜖 [1,240]) and the proposed DR-

HA variant (𝑗 𝜖 [1,25]), as per Equation (1). 

𝑅𝑃𝐷𝑖𝑗 = [(𝑍𝑖𝑗 −  𝐸𝑂𝑉𝑖) 𝐸𝑂𝑉𝑖⁄ ]  ×  100                                                                                                                              (1) 

 

where, 𝑍𝑖𝑗 = TWT value obtained by solving test data ‘i’ using the proposed DR-HA variant ‘j’. 

   𝐸𝑂𝑉𝑖 = estimated optimal value for test data ‘i’. 

 

For each variant of DR-HA, after computing RPDij scores, ARPD score is computed over 240 test data, as 

per the following Equation (2): 

𝐴𝑅𝑃𝐷𝑗 =  Σ𝑖=1
𝑁  𝑅𝑃𝐷𝑖𝑗 (𝑁⁄ = 240)                                                                                                                                     (2) 

 

where, 𝐴𝑅𝑃𝐷𝑗: average relative percentage deviation of DR-HA variant ‘j’. 

 

Performance Measures for Statistical Analyses: This study considers descriptive statistics such as mean 

and median, and 95% confidence interval for all variants of DR-HA. In addition, the randomized complete 

block design (RCBD) and Tukey’s multiple comparison tests are performed for statistical performance 

analysis. 

 

5.2 Performance Analysis 
As stated earlier, in this study, empirical and statistical analysis of performance of 25 variants of DR-HA 

for DS-NPBO is discussed. The details of these performance analyses are as follows: 

 
Empirical Analysis: Each of the 240 test data is solved using 25 variants of DR-HA, and a [240 × 25] TWT 

score matrix is obtained. Using this [240 × 25] TWT score matrix and 240 EOV obtained earlier for the 

same 240 test data using the benchmark procedure considered in this study, compute the ARPD score for 

each of the 25 proposed variants of DR-HA as per Equations (1) & (2) and presented in Table 6. 

Considering the ARPD values in Table 6, this study observed that the ATC and BATC dispatching rule-

based variants of DR-HA: DR-HA21 to DR-HA25, are performing well among all the proposed 25 variants 

of DR-HA. Particularly, the variant: DR-HA24 is the top performer. The possible reasons for the better 

performance of the variants: DR-HA21 to DR-HA25 could be due to the following: 

 

• ATC rules take various job/batch parameters (release date, processing time, due-date, lateness penalty) 

into consideration while evaluating the JPI/BPI. With this, the better performing ATC dispatching rules 

combine the Weighted Shortest Processing Time (WSPT) and Minimum Slack first (MS first) 

dispatching rules and efficiently make the balance between two rules (WSPT and MS first) by 

evaluating the slackness of the jobs/batches. Further, the ATC rules use an exponential look-ahead 

feature to scale the slackness of job/batch, which has been found to improve the efficiency of ATC 

rules (Jayamohan and Rajendran, 2000). 

 

Statistical Analyses: This study considers both Excel and Python for all statistical analyses. Accordingly, 

for each variant of DR-HA, the mean, median, and 95% interval estimation are computed by considering 

the [240 × 25] TWT values obtained earlier and provided in Table 7. Based on the statistical data provided 

in Table 7, five proposed variants of DR-HA: DR-HA21 to DR-HA25 are found performing well among 

all the proposed 25 variants of DR-HA and DR-HA24 is the top performer, which endorses the result 

obtained from the empirical analysis performed earlier. 
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In addition to the statistical performance analysis using the descriptive statistics, this study performs the 

randomized complete block design (RCBD) experiment to check if there is any significant difference in the 

performance of all the proposed 25 variants of DR-HA. This additional statistical performance analysis 

evaluates if the mean TWT of all 25 variants of DR-HA (provided in Table 7) are statistically identical or 

different from each other. 

 

As per the terminology of RCBD experiment, every test data is considered as a block and each proposed 

variant of DR-HA is considered as a treatment. Further, in RCBD, multiple treatments (variants of DR-HA) 

are applied over each block (test data). The performance of each treatment (variant of DR-HA) is evaluated 

by analysing the effect of respective treatment on all the blocks (TWT of test data). Accordingly, the model 

of the RCBD experiment is as follows: 

𝑌𝑖𝑗 =  𝜇 + 𝛼𝑗 +  𝛽𝑖 + 𝜖𝑖𝑗                                                                                                                            (3) 

 

Here, Yij is a dependant variable shows the effect of treatment ‘j’ on block ‘i’ (i.e., TWTij), 𝜇 is the overall 

mean TWT (average of all TWTij; 𝑖𝜖[1,240] and 𝑗𝜖[1,25]), 𝛼𝑗 is the effect of treatment ‘j’ (i.e., it describes 

how mean TWT of variant of DR-HA ‘j’ differs from the overall mean TWT), 𝛽𝑖 is the effect on block ‘i’ 

(i.e., it describes how mean TWT of test data ‘i’ differs from the overall mean TWT), and 𝜖𝑖𝑗 is the random 

error. 

