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Abstract 

In the present investigation, a new integral transform method (NITM) and the projected differential transform method (PDTM) 

are used to give an analytical solution to the time-fractional Klein-Gordon (TFKG) equation. The time-fractional derivative is 

used in the Caputo sense. The huge advantage of the suggested approach is the ease with which the nonlinear term can be 

effortlessly treated by projected differential transform without using Adomian's and He's polynomials. The solution of fractional 

partial differential equations using the aforementioned method is very simple and straightforward.  The efficiency and accuracy 

of the proposed method are demonstrated by three examples, and the effects of various fractional Brownian motions are 

demonstrated graphically.  
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1. Introduction 
Due to its substantial potential applications in several subjects, including physics, mathematics, 

chemistry, biology, fluid dynamics, and nonlinear optics, fractional calculus has gained more recognition 

in various scientific and engineering fields (Miller and Ross, 1993; Baleanu et al., 2012). Since fractional 

differential equations (FDEs) are extensively utilized to describe complex phenomena. Thus, it is noticed 

that derivatives of non-integer orders are particularly successful in illuminating a variety of natural 

phenomena, including damping laws, rheology, diffusion process, etc. There is an instant turning in 

interest from scientists and engineers to analyze fractional calculus in quite a few areas of mathematical 

biology, fluid mechanics, electrochemistry, etc. (Oldham and Spanier, 1974; Carpinteri and Mainardi, 

1997; Podlubny, 1999; Tarasov, 2010). Gejji and Jafari (2005) used the Adomian decomposition method 

to solve a system of FDEs. He (1998) used Hadamard product and vector extraction operators to obtain 

analytical solutions for Caputo FDEs. Fractional PDEs are a modern tool in calculus that can be utilized 

for the simulation of wide-ranging problems (Ara et al., 2018; Owolabi et al., 2020).  

 

In addition, nonlinear differential equations with a variety of fractional derivative operators, such as 

Caputo, Hilfer, Riemann-Liouville, Caputo-Fabrizio, Antangana-Baleanu in the sense of Caputo, etc. play 

a vital role in solving real-world problems. Moreover, Nisar et al. (2021) analyze the mathematical SIRD 

model of COVID-19 with Caputo fractional derivative based on real data. Due to the complexity of 

fractional PDEs/ODEs, which ordinary operators cannot handle in order to achieve explicit solutions, 

these fractional operators are highly helpful in fractional calculus, for instance (Srivastava et al., 2013a, 

2013b; Shukla et al., 2014; Salahshour et al., 2015; Agarwal and El-Sayed, 2018; Chaurasia et al., 2018; 

El-Sayed and Agarwal, 2019; Sheikh et al., 2021). 

 

The fractional Klien-Gordan equation is one of the important wave equations in mathematical physics. 

Numerous investigations have been done on this problem e.g., Golmankhaneh and Baleanu (2011) used a 
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Homotopy perturbation method to find exact solutions of the nonlinear fractional K-G equation. Also, 

Saelao and Yokchoo (2020) used the Adomian decomposition method to solve the K-G equation whereas 

Kumar and Baleanu (2021) used the homotopy analysis transform method with the fractional-derivative 

of the Mittag-Leffler type of kernel. In Saifullah et al (2022), the general series solution of the nonlinear 

time-fractional Klien Gordan equation with power law kernel is established by the composition of double 

Laplace transform with the decomposition method. The fractional Klein–Gordon equation under the 

fractal fractional operator with the Riemann–Liouville and with the Mittag-Leffler kernel has also been 

studied numerically by Partohaghighi et al. (2022). Mohammadizadeh et al. (2021) extended the 

Chebyshev spectral collocation method while Kurulay (2012) and Gepreel and Mohamad (2013) utilized 

the homotopy analysis method for constructing an approximation of the fractional K-G equation. Khan et 

al. (2019) developed a numerical technique with the advantage of the Sumudu decomposition method to 

solve the Caputo fractional K-G equation. Singh et al. (2020) presented a computational technique by 

combining of collocation method with orthogonal polynomial matrices while Bansu and Kumar (2021) 

presented a novel collocation method to solve the space-time fractional K-G equation. Khader and Adel 

(2016) used variational iteration methods with fractional complex transform to solve the fractional K-G 

equation. 

 

Recently, Liu et al. (2022) developed an approach “Yang homotopy perturbation transform method” to 

solve the TFKG equations while Karaagac (2019) adopted a numerical method based on the Adams-

Bashforth method utilizing the Atangana-Baleanu fractional-derivative. Tamsir and Srivastava (2016a, 

2016b) presented the Fractional reduced differential transform method (FRDTM) to solve the TFKG 

equation and fractional-order gas dynamics equation. Amin et al. (2020) and Ganji et al. (2021) developed 

new techniques using extended cubic B-spline and clique polynomial functions as basis functions to find 

the numerical solutions of the TFKG equation. We consider the TFKG equation 
𝜕𝛼𝑣

𝜕𝜏𝛼 =
𝜕2𝑣

𝜕𝜉2 + 𝛽1𝑣 + 𝛽2𝑣2 + 𝛽3𝑣3, 𝜉 ∈ 𝑅                                                                                                     (1) 

 

With the initial condition  

𝑣(𝜉, 0) = 𝜑(𝜉), 𝜉 ∈ 𝑅                                                                                                                                 (2) 

 

where, 𝛽1, 𝛽2, 𝛽3 are real constants. For 𝛼 = 1, Equation (1) eases to a classical nonlinear K-G equation. 