 
Table 6. ARPD score for the 25 variants of DR-HA for DS-NPBO. 

 

Proposed variants of DR-HA ARPD score 
DR-HA1 460.91 
DR-HA2 2907.61 
DR-HA3 1126.69 
DR-HA4 525.54 
DR-HA5 839.84 
DR-HA6 617.60 
DR-HA7 2289.91 
DR-HA8 2418.11 
DR-HA9 1713.59 

DR-HA10 1826.70 
DR-HA11 1930.06 
DR-HA12 1774.92 
DR-HA13 1633.75 
DR-HA14 1023.57 
DR-HA15 1986.31 
DR-HA16 926.85 
DR-HA17 1032.86 
DR-HA18 1067.21 
DR-HA19 962.88 
DR-HA20 1038.2 
DR-HA21 386.62 
DR-HA22 109.28 
DR-HA23 105.62 
DR-HA24 67.14 
DR-HA25 121.88 

 

After applying all the treatments (variants of DR-HA) on each block (test data), RCBD experiment 

concludes if effect (mean TWT) of all the treatments (variants of DR-HA) are statistically identical or not, 

based on the following hypothesis: 

H0: There is no treatment effect (that is, mean TWT of all 25 variants of DR-HA are identical). 

Ha: There is a treatment effect (that is, at least one variant of DR-HA has different mean TWT). 
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The above hypothesis is evaluated at 5% significance level in MS Excel, and the hypothesis result (analysis 

of variance- ANOVA) is provided in Table 8. Based on the analysis of the results presented in Table 8, the 

null hypothesis is rejected, as the p-values are strictly less than 0.05. Hence, it is concluded that mean TWT 

of at least one variant of DR-HA is statistically different from the mean TWT of other variants of DR-HA. 

 
The result of RCBD experiment states that the performance (mean TWT) of few/all variants of DR-HA are 

different, i.e., some variants of DR-HA perform well compared to others. Hence, Tukey’s multiple 

comparison (TMC) test is performed to identify the variants of DR-HA that are equally/more efficient 

compared to other variants of DR-HA. TMC test compares all the pairs of the mean TWT values. In case 

of 25 variants of DR-HA, TMC test performs 300 [(25×24)/2] pairwise comparisons. Accordingly, the 

hypothesis for the TMC test is as follows: 

 

H0: There is no difference between DR-HAx and DR-HAy in terms of the performance. 

Ha: There is a difference between DR-HAx and DR-HAy in terms of the performance. 

(here, x = 1, 2,…,25; y = 2, 3,…,25; x < y and x ≠ y). 

 
Table 7. Result of the statistical evaluation of the proposed 25 variants of DR-HA. 

 

Proposed variants of DR-HA Mean Median 95% Confidence interval 
DR-HA1 4554.72 748.5 (3618.37, 5491.09) 
DR-HA2 8277.39 3229 (6924.71, 9630.07) 
DR-HA3 5101.00 1759 (4237.64, 5964.36) 
DR-HA4 4550.33 793 (3646.55, 5454.11) 
DR-HA5 4640.98 1182.5 (3759.09, 5522.88) 
DR-HA6 3979.18 785.5 (3190.2, 4768.17) 
DR-HA7 6552.10 2789.5 (5545.21, 7558.98) 
DR-HA8 5857.26 2566 (4957.85, 6756.68) 
DR-HA9 5251.76 2038.5 (4415.69, 6087.83) 

DR-HA10 5073.67 2106.5 (4267.25, 5880.09) 
DR-HA11 5852.25 2313.5 (4880.53, 6823.96) 
DR-HA12 5536.03 2137.5 (4644.22, 6427.84) 
DR-HA13 5064.12 2090.5 (4263.58, 5864.66) 
DR-HA14 5355.63 1941 (4415.46, 6295.81) 
DR-HA15 5181.71 2194 (4380.49, 5982.93) 
DR-HA16 4131.35 1397.5 (3395.37, 4867.33) 
DR-HA17 4373.03 1219 (3599, 5147.07) 
DR-HA18 4637.03 1254 (3807.95, 5467.01) 
DR-HA19 4392.13 1354 (3606.29, 5177.98) 
DR-HA20 4624.53 1042.5 (3795.6, 5453.47) 
DR-HA21 2410.44 567.5 (1942.62, 2878.28) 
DR-HA22 2597.18 360 (2065.3, 3129.07) 
DR-HA23 2165.81 394 (1709.51, 2622.12) 
DR-HA24 2025.82 303.5 (1586.47, 2465.18) 
DR-HA25 2503.40 362.5 (1974.03, 3032.77) 

 

The result of TMC test is provided in Table 9, in terms of p-value for each of the 300 pairs of the variants 

of DR-HA. The p-values in Table 9 shows that the performances of the variants of: DR-HA21 to DR-

HA25, are statistically different from the other variants of DR-HA (i.e., DR-HA1 to DR-HA20), as the 

respective p-values in the columns corresponding to DR-HA21 to DR-HA25 in Table 9 are strictly less 

than 0.10. Also, the p-value for each of the following ten pairs of the variants of DR-HA: (DR-HAx, DR-

HAy); (x, y = 21,…, 25); x < y, x ≠ y] is 0.9 or nearly 1, which indicates that the performances (mean TWT) 

of these variants of DR-HA: DR-HA21 to DR-HA25 are statistically identical. Thus, based on the Table 9, 

this study concludes that the variants of DR-HA: DR-HA21 to DR-HA25 are the topmost heuristic 
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algorithms among the proposed 25 variants of DR-HA for DS-NPBO. This inference supports the result 

obtained during the empirical and statistical analyses. 

 
Table 8. ANOVA result for the randomised complete block design (RCBD) experiment. 

 

Source of variation Degree of freedom Sum of squares Mean square F-Value p-Value 
Variants of DR-HA 

(Treatment) 24 1.2E+10 5.00E+8 
138.69 0 

Block (Instances) 239 2.3E+11 9.80E+8 272.652 0 
Error 5736 2.1E+10 3593674   
Total 5999 2.7E+11    

 

6. Efficient Proposed Variant(s) of DR-HA for Real-time DS-NPBO (RTDS-NPBO) 
In real life scenario, during DS-NPBO, there is a possibility of occurrences of real-time events (RTE) related 

to job (such as due-date change, early/late arrival of jobs, change in job priority, new job addition, job 

cancellation) and/or resource (such as machine breakdown, operator illness, tool failure, shortage of 

material, defective material). As no study in literature deals with Real-time Dynamic Scheduling (RTDS) 

of NPBO, this study reviewed the existing studies on RTDS of discrete processor. The review of studies on 

RTDS of discrete processor indicated that consideration of RTE while performing the dynamic scheduling 

of discrete processor reduces the efficiency of current algorithm and hence, there is a need for modifying 

the existing algorithm or developing rescheduling algorithm to handle RTE more efficiently (Vieira et al., 

2003; Ouelhadj and Petrovic, 2009). However, due to long operation time of Burn-in process and the 

computerized tracking system on the SM shop floor, this study proposes the following research hypothesis: 

 

“Appropriately modifying the data related to the jobs waiting in front of burn-in ovens for burn-in operation 

in case of the occurrence of job related RTE and modifying the BO available time in case of the occurrence 

of resource related RTE, is sufficient when there is an efficient algorithm for DS-NPBO, and developing 

the rescheduling algorithm/modifying the current algorithm whenever any types of RTE occur while 

scheduling the NPBO is not required.” 

 

The above research hypothesis is appropriately converted as measurable hypothesis and the same is given 

below: 

Ho: Performance ranking of each of the 25 variants of DR-HA obtained in DS-NPBO scenario is 

significantly different compared to the performance ranking of respective variant of DR-HA 

obtained in RTDS-NPBO scenario. 

Ha: Performance ranking of each of the 25 variants of DR-HA obtained in DS-NPBO scenario is not 

significantly different compared to the performance ranking of respective variant of DR-HA 

obtained in RTDS-NPBO scenario. 

 

To test the above hypothesis on RTDS-NPBO, the decision making framework presented for DS-NPBO is 

modified for the problem on RTDS-NPBO and the same is presented in Figure 2. Further, the required 

computer code is developed for randomly generating either job or resource or both job and resource related 

RTE and incorporated in each of the proposed 25 variants of DR-HA for triggering the RTE while solving 

each of the 240 test data used in the earlier section. With this, the result in terms of TWT score (for each of 

the 240 test data solved using each of the proposed 25 variants of DR-HA) is recorded in [240 × 25] TWT 

score matrix for the RTDS-NPBO scenario. Further, using Equations (1) and (2), the ARPD score for each 

of the 25 proposed variants of DR-HA is obtained for RTDS-NPBO scenario and presented in Table 10. 