 

Recently, Shah et al. (2018) presented a method by combining integral and PDT methods to solve the 

time fractional gas dynamics equation. In this work, we present the aforementioned method to solve the 

TFKG equation. 

 

The rest of the paper is organized as follows: Some fundamental definitions of the theory of fractional 

calculus are highlighted in Section 2. The method's process is described in section 3. Section 4 presents 

the outcomes of the proposed method. Finally, in section 5 the conclusion of our study is presented. 

 

2. Preliminaries 
This section looks over some basic definitions.  

 

Definition 2.1 A real-valued 𝑔(𝜏) ∈ ℝ, 𝑡 > 0 is in 𝐶�̃�, �̃� ∈ ℝ if ∃ a real number �̂� (> �̃�) such that 

𝑔(𝜏) = 𝑡�̂�𝑔(𝜏) , where𝑔(𝜏) ∈ 𝐶[0, ∞), and is in the space 𝐶�̃�
𝑙  if 𝑔(𝑙)(𝜏) ∈ 𝐶�̃�, 𝑙 ∈ ℕ. 

 

Definition 2.2 The Caputo integral of the function 𝑔(𝜏) ∈ ℝ of order 𝛼 ≥ 0 is defined by Podlubny 

(1999). 
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{
𝐽𝑐 𝑔𝛼 (𝜏) =

1

𝛤(𝛼)
∫ (𝜏 − 𝜒)𝛼−1𝑔(𝜒)𝑑𝜒, 𝛼

𝜏

0
> 0, 𝜏 > 0,

𝐽𝑐 𝑔𝛼 (𝜏) = 𝑔(𝜏).
                                                                              (3) 

 

Definition 2.3 The Caputo derivative of 𝑔(𝜏) ∈ ℝ is defined by Podlubny (1999). 

𝐷𝑐
𝑡
𝛼𝑔(𝜏) = 𝐽𝑐

𝜏
𝑙−𝛼𝐷𝜏

𝑙𝑔(𝜏) =
1

𝛤(𝑙−𝛼)
∫ (𝜏 − 𝜒)𝑙−𝛼−1𝜏

0
𝑔(𝑙)(𝜒)𝑑𝜒                                                                (4) 

 

For 𝑙 < 𝛼 ≤ 𝑙 + 1, 𝑡 > 0, 𝑔 ∈ 𝐶�̃�
𝑙 , �̃� ≥ -1,  𝑙 ∈ ℕ. 

 

Lemma 2.1 If 𝑙 < 𝛼 ≤ 𝑙 + 1,  𝑙 ∈ ℕ and 𝑔 ∈ 𝐶�̃�
𝑙 , �̃� ≥ -1, then  

{
𝐷𝑐

𝜏
𝛼 𝐽𝑐

𝜏
𝛼𝑔(𝜏) = 𝑔(𝜏), 𝜏 > 0,

𝐽𝑐
𝜏
𝛼 𝐷𝑐

𝜏
𝛼𝑔(𝜏) = 𝑔(𝜏) − ∑ 𝑓(𝑘)(0+)

𝜏𝑘

𝑘!
𝑙
𝑘=0 ,  𝜏 > 0.

                                                                                  (5) 

 

3. New Integral and Projected Differential Transforms 
The new integral transform is given by Kasuri and Fundu (2013). 

𝛫[𝑣(𝜏)] =
1

𝜔
∫ 𝑒

−
𝜏

𝜔2𝑣(𝜏)𝑑𝜏
∞

0
,       𝜏 ≥ 0, −𝑘1 < 𝜔 < 𝑘2.                                                                          (6) 

 

where, 𝑘1, 𝑘2 may be finite or infinite. 

 

Theorem 1. The new integral transform of 
𝜕𝑚𝑣

𝜕𝜏𝑚 is given by 

𝛫 [
𝜕𝑚𝑣

𝜕𝜏𝑚] =
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝑚 − ∑
1

𝜔2(𝑚−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝑚−1
𝑗=0  for 𝑚 ≥ 1                                                                      (7) 

 

Remark 1. The new integral transform of the Caputo fractional derivative 
𝜕𝑚𝛼𝑣

𝜕𝜏𝑚𝛼 is given by 

𝛫 [
𝜕𝑚𝛼𝑣

𝜕𝜏𝑚𝛼] =
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝑚𝛼 − ∑
1

𝜔2(𝑚𝛼−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝑚−1
𝑗=0 , where  𝛼 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚 ∈ ℕ                          (8) 

 

Definition 1. The basic definition of projected DTM of 𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚) is given as 

𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚) =
1

𝜂!
[

𝜕𝜂(𝜉1,𝜉2,𝜉3,⋯,𝜉𝑚)

𝜕𝜉𝑚
𝜂 ]

𝜉𝑚=0
, 

 

such that 𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚−1, 𝜂) is the projected DTM of𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚), and differential inverse 

transform of 𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚−1, 𝜂) is 

𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚) = ∑ 𝑔(𝜉1, 𝜉2, 𝜉3, ⋯ , 𝜉𝑚−1, 𝜂)(𝜉 − 𝜉0)𝜂∞
𝜂=0 . 

 

3.1 Basic Idea of the Proposed Method 
Now, we consider the following time fractional PDE, 
𝜕𝛼𝑣

𝜕𝜏𝛼 + 𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚 + 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
+ 𝜒3(𝜉)𝑣 + 𝜒4(𝜉)𝑣𝑛 = 𝑔(𝜉, 𝜏), 𝜉 ∈ 𝑅, 𝜏 ≥ 0, 0 < 𝛼 ≤ 1                         (9) 

 

with the initial solution𝑣(𝜉, 0) = 𝜑(𝜉). 

 

Now applying the new integral transform method, we have 
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝛼 − ∑
1

𝜔2(𝛼−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝛼−1
𝑗=0 = 𝛫 [−𝜒1(𝜉)

𝜕𝑚𝑣

𝜕𝜉𝑚 − 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
− 𝜒3(𝜉)𝑣 − 𝜒4(𝜉)𝑣𝑛 + 𝑔(𝜉, 𝜏)], 
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To simplify it, we have 

𝛫[𝑣(𝜉, 𝜏)] = ∑
1

𝜔−2𝑗−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝛼−1
𝑗=0 + 𝜔2𝛼𝛫[𝑔(𝜉, 𝜏)] − 𝜔2𝛼𝛫 [−𝜒1(𝜉)

𝜕𝑚𝑣

𝜕𝜉𝑚 − 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
− 𝜒3(𝜉)𝑣 −

𝜒4(𝜉)𝑣𝑛]                                                                                                                                                    (10) 

 

Now, using the inverse of NITM, we have 

𝑣(𝜉, 𝜏) = 𝐻(𝜉, 𝜏) + 𝛫−1 {𝜔2𝛼𝛫 [−𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚 − 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
− 𝜒3(𝜉)𝑣 − 𝜒4(𝜉)𝑣𝑛]}                              (11) 

 

where, 𝐻(𝜉, 𝜏) signifies the term arises from the source term and given initial condition. Now applying 

projected DTM, we get, 

𝑣(𝜉, 𝜂 + 1) = 𝛫−1{𝜔2𝛼𝛫[𝑃𝜂 + 𝑄𝜂 + 𝑅𝜂 + 𝑆𝜂]} and 𝐻(𝜉, 𝜏) = 𝑣(𝜉, 0) = 𝜑(𝜉)                                    (12) 

 

where 𝑃𝜂 = −𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚, 𝑄𝜂 = −𝜒2(𝜉) ∑ 𝑣(𝜉, 𝑖)
𝜕𝑣(𝜉,𝜂−𝑖)

𝜕𝜉

𝜂
𝑖=0 , 𝑅𝜂 = −𝜒3(𝜉)𝑣(𝜉, 𝜂), 

and 

𝑆𝜂 = −𝜒4(𝜉) ∑ ⋯ ∑ ∑ 𝑣(𝜉, 𝑖1)𝑣(𝜉, 𝑖2 − 𝑖1)𝑣(𝜉, 𝑖3 − 𝑖2) ⋯ 𝑣(𝜉, 𝜂 − 𝑖𝑚−1)
𝑖2
𝑖1

𝑖3
𝑖2

𝜂
𝑖𝑚−1

 are projected DTM of 

−𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚, −𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
, −𝜒3(𝜉)𝑣,  and −𝜒4(𝜉)𝑣𝑛, respectively. 

 

Hence, the approximate solution of TFKG equation (1) is given by 

𝑣(𝜉, 𝜏) = 𝑣(𝜉, 0) + 𝑣(𝜉, 1) + 𝑣(𝜉, 2) + 𝑣(𝜉, 3)+. . . = ∑ 𝑣(𝜉, 𝜏)∞
𝜏=0                                                        (13) 

 

where, 

𝑣(𝜉, 1) = 𝛫−1{𝜔2𝛼𝛫[𝑃0 + 𝑄0 + 𝑅0 + 𝑆0]}, 

𝑣(𝜉, 2) = 𝛫−1{𝜔2𝛼𝛫[𝑃1 + 𝑄1 + 𝑅1 + 𝑆1]}, 

𝑣(𝜉, 3) = 𝛫−1{𝜔2𝛼𝛫[𝑃2 + 𝑄2 + 𝑅2 + 𝑆2]}, 

⋮ 
 

4. Convergence Analysis 
In this section, we demonstrate the existence of unique solution in the theorem (4.1) and convergence in 

the theorem (4.2) of the NITM. 

 

Theorem 4.1 The solution derived with the aid of PDTM of the equation (9) is unique, whenever 0 <

(𝐿1 + 𝐿2)
𝜏𝛼

𝛤(𝛼+1)
< 1. 

 

Proof: Consider 𝑋be the Banach space of all continuous functions on 𝐼 = [0, 𝑇] with the norm ‖𝑣(𝑡)‖ =
𝑚𝑎𝑥|𝑣(𝑡)|. 
 