The ARPD score provided in Table 10 shows that variants of DR-HA: DR-HA21 to DR-HA25 are 
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performing well among 25 proposed variants of DR-HA considered for RTDS-NPBO, which highlights 

that variants of DR-HA that outperform during DS-NPBO also perform well in the case of RTDS-NPBO. 

 

 
Table 9. Result of Tukey’s pairwise multiple comparison test. 
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DR-HA1 0.001 0.9 0.9 0.9 0.9 0.12 0.12 0.9 0.9 0.88 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.01 0.01 0.01 0.01 0.01 

DR-HA2  0.001 0.001 0.001 0.001 0.38 0.01 0.001 0.001 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

DR-HA3   0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.001 0.004 0.001 0.001 0.001 

DR-HA4    0.9 0.9 0.12 0.87 0.9 0.9 0.87 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.01 0.06 0.01 0.01 0.01 

DR-HA5     0.9 0.19 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.009 0.01 0.008 0.008 0.01 

DR-HA6      0.004 0.21 0.9 0.9 0.22 0.58 0.9 0.79 0.9 0.9 0.9 0.9 0.9 0.9 0.06 0.09 0.02 0.015 0.08 

DR-HA7       0.9 0.87 0.68 0.9 0.9 0.67 0.9 0.8 0.01 0.05 0.18 0.05 0.17 0.001 0.001 0.001 0.001 0.001 

DR-HA8        0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.4 0.67 0.9 0.69 0.9 0.001 0.001 0.001 0.001 0.001 

DR-HA9         0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.001 0.004 0.001 0.001 0.001 

DR-HA10          0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.002 0.004 0.001 0.001 0.004 

DR-HA11           0.9 0.9 0.9 0.9 0.4 0.68 0.9 0.70 0.9 0.001 0.001 0.001 0.001 0.001 

DR-HA12            0.9 0.9 0.9 0.76 0.9 0.9 0.9 0.9 0.001 0.001 0.001 0.001 0.001 

DR-HA13             0.9 0.9 0.76 0.9 0.9 0.9 0.9 0.002 0.005 0.001 0.001 0.004 

DR-HA14              0.9 0.9 0.9 0.9 0.9 0.9 0.001 0.001 0.001 0.001 0.001 

DR-HA15               0.9 0.9 0.9 0.9 0.9 0.001 0.004 0.001 0.001 0.001 

DR-HA16                0.9 0.9 0.9 0.9 0.04 0.06 0.015 0.015 0.05 

DR-HA17                 0.9 0.9 0.9 0.01 0.06 0.01 0.01 0.02 

DR-HA18                  0.9 0.9 0.01 0.01 0.008 0.008 0.01 

DR-HA19                   0.9 0.01 0.06 0.01 0.01 0.012 

DR-HA20                    0.01 0.01 0.008 0.008 0.01 

DR-HA21                     0.9 0.9 0.9 0.9 

DR-HA22                      0.9 0.9 0.9 

DR-HA23                       0.9 0.9 

DR-HA24                        0.9 

 
Table 10. ARPD score for each of the proposed 25 variants of DR-HA for RTDS-NPBO. 

 

Proposed variants of DR-HA ARPD score 
DR-HA1 371.49 
DR-HA2 2434.92 
DR-HA3 935.86 
DR-HA4 310.83 
DR-HA5 447.00 
DR-HA6 340.00 
DR-HA7 1927.51 
DR-HA8 1892.96 
DR-HA9 1520.33 

DR-HA10 1485.92 
DR-HA11 1415.54 
DR-HA12 1224.01 
DR-HA13 1450.34 
DR-HA14 767.64 
DR-HA15 1526.04 
DR-HA16 681.84 
DR-HA17 664.55 
DR-HA18 777.97 
DR-HA19 761.68 
DR-HA20 917.73 
DR-HA21 252.43 
DR-HA22 116.91 
DR-HA23 103.16 
DR-HA24 54.99 
DR-HA25 121.68 
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Table 11. Spearman’s correlation test for statistical significance of the performances of the proposed 25 variants of 

DR-HA with respect to DR-NPBO and RTDS-NPBO scenarios. 
 