Define a mapping 𝐻: 𝑋 → 𝑋, where, 

𝑣(𝜉, 𝜏) = 𝑣(𝜉, 0) + 𝛫−1 {𝜔2𝛼𝛫 [−𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚 − 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
− 𝜒3(𝜉)𝑣 − 𝜒4(𝜉)𝑣𝑛]}, 

 

Now assume |𝐹𝑣 − 𝐹𝑣| < 𝐿1|𝑣 − 𝑣| and |𝑀𝑣 − 𝑀𝑣| < 𝐿2|𝑣 − 𝑣|, where 𝐹 = −𝜒1(𝜉)
𝜕𝑚𝑣

𝜕𝜉𝑚 − 𝜒2(𝜉)𝑣
𝜕𝑣

𝜕𝜉
, 

𝑀 = −𝜒3(𝜉)𝑣 − 𝜒4(𝜉)𝑣𝑛 and the function value 𝑣 and 𝑣 are distinct. 
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‖𝐹𝑣 − 𝐹𝑣‖ = 𝑚𝑎𝑥|𝐹𝑣 − 𝐹𝑣|  
  = |𝑣(𝜉, 0) + 𝛫−1{𝜔2𝛼𝛫[𝐹𝑣(𝜉, 𝜏) + 𝑀𝑣(𝜉, 𝜏)]} − 𝑣(𝜉, 0) − 𝛫−1{𝜔2𝛼𝛫[𝐹𝑣(𝜉, 𝜏) + 𝑀𝑣(𝜉, 𝜏)]}| 
 = |𝛫−1{𝜔2𝛼𝛫[𝐹𝑣(𝜉, 𝜏) − 𝐹𝑣(𝜉, 𝜏)]} + 𝛫−1{𝜔2𝛼𝛫[𝑀𝑣(𝜉, 𝜏) − 𝑀𝑣(𝜉, 𝜏)]}|. 

 

Let us consider 𝐹(𝑣) and 𝑀(𝑣) satisfy Lipschitz condition with constant 𝐿1 and 𝐿2. 

‖𝐹𝑣 − 𝐹𝑣‖ ≤ 𝑚𝑎𝑥[𝛫−1{𝜔2𝛼𝛫[|𝐹𝑣(𝜉, 𝜏) − 𝐹𝑣(𝜉, 𝜏)| + |𝑀𝑣(𝜉, 𝜏) − 𝑀𝑣(𝜉, 𝜏)|]}] 
                ≤ 𝑚𝑎𝑥( 𝐿1 + 𝐿2)[𝛫−1{𝜔2𝛼𝛫[|𝑣(𝜉, 𝜏) − 𝑣(𝜉, 𝜏)|]}] 
                ≤ (𝐿1 + 𝐿2)[𝛫−1{𝜔2𝛼𝛫[‖𝑣(𝜉, 𝜏) − 𝑣(𝜉, 𝜏)‖]}] 

                = (𝐿1 + 𝐿2)
𝜏𝛼

𝛤(𝛼+1)
‖𝑣(𝜉, 𝜏) − 𝑣(𝜉, 𝜏)‖. 

Hence equation (9) has unique solution. 

 

Theorem 4.2 The solution of equation (6), converges if 0 < 𝐿 < 1 and 
iv    where 𝐿 = (𝐿1 +

𝐿2)
𝜏𝛼

𝛤(𝛼+1)
. 

Proof. Let 
0

( , )
n

n
vv



 
=

=  is the partial sum of the series. To prove that  nv  is a Cauchy sequence in 

Banach space 𝑋. Consider, 

1

max ( , )
m

m n
n

vv v


 
= +

− =  ,       𝑛 = 1,2,3, . .. 

               ≤ 𝑚𝑎𝑥|𝛫−1{𝜔2𝛼𝛫[∑ (𝐹(𝑣(𝜉, 𝜏 − 1)) + 𝑀(𝑣(𝜉, 𝜏 − 1)))𝑚
𝜏=𝑛+1 ]}| 

                 = 𝑚𝑎𝑥|𝛫−1{𝜔2𝛼𝛫[∑ (𝐹(𝑣(𝜉, 𝜏)) + 𝑀(𝑣(𝜉, 𝜏)))𝑚−1
𝜏=𝑛 ]}| 

                 ≤ 𝑚𝑎𝑥|𝛫−1{𝜔2𝛼𝛫[𝐹(𝑣𝑚−1) − 𝐹(𝑣𝑛−1)]}| + 𝑚𝑎𝑥|𝛫−1{𝜔2𝛼𝛫[𝑀(𝑣𝑚−1) − 𝑀(𝑣𝑛−1)]}|. 
 

By Lipschitz condition 

     1 2 1 2

1 1 1 2 1 1( ) ( ) ( ) ( )m n m nm n
L F v F v L M v M vv v

  − −

− − − −−    − +   −  

                 ≤ (𝐿1 + 𝐿2)
𝜏𝛼

𝛤(𝛼+1)
‖(𝑣𝑚−1) − (𝑣𝑛−1)‖. 