Variant of DR-HA p-value 
Correlation coefficient between 

performances of variant of DR-HA in DS-

NPBO and RTDS-NPBO scenarios 
DR-HA1 <1e-10 0.98622 
DR-HA2 <1e-10 0.99096 
DR-HA3 <1e-10 0.98488 
DR-HA4 <1e-10 0.95957 
DR-HA5 <1e-10 0.96131 
DR-HA6 <1e-10 0.95392 
DR-HA7 <1e-10 0.98232 
DR-HA8 <1e-10 0.98426 
DR-HA9 <1e-10 0.97784 

DR-HA10 <1e-10 0.98186 
DR-HA11 <1e-10 0.97357 
DR-HA12 <1e-10 0.97008 
DR-HA13 <1e-10 0.97088 
DR-HA14 <1e-10 0.95425 
DR-HA15 <1e-10 0.97838 
DR-HA16 <1e-10 0.95876 
DR-HA17 <1e-10 0.96216 
DR-HA18 <1e-10 0.96100 
DR-HA19 <1e-10 0.96002 
DR-HA20 <1e-10 0.95901 
DR-HA21 <1e-10 0.94644 
DR-HA22 <1e-10 0.96419 
DR-HA23 <1e-10 0.93997 
DR-HA24 <1e-10 0.94750 
DR-HA25 <1e-10 0.94241 

 
 

 
 

Figure 2. A decision making framework for RTDS-NPBO problem. 



Pujara & Mathirajan: Development of Dispatching Rule based Heuristic Algorithms for Real-Time … 
 

 

768 | Vol. 10, No.3, 2025 

Using Table 6 and Table 10, the performance ranking for each of the 25 variants of DR-HA is obtained 

w.r.t. DS-NPBO and RTDS-NPBO scenarios, and the same is presented in Figure 3. From Figure 3, it is 

observed that performance ranking of each variant of DR-HA remains almost same in both scenarios: DS-

NPBO and RTDS-NPBO, which empirically supports the hypothesis provided in this study. Further, to 

support this observation statistically, the spearman’s rank order correlation test is carried out, in which the 

correlation coefficient between the performance of each variant of DR-HA in DS-NPBO and RTDS-NPBO 

scenarios is computed and the same is provided in Table 11. 

 

 
 

Figure 3. Performance ranking of the proposed 25 variants of DR-HA in DS-NPBO and RTDS-NPBO scenarios. 

 

In Table 11, the p-value for each variant of DR-HA is < 0.05, which is strong evidence to reject H0. Also, 

the high correlation coefficient for each variant of DR-HA shows a strong relation between the performance 

ranking of each variant of DR-HA in DS-NPBO and RTDS-NPBO scenarios. This highlights that variant 

of DR-HA that works efficiently in DS-NPBO scenario would work at the same efficiency in RTDS-NPBO 

scenario. This result is against the existing findings in the case of RTDS of discrete processor environment. 

Probably, this contracting result is due to long processing time required for burn-in operation and the 

presence of highly computerised shop floor in SM Industry. 

 

7. Conclusion 
This study addressed a new problem configuration, close to real life environment, on scheduling of non-

identical parallel Burn-in ovens in the Semiconductor Manufacturing (SM) industry, by considering the 

real-life characteristics: occurrences of RTE, distinct job parameters (such as distinct- job sizes, processing 

times, due-dates, and release times), agreeable release times & due-dates, and Machine Eligibility 

Restriction (MER) to minimize the Total Weighted Tardiness (TWT) of the jobs. Due to NP-hard nature of 

the problem considered in this study, many studies in the literature have discussed Dispatching Rules (DR) 

based heuristic algorithm as DR are widely used in SM industry for scheduling of various batch processing 

machines, including burn-in ovens. However, to the best of our knowledge, there is no study that compares 

the various DR considered for scheduling of burn-in ovens in general, particularly in the context of Real 

Time Dynamic Scheduling (RTDS) of Non-identical Parallel Burn-in Ovens (NPBO) with MER problem 

defined in this study. To address this research gap, 25 variants of DR-HA is proposed. Initially, the proposed 

25 variants of DR-HA were applied for Dynamic Scheduling (DS) of NPBO, considering 240 randomly 

generated test problems, and their performances were analysed empirically, in comparison with EOS 

obtained for each of the 240 test data, using the Average Relative Percentage Deviation (ARPD) score as 

an empirical performance measure. 