 

If 𝑚 = 𝑛 + 1 
2

1 1 2 1 01
... .n

n n n nn n
L v v L v v L v vv v − − −+

−  −  −   −  

 

where, 𝐿 = (𝐿1 + 𝐿2)
𝜏𝛼

𝛤(𝛼+1)
. In the similar way, 

1 2 1 1...n n n n m mm n
v v v v v vv v + + + −−  − + − + + −  

                ≤ (𝐿𝑛 + 𝐿𝑛+1+. . . +𝐿𝑚−1)‖𝑣𝑚 − 𝑣𝑚−1‖ 

                 ≤ 𝐿𝑛 (
1−𝐿𝑚−𝑛

1−𝐿
) ‖𝑣1‖. 

 

We see that, 1 − 𝐿𝑚−𝑛 < 1as 0 < 𝐿 < 1. Thus, 

1max
1

n

m n

L
v

L
v v− 

−
. 
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Since, ‖𝑣1‖ < ∞. So, 0
m nv v− →  as 𝑛 → ∞. Hence 𝑣𝑚 is a Cauchy sequence in 𝑋. Therefore, the 

series is convergent. 

 

5. Results and Discussions 
This section involves three problems of the TFKG equation to check the accuracy of the method. 

 

Example 1. Consider the linear TFKG equation 
𝜕𝛼𝑣

𝜕𝜏𝛼 −
𝜕2𝑣

𝜕𝜉2 − 𝑣 = 0, 𝜏 ≥ 0                                                                                                                          (14) 

 

with the initial condition  

𝑢(𝜉, 0) = 1 + 𝑠𝑖𝑛 𝜉                                                                                                                                   (15) 

 

Using new integral transform in (14), we get 
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝛼 − ∑
1

𝜔2(𝛼−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝛼−1
𝑗=0 = 𝛫 [

𝜕2𝑣

𝜕𝜉2 + 𝑣]. 

 

Simplifying above equation, we get 

𝛫[𝑣(𝜉, 𝜏)] = 𝜔𝑣(𝜉, 𝜏) + 𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 + 𝑣]                                                                                                 (16) 

 

Taking the inverse of the new integral transform in above equation, we get 

𝑣(𝜉, 𝜏) = 𝐻(𝜉, 𝜏) + 𝛫−1 {𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 + 𝑣]}                                                                                              (17) 

 

Now applying Projected DTM, we get 

𝑣(𝜉, 𝜂 + 1) = 𝛫−1{𝜔2𝛼𝛫[𝑃𝜂 + 𝑄𝜂]}, 𝐻(𝜉, 𝜏) = 𝑣(𝜉, 0) = 1 + 𝑠𝑖𝑛 𝜉                                                      (18) 

 

where, 𝑃𝜂 =
𝜕2𝑣(𝜉,𝜏)

𝜕𝜉2  and 𝑄𝜂 = 𝑣(𝜉, 𝜂) are projected DTM of 
𝜕2𝑣

𝜕𝜉2 and 𝑣, respectively. 

 

Now,  

𝑃0 =
𝜕2𝑣(𝜉,0)

𝜕𝜉2 = − 𝑠𝑖𝑛 𝜉 and 𝑄0 = 𝑣(𝜉, 0) = 1 + 𝑠𝑖𝑛 𝜉, 

⇒ 𝑣(𝜉, 1) = 𝛫−1{𝜔2𝛼𝛫[− 𝑠𝑖𝑛 𝜉 + 1 + 𝑠𝑖𝑛 𝜉]} =
𝜏𝛼

𝛤(𝛼+1)
. 

 

𝑃1 =
𝜕2𝑣(𝜉,1)

𝜕𝜉2 = 0 and 𝑄1 = 𝑣(𝜉, 1) =
𝜏𝛼

𝛤(𝛼+1)
, 

⇒ 𝑣(𝜉, 2) = 𝛫−1 {𝜔2𝛼𝛫 [
𝜏𝛼

𝛤(𝛼+1)
]} =

𝜏2𝛼

𝛤(2𝛼+1)
. 

 

𝑃2 =
𝜕2𝑣(𝜉,2)

𝜕𝜉2 = 0 and 𝑄2 = 𝑣(𝜉, 2) =
𝜏2𝛼

𝛤(2𝛼+1)
, 

⇒ 𝑣(𝜉, 2) = 𝛫−1 {𝜔2𝛼𝛫 [
𝜏2𝛼

𝛤(2𝛼+1)
]} =

𝜏3𝛼

𝛤(3𝛼+1)
. 

 

Using in equation (13), we get 

𝑣(𝜉, 𝜏) = 1 + 𝑠𝑖𝑛 𝜉 +
𝜏𝛼

𝛤(𝛼+1)
+

𝜏2𝛼

𝛤(2𝛼+1)
+

𝜏3𝛼

𝛤(3𝛼+1)
+. . .=1+sin(𝜉) + ∑

𝜏𝑟𝛼

𝛤(1+𝑟𝛼)
∞
𝑟=1                                   (19) 
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The solution (19) is the analytical solution of (14). The obtained solution is same as those given in 

(Golmankhaneh and Baleanu, 2011; Tamsir and Srivastava, 2016a). Especially, when 𝛼 → 1, we have 

𝑣(𝜉, 𝜏)=1+sin(𝜉) + ∑
𝜏𝑟

𝛤(1+𝑟)
∞
𝑟=1                                                                                                                 (20) 

 