0
2
4
6
8

10
12
14
16
18
20
22
24
26

D
R

-H
A

1

D
R

-H
A

2

D
R

-H
A

3

D
R

-H
A

4

D
R

-H
A

5

D
R

-H
A

6

D
R

-H
A

7

D
R

-H
A

8

D
R

-H
A

9

D
R

-H
A

1
0

D
R

-H
A

1
1

D
R

-H
A

1
2

D
R

-H
A

1
3

D
R

-H
A

1
4

D
R

-H
A

1
5

D
R

-H
A

1
6

D
R

-H
A

1
7

D
R

-H
A

1
8

D
R

-H
A

1
9

D
R

-H
A

2
0

D
R

-H
A

2
1

D
R

-H
A

2
2

D
R

-H
A

2
3

D
R

-H
A

2
4

D
R

-H
A

2
5

R
an

k

Variants of DR-HA

Rank of Variants of DR-HA based on ARPD score

DS-NPBO RTDS-NPBO



Pujara & Mathirajan: Development of Dispatching Rule based Heuristic Algorithms for Real-Time … 
 

 

769 | Vol. 10, No.3, 2025 

In addition to the empirical analysis, this study carried out descriptive statistical measures, and several 

statistical tests such as randomized complete block design and Tukey’s multiple comparison test. From both 

empirical and statistical performance analyses, it was observed that the proposed variants of DR-HA: DR-

HA21 to DR-HA25 outperform the remaining proposed variants of DR-HA (DR-HA1 to DR-HA20). The 

possible reasons for these outperforming variants of DR-HA were also discussed. 

 

To comprehend if the performance ranking of each of the 25 variants of DR-HA gets affected or not when 

the occurrences of RTE (real-life scenarios) are considered, an appropriate computer code is developed for 

randomly generating all defined RTE while performing RTDS-NPBO using each of the 25 variants of DR-

HA. With this implementation for RTDS-NPBO, the same 240 test problems were solved using each of the 

25 variants of DR-HA coupled with computer code for randomly generating all defined RTE, and ARPD 

score for each variant of DR-HA was computed. The ARPD scores obtained for each of the proposed 25 

variants of DR-HA for the scenarios: (a) DS-NPBO and (b) RTDS-NPBO were compared empirically using 

performance ranking w.r.t. ARPD score in each scenario and statistically using Spearman’s rank order 

correlation test. The empirical and statistical analyses clearly indicated that (a) in general, there is no change 

in the efficiency of each variant of DR-HA developed for DS-NPBO when it is applied for RTDS-NPBO 

scenario, and (b) the topmost efficient proposed variants of DR-HA: DR-HA21 to DR-HA25 remain robust 

and equally efficient in both DS-NPBO and RTDS-NPBO scenarios. 

 

Though we have considered real time events to address RTDS-NPBO, the RTE considered in both cases of 

jobs and resources may not be exhaustive! The immediate future research work involves (a) identifying any 

left out RTE associated with jobs and resources to understand if the left out RTE has any impact on the 

performance ranking of the variants of DR-HA for RTDS-NPBO, and (b) developing meta-heuristic 

algorithms by considering efficient DR-HA as initial solution. 
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ANNEXURE I: Dispatching Rules (DR) used for development of variants of DR-HA 

 
As shown in Table 4, every variant of DR-HA considers two dispatching rules: one dispatching rule to 

compute the Job-Priority-Index (JPI) of jobs in batch formation stage and the second dispatching rule to 

compute the Batch-Priority-Index (BPI) of batches in batch selection stage. Accordingly, the formulas and 

the computational details of the DRs used for developing 25 variants of DR-HA are explained in this 

section. 

 

Dispatching rules considered to compute the Job-Priority-Index (JPI) of jobs 
Earliest Release-Date (ERD): ERD is function of a single job characteristic: ‘Release time (r)’. As job 

release date is time independent job parameter, this rule comes under the static dispatching rule category. 
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ERD rule gives high priority to the job arrived early in the system. Accordingly, as per the ERD rule, the 

Job Priority Index (JPI) of job ‘j’ will be as follow: 

JPI (j) = rj. 
 

Shortest Processing Time (SPT): SPT is a static DR. It considers processing time of job (pj) to compute JPI 

and assigns high priority to the jobs with shorter processing time. 

JPI (j) = pj 

 

Longest Processing Time (LPT): LPT is also a static DR that considers processing time of job (pj) to 

compute JPI and assigns high priority to the jobs with higher processing time. 

JPI (j) = pj. 
 

Largest Weight First (LWF): LWF considers lateness (lj) penalty of the job to compute JPI and the jobs 

with higher JPI get more priority as per LWF rule. 

JPI (j) = lj. 
 

Decreasing order of Size (DECR-S): DECR-S is a static DR and it is function of job size (sj). Job occupying 

more space in BO gets high preference as per DECR-S rule. 

JPI (j) = sj. 
 

Earliest Due Date (EDD): It is a simple and static DR considered by most of the studies in literature, and 

it considers single job characteristic: ‘Due-date (dj)’ to compute JPI and assigns high priority to the jobs 

with shorter due-date. 

JPI (j) = dj. 
 

Flow Due Date (FDD): It is a simple and static DR. FDD rule computes the JPI of job by adding two job 

characteristics: release date (rj) and processing time (pj), and job with lower JPI gets high priority. 

JPI (j) = rj  + pj. 
 

Operational Due-Date (ODD): It is similar to the FDD dispatching rule, but it considers the due-date 

allowance factor (c= 3) in addition to the job characteristics considered in FDD. 

JPI (j) = rj  + (c ∗ pj). 
 

Modified Operational Due Date (MOD): It considers the time factor (𝜏): a time instant at which the 

scheduling decision is made. Hence, it is a dynamic/time dependant DR. Here, JPI of job can be computed 

as given below: 

JPI (j) = max{(rj  + c ∗ pj),  𝜏 + pj}. 

 

Modified Due-Date (MDD): It is a dynamic DR formed by combining two dispatching rules: EDD and 

FDD. This composite dispatching rule considers multiple job characteristics such as due-date, processing 

time, and job size. 

JPI (j) =  max(𝑑𝑗, 𝜏 + 𝑝𝑗) 𝑠𝑗⁄ . 

Minimum Slack (MS) First: It is a simple and dynamic DR, which measures the urgency for completion of 

a specific job. MS First rule computes the JPI of job given below: 

JPI (j) = max(dj − 𝜏  − pj , 0). 

 

Cost OVER Time (COVERT): It is a composite & dynamic DR, which is formed by merging MS first and 

weighted shortest processing time. The equation for computing JPI using COVERT rule is given below: 
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JPI (j) = (
𝑤𝑗

𝑝𝑗
) ∗ [1 − ((𝑑𝑗 − 𝜏 − 𝑝𝑗)+/ ∑j=1

n  𝑝𝑗)]
+

. 

 

Apparent Tardiness Cost (ATC): Like COVERT, ATC is also a composite & dynamic DR developed by 

combining two simple dispatching rules: MS first and WSPT. However, it differs from the COVERT rule 

in a way that it estimates the delay penalty using an exponential discounting formulation. Table 12 shows 

the various ATC dispatching rules considered in this study. 

 

Table 12. ATC rules considered for computing JPI of jobs. 
 

ATC rule Job-priority-index(j) = Source 

ATC-Vepsalainen (
𝑤𝑗

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−𝑝j− 𝜏) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
 

Vepsalainen and Morton 
(1987) 

ATC-Farhad 1 (
1

𝑝𝑗

) ∗ exp−[max(0,𝑑j−(𝑝j + 𝜏)) (
1
𝑛∗∑j=1

𝑛  𝑝𝑗)⁄ ]
 

Farhad and Laya (2007) 

ATC-Farhad 2 (
1

𝑝𝑗 ∗ 𝑑𝑗

) ∗ exp−[max(0,𝑑j−(𝑝j + 𝜏)) (
1
𝑛∗∑j=1

𝑛  𝑝𝑗)⁄ ]
 

ATC-Farhad 3 (
1

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−(𝑝j+max(𝑝j,𝜏))) (

1
𝑛∗∑j=1

𝑛  𝑝𝑗)⁄ ]
 

ATC-Farhad 4 (
1

𝑝𝑗 ∗ 𝑑𝑗

) ∗ exp
−[max(0,𝑑j−(𝑝j+max(pj,𝜏))) (

1
𝑛∗∑j=1

𝑛  𝑝𝑗)⁄ ]
 

ATC-Bala (
𝑤𝑗

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−𝑝j−𝜏) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
 Mönch et al. (2004) 

ATC-Monch (
𝑤𝑗

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−𝑝j+(𝑟j−𝜏)) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
 Monch et al. (2006) 

ATC-Li (
𝑤j

𝑝j

) ∗ exp
−[max(0,𝑑j−𝑝j−𝜏+(rj−𝜏)

+
) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
 

Li et al. (2009a) 

ATC-Vimala 
(

𝑤j

𝑝j

) ∗ f(wj, 𝑝j) ∗ exp
−[(𝑑j−𝑝j−𝜏+(𝑟j−𝜏)

+
)

+
(k∗(

1
n∗∑j=1

n  𝑝𝑗))⁄ ]
 

where, 

  f(𝑤𝑗 , 𝑝𝑗)=1 if (RTBb + 𝑝𝑗 − 𝑑𝑗) ≤ 0;  𝑤𝑗 (RTB𝑏 + 𝑝𝑗 − 𝑑𝑗)⁄  otherwise 

Rani (2018) 