The solution (20) is the exact solution of the classical KG equation. One can notice that the obtained 

solution is in comprehensive agreement with those given in (Golmankhaneh and Baleanu, 2011; Tamsir 

and Srivastava, 2016a). Figure 1 demonstrates the physical performance of 𝑣(𝜉, 𝜏) for 𝛼 =0.4, 0.5, 0.7, 

and 0.9 whereas Figure 2 demonstrates the contour plots of 𝑣(𝜉, 𝜏) for various fractional Brownian 

motion 𝛼 =0.4, 0.5, 0.7, and 0.9. Figure 3 demonstrates the approximated solutions 𝑣(𝜉, 𝜏) for various 

fractional Brownian motions 𝛼 =0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. One can notice that a monotonically 

decrease in the fractional Brownian motions tend to zero i.e., as the values of 𝛼 tend to integer order, 

there is a decay in the solution influence of 𝑣(𝜉, 𝜏).  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 1. Physical performance of 𝑣(𝜉, 𝜏) relating to 𝛼 (a) 0.4 (b) 0.5 (c) 0.7 (d) 0.9. 
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(a) (b) 

  
(c) (d) 

 

Figure 2. The contour plot of 𝑣(𝜉, 𝜏) relating to 𝛼 (a) 0.4 (b) 0.5 (c) 0.7 (d) 0.9. 

 

 

 
 

Figure 3. Approximated solutions 𝑣(𝜉, 𝜏) for various values of 𝛼. 



Singh: Approximation of the Time-Fractional Klein-Gordon Equation using the … 
 

 

680 | Vol. 8, No. 4, 2023 

Example 2. Consider the nonlinear TFKG equation 
𝜕𝛼𝑣

𝜕𝜏𝛼 −
𝜕2𝑣

𝜕𝜉2 + 𝑣2 = 0, 𝜏 ≥ 0                                                                                                                        (21) 

 

with the initial condition  

𝑣(𝜉, 0) = 1 + 𝑠𝑖𝑛 𝜉                                                                                                                                    (22) 

 

Using a new integral transform in (21), we get 
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝛼 − ∑
1

𝜔2(𝛼−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝛼−1
𝑗=0 = 𝛫 [

𝜕2𝑣

𝜕𝜉2 − 𝑣2]. 

 

Simplifying the above equation, we get 

𝛫[𝑣(𝜉, 𝜏)] = 𝜔𝑣(𝜉, 𝜏) + 𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 − 𝑣2]                                                                                               (23) 

 

Taking the inverse of the new integral transform in the above equation, we get 

𝑣(𝜉, 𝜏) = 𝐻(𝜉, 𝜏) + 𝛫−1 {𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 − 𝑣2]}                                                                                            (24) 

 

Now applying the projected differential transform method, we get 

𝑣(𝜉, 𝜂 + 1) = 𝛫−1{𝜔2𝛼𝛫[𝑃𝜂 − 𝑄𝜂]}, 𝐻(𝜉, 𝜏) = 𝑣(𝜉, 0) = 1 + 𝑠𝑖𝑛 𝜉                                                      (25) 

 

where, 𝑃𝜂 =
𝜕2𝑣(𝜉,𝜏)

𝜕𝜉2  and 𝑄𝜂 = ∑ 𝑣(𝜉, 𝑖)
𝜂
𝑖=0 𝑣(𝜉, 𝜂 − 𝑖) are projected DTM of 

𝜕2𝑣

𝜕𝜉2 and 𝑣2, respectively. 

 

Now,  

𝑃0 =
𝜕2𝑣(𝜉,0)

𝜕𝜉2 = − 𝑠𝑖𝑛 𝜉 and 𝑄0 = 𝑣(𝜉, 0)𝑣(𝜉, 0) = 1 + 𝑠𝑖𝑛2 𝜉 + 2 𝑠𝑖𝑛 𝜉, 

⇒ 𝑣(𝜉, 1) = 𝛫−1{𝜔2𝛼𝛫[−1 − 𝑠𝑖𝑛2 𝜉 − 3 𝑠𝑖𝑛 𝜉]} = −(1 + 𝑠𝑖𝑛2 𝜉 + 3 𝑠𝑖𝑛 𝜉)
𝜏𝛼

𝛤(𝛼+1)
, 

⇒ 𝑣(𝜉, 1) = −(1 + 𝑠𝑖𝑛2 𝜉 + 3 𝑠𝑖𝑛 𝜉)
𝜏𝛼

𝛤(𝛼+1)
. 

 

𝑃1 =
𝜕2𝑣(𝜉,1)

𝜕𝜉2 = (−2 + 4 𝑠𝑖𝑛2 𝜉 + 3 𝑠𝑖𝑛 𝜉)
𝜏𝛼

𝛤(𝛼+1)
. 

 

and  

𝑄1 = ∑ 𝑣(𝜉, 𝑖)𝑣(𝜉, 1 − 𝑖)1
𝑖=0 = 2𝑣(𝜉, 0)𝑣(𝜉, 1), 

⇒ 𝑄1 =
𝜕2𝑣(𝜉,1)

𝜕𝜉2 = −(2 + 8 𝑠𝑖𝑛 𝜉 + 8 𝑠𝑖𝑛2 𝜉 + 2 𝑠𝑖𝑛3 𝜉)
𝜏𝛼

𝛤(𝛼+1)
. 