 

Dispatching rules considered to compute the Batch-Priority-Index (BPI) of batches 
Batch Earliest Release Date (Batch-ERD): Batch-ERD rule considers the release date of all jobs included 

in the selected batch and declares the maximum release date as the BPI of the batch. As per Batch-ERD, a 

batch with a lower BPI (early release date) gets high priority. Accordingly, BPI of batch ‘b’ can be 

computed using Batch-ERD rule as follows: 

BPI (b) = max 
j ∈ b

{𝑟𝑗}. 

 

Batch Earliest Due Date (Batch-EDD): As per the Batch-EDD rule, the minimum due-date of the jobs 

included in the considered batch is declared as the BPI of respective batch, and a batch with a lower BPI 

(early due-date) gets high priority. 

BPI (b) = min 
𝑗 ∈ 𝑏

{𝑑𝑗}. 
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Batch Longest Processing Time (Batch-LPT): As per the Batch-LPT rule, the longest processing time of 

the jobs included in the considered batch (or batch processing time) is taken as the BPI of respective batch, 

and a batch with a higher BPI gets high priority. 

BPI (b) = max 
𝑗 ∈ 𝑏

{𝑝𝑗}. 

 

Batch Minimum Slackness (Batch-MS): Batch-MS rule declares the minimum slackness of the jobs included 

in the considered batch as the BPI of respective batch, and a batch with a lower BPI gets high priority. 

BPI (b) = min 
𝑗 ∈ 𝑏

{(𝑑𝑗 −  𝜏  −  𝑝𝑗)+}. 

 

Batch Modified Due-Date (Batch-MDD): As per the Batch-MDD rule, the minimum modified due-date of 

the jobs included in the considered batch is taken as the BPI of respective batch, and a batch with a lower 

BPI gets high priority. 

BPI (b) = min 
𝑗 ∈ 𝑏

{max(𝑑𝑗, 𝜏 +  𝑝𝑗) 𝑠𝑗⁄ }. 

 

Weighted Tardiness of Batch (WTB): This rule computes the BPI of a batch by summing up the weighted 

tardiness of each job included in the given batch. The formula for computing WTB of batch ‘b’ is as follows: 

BPI (b) = ∑𝑗=1
𝐾  {(CTB𝑏 − 𝑑𝑗) ∗ 𝑤𝑗}. 

 

where, K = No. of jobs included in the temporary batch ‘b’ 

CTBb = completion time of batch ‘b’ 

 

Batch Apparent Tardiness Cost (BATC): BATC is a composite & dynamic DR. Table 13 shows the various 

BATC dispatching rules considered in this study. 
 

 

Table 13. BATC rules considered for computing BPI of batches. 
 

BATC rule Batch-priority-index(b) = Source 

BATC-Bala Σ𝑗ϵ𝑏 {(
𝑤𝑗

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−𝑝j−𝜏) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
} Mönch et al. (2004) 

BATC-Monch Σ𝑗ϵ𝑏 {(
𝑤𝑗

𝑝𝑗

) ∗ exp
−[max(0,𝑑j−𝑝j+(𝑅𝑇𝐵b−𝜏)) (k∗(

1
𝑛∗∑j=1

𝑛  𝑝𝑗))⁄ ]
∗ (nbj B⁄ )} Monch et al. (2006) 

BATC-Li Σ𝑗ϵ𝑏 {(
𝑤𝑗

𝑝𝑗
) ∗ exp

−[max(0,𝑑j−𝑝j−𝜏+(𝑟𝑗−𝜏)
+

) (k∗(
1

𝑛
∗∑j=1

𝑛  𝑝𝑗))⁄ ]
} ∗ min((nbj B⁄ ), 1) 

Li et al. (2009b) 

BATC-Vimala 

Σ𝑗ϵ𝑏 {(
𝑤𝑗

𝑝𝑗

) ∗ f(𝑤𝑗 , 𝑝𝑗) ∗ exp
−[(𝑑j−𝑝j−𝜏+(𝑟j−t)

+
)

+
(k∗(

1
n∗∑j=1

n  𝑝𝑗))⁄ ]
} ∗ (nbj B⁄ ) 

where, 

   f(wj, 𝑝j)=1 if (RTBb + 𝑝j − 𝑑j) ≤ 0;  wj (RTBb + 𝑝j − 𝑑j)⁄  otherwise 

Rani (2018) 
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