⇒ 𝑣(𝜉, 2) = 𝛫−1{𝜔2𝛼𝛫[𝑃1 − 𝑄1]}, 

⇒ 𝑣(𝜉, 2) = 𝛫−1 {𝜔2𝛼𝛫 [(11 𝑠𝑖𝑛 𝜉 + 12 𝑠𝑖𝑛2 𝜉 + 2 𝑠𝑖𝑛3 𝜉)
𝜏𝛼

𝛤(𝛼+1)
]},⇒ 𝑣(𝜉, 2) = (11 𝑠𝑖𝑛 𝜉 +

12 𝑠𝑖𝑛2 𝜉 + 2 𝑠𝑖𝑛3 𝜉)
𝜏𝛼

𝛤(𝛼+1)
. 

 

Using in equation (13), we get 

𝑣(𝜉, 𝜏) = 1 + 𝑠𝑖𝑛 𝜉 − (1 + 𝑠𝑖𝑛2 𝜉 + 3 𝑠𝑖𝑛 𝜉)
𝜏𝛼

𝛤(𝛼+1)
+ (11 𝑠𝑖𝑛 𝜉 + 12 𝑠𝑖𝑛2 𝜉 + 2 𝑠𝑖𝑛3 𝜉)

𝜏𝛼

𝛤(𝛼+1)
+. ..   (26) 
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The solution (26) is a series solution for the nonlinear TFKG equation (21). The obtained solution in a 

close agreement with the solution given in (Golmankhaneh and Baleanu, 2011; Tamsir and Srivastava, 

2016a). Figure 4 demonstrates the physical attributes of 𝑣(𝜉, 𝜏) related to 𝛼 = 0.3,0.5,0.7and0.9, 

respectively whereas Figure 5 demonstrates the performance of 𝑣(𝜉, 𝜏) corresponding to various 

fractional Brownian motions 𝛼 = 0.3,0.5,0.7and 0.9. Figure 6 demonstrates the approximated solutions 

𝑣(𝜉, 𝜏) for various fractional Brownian motions 𝛼 =0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. From this figure, we 

noticed a monotonically decrease in the fractional Brownian motions and tend to zero i.e., as the values of 

𝛼 tending to integer order, there is a decay in the solution influence of 𝑣(𝜉, 𝜏). 

 

 
 

(a) 
(b) 

 

 
 

(c) (d) 
 

Figure 4. Physical performance of 𝑣(𝜉, 𝜏) relating to 𝛼 (a) 0.3 (b) 0.5 (c) 0.7 (d) 0.9. 
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(a) (b) 

  

(c) (d) 

 

Figure 5. The contour plot of 𝑣(𝜉, 𝜏) relating to 𝛼 (a) 0.3 (b) 0.5 (c) 0.7 (d) 0.9. 

 

 

 
 

Figure 6. Approximated solutions 𝑣(𝜉, 𝜏) for various values of 𝛼.  
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Example 3. Finally, we consider the nonlinear TFKG equation 
𝜕𝛼𝑣

𝜕𝜏𝛼 −
𝜕2𝑣

𝜕𝜉2 + 𝑣 − 𝑣3 = 0, 𝜏 ≥ 0                                                                                                                 (27) 

 

with the initial condition  

𝑣(𝜉, 0) = − 𝑠𝑒𝑐 ℎ (𝜉)                                                                                                                                (28) 

 

Using a new integral transform in (27), we get 
𝛫[𝑣(𝜉,𝜏)]

𝜔2𝛼 − ∑
1

𝜔2(𝛼−𝑗)−1

𝜕𝑗

𝜕𝜏𝑗 𝑣(𝜉, 0)𝛼−1
𝑗=0 = 𝛫 [

𝜕2𝑣

𝜕𝜉2 − 𝑣 + 𝑣3]. 

 

Simplifying the above equation, we get 

𝛫[𝑣(𝜉, 𝜏)] = 𝜔𝑣(𝜉, 𝜏) + 𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 − 𝑣 + 𝑣3]                                                                                        (29) 

 

Taking the inverse of the new integral transform in the above equation, we get 

𝑣(𝜉, 𝜏) = 𝐻(𝜉, 𝜏) + 𝛫−1 {𝜔2𝛼𝛫 [
𝜕2𝑣

𝜕𝜉2 − 𝑣 + 𝑣3]}                                                                                     (30) 

 

Now applying the projected differential transform method, we get 

𝑣(𝜉, 𝜂 + 1) = 𝛫−1{𝜔2𝛼𝛫[𝑃𝜂 + 𝑄𝜂]}, 𝐻(𝜉, 𝜏) = 𝑣(𝜉, 0) = − 𝑠𝑒𝑐 ℎ 𝜉                                                      (31) 

 

where, 𝑃𝜂 =
𝜕2𝑣(𝜉,𝜏)

𝜕𝜉2  and 𝑄𝜂 = −𝑣(𝜉, 0) + ∑ ∑ 𝑣(𝜉, 𝑖)𝑣(𝜉, 𝑗 − 𝑖)𝑣(𝜉, 𝜂 − 𝑗)
𝑗
𝑖=0

𝜂
𝑗=0  are projected DTM of 

𝜕2𝑣

𝜕𝜉2 and −𝑣 + 𝑣3, respectively. Now,  

𝑃0 =
𝜕2𝑣(𝜉,0)

𝜕𝜉2 = − 𝑠𝑒𝑐 ℎ 𝜉 + 2 𝑠𝑒𝑐 ℎ3 𝜉, 

 

and  

𝑄0 = 𝑣(𝜉, 0) − 𝑣(𝜉, 0)𝑣(𝜉, 0)𝑣(𝜉, 0) = − 𝑠𝑒𝑐 ℎ 𝜉 + 𝑠𝑒𝑐 ℎ3 𝜉. 

⇒ 𝑣(𝜉, 1) = 𝛫−1{𝜔2𝛼𝛫[−2 𝑠𝑒𝑐 ℎ 𝜉 + 3 𝑠𝑒𝑐 ℎ3 𝜉]} = (−2 𝑠𝑒𝑐 ℎ 𝜉 + 3 𝑠𝑒𝑐 ℎ3 𝜉)
𝜏𝛼

𝛤(𝛼+1)
. 

 

Similarly, 

𝑃1 =
𝜕2𝑣(𝜉,1)

𝜕𝜉2 = (−2 𝑠𝑒𝑐 ℎ 𝜉 + 31 𝑠𝑒𝑐 ℎ3 𝜉 − 36 𝑠𝑒𝑐 ℎ5 𝜉)
𝜏𝛼

𝛤(𝛼+1)
, 

 

and 

𝑄1 = −𝑣(𝜉, 1) + ∑ ∑ 𝑣(𝜉, 𝑖1)𝑣(𝜉, 𝑖2 − 𝑖1)𝑣(𝜉, 𝜂 − 𝑖2)𝑖2
𝑖1=0

1
𝑖2

. 

= (−2 𝑠𝑒𝑐 ℎ 𝜉 + 3 𝑠𝑒𝑐 ℎ3 𝜉 − 9 𝑠𝑒𝑐 ℎ5 𝜉)
𝜏𝛼

𝛤(𝛼+1)
, 

 

So, 

𝑣(𝜉, 2) = 𝛫−1{𝜔2𝛼𝛫[𝑃1 + 𝑄1]} = (−4 𝑠𝑒𝑐 ℎ 𝜉 + 34 𝑠𝑒𝑐 ℎ3 𝜉 − 45 𝑠𝑒𝑐 ℎ5 𝜉)
𝜏𝛼

𝛤(2𝛼+1)
. 

 

Using in equation (13), we get 
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𝑣(𝜉, 𝜏) = − 𝑠𝑒𝑐 ℎ 𝜉 + (−2 𝑠𝑒𝑐 ℎ 𝜉 + 3 𝑠𝑒𝑐 ℎ3 𝜉)
𝜏𝛼

𝛤(𝛼+1)
+ (−4 𝑠𝑒𝑐 ℎ 𝜉 + 34 𝑠𝑒𝑐 ℎ3 𝜉 −

45 𝑠𝑒𝑐 ℎ5 𝜉)
𝜏𝛼

𝛤(𝛼+1)
+. ..                                                                                                                             (32) 

 

The solution (32) is a series solution for the nonlinear TFKG equation (27). The obtained solution is in 

close agreement with the solution with those given in (Golmankhaneh and Baleanu, 2011; Tamsir and 

Srivastava, 2016a). Figure 7 demonstrates the physical attributes of 𝑣(𝜉, 𝜏) related to 𝛼 = 0.01, 0.5, 0.7, 

and 0.9, and Figure 8 demonstrates the approximated solutions 𝑣(𝜉, 𝜏) for various fractional Brownian 

motions 𝛼 =0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. It is examined that a monotonically decrease in the fractional 

Brownian motions and tend to zero as the values of 𝛼 tending to integer order, there is a decay in the 

solution influence of 𝑣(𝜉, 𝜏).  

 

 

  
(a) 

 

 

(b) 

  
(c) (d) 

 

Figure 7. Physical performance of 𝑣(𝜉, 𝜏) relating to 𝛼 (a) 0.01 (b) 0.5 (c) 0.7 (d) 0.9. 
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Figure 8. Approximated solutions 𝑣(𝜉, 𝜏) for various values of 𝛼.  
 

6. Conclusions 
In this article, the implementation of a new integral transform method along with the projected DTM has 

been successfully done to evaluate the Caputo TFKG problem analytically. To corroborate the 

effectiveness and exactness of the method TFKG equation, three examples have been considered and the 

results demonstrate how effective, precise, and easy the method is to use. The effects of various fractional 

Brownian motion are demonstrated graphically. From the investigations, it has been noticed that as the 

fractional Brownian motions tend toward non-fraction Brownian motions, the solutions describe decay. In 

Fig. 1 to 7, which depict some intriguing dynamics of the model, the impacts of various values of 

fractional order, 𝛼 on the solution profile are shown. We also noted that the purported series solutions are 

in outstanding agreement with those solutions given in (Golmankhaneh and Baleanu, 2011; Tamsir and 

Srivastava, 2016a). Additionally, the analysis demonstrates that the suggested method is much simpler to 

use than the homotopy perturbation method. As for future, this method can be easily extended to solve the 

higher-order fractional PDEs.  
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