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Abstract 

In manufacturing industries, reliability analysis of cutting tools is of paramount importance, as their frequent failures may result in 

enhanced downtime of production lines, leading to reduced throughput, enhanced process cycle times, and low profits. There are 

numerous factors that govern the desired operations of cutting tools, e.g., tool cutting speed, feed, depth of cut, and many others. 

Existing literature on cutting tools’ reliability estimation emphasizes mainly three variables, as mentioned earlier while neglecting 

other important factors. Including a greater number of factors in the process of estimating reliability increases the number of 

covariates, hence rendering the data acquisition costlier and estimation models highly complex. This work initially utilizes 

Analytical Hierarchy Process (AHP) to assess the importance of various factors that are responsible for the cutting tool’s 

performance, followed by the reliability estimation of the cutting tools using proportional hazards model (PHM) considering the 

four “critical to reliability” factors as obtained through AHP as covariates. The proposed method also helps in determining the 

relationship of these sub-factors with the hazard rate and reliability of the cutting tools. Experimental results are then used to verify 

the model’s predictions through response surface methodology (RSM) and Weibull fit. Furthermore, the paper also presents a 

proposed technique to estimate the required number of cutting tools for one machine per day and the number of job completions 

that can be an essential takeaway for various industries. Thus, this research paper proposes an integrated AHP-RSM-PHM based 

approach for a comprehensive reliability analysis of cutting tools. 

 

Keywords- Cutting tools, Reliability, Analytic hierarchy process, Proportional hazard model, Response surface methodology. 

 

 

 

1. Introduction 
In recent decades, machining has been a vital technique in aerospace, automobile, defence, and railways 

industries for producing various products through cutting tools (Cheng et al., 2017). Cutting tools are an 

essential element of manufacturing processes, used to shear off the workpieces into specific shapes and 

sizes. During shear-off, the cutting tools experience wear and tear, which reduces their reliability and useful 
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life (Bayraktar, 2021; Tang et al., 2023). The sudden failures and extreme wear of the cutting tools can give 

rise to challenges that can cause the depletion of valuable resources, such as time and costs. According to 

a study conducted by Sakharov et al. (1990), it was demonstrated that the cost of tooling in flexible 

manufacturing systems accounts for approximately 25% of the overall machining expenses. Wiklund 

(1998) found that cutting tools are frequently replaced when they reach 50-80% of their actual life to prevent 

failures and their associated consequences, rather than using the cutting tools until they reach the end of 

their actual lifespan. Hence, it is vital to know the actual life of the cutting tools to reduce distortion of the 

workpieces and tools’ wastage before the cutting tools fail. The reliability and tool life of the cutting tools 

is highly influenced by the machining parameters, tool materials, operating temperature, and coatings used 

to manufacture the tool insert (Upadhyaya, 2004). Hence, it is critical to establish a framework of guidelines 

to determine a series of variables affecting cutting tool reliability, as deviations from prescribed operating 

parameters might lead to poor process and product quality. After that, to achieve dimensional accuracy and 

high-quality machined surfaces, it is crucial to estimate and analyze the reliability of the cutting tools. 

 

Wager and Barash (1971) conducted over a hundred tool life tests with a high-speed steel turning tool, 

revealing that the tool life values exhibited a normal distribution. Klim et al. (1996) estimated the tool life 

and reliability function for the constant and variable feed cases but did not consider cutting speed and depth 

of cut (DOC). Lin (2008) derived reliability function with the help of tool wear limit, cutting speed, feed, 

and DOC. However, there are various other external and internal factors that may affect the mechanical 

system’s reliability and tool life. Some researchers enlisted such factors affecting cutting tools’ 

performance, e.g., Wang et al. (2016) proposed a selection method by calculating energy consumption 

influenced by cutting speed, undeformed chip thickness, and tool rake angle. Gaddafee and Chinchanikar 

(2020) modelled the reliability function with gamma and Weibull distributions by considering speed, feed, 

and DOC as factors. Niu et al. (2020) consolidated ten attributes of tool materials, including physical, 

mechanical, chemical, and cost parameters. Rao (2022) investigated the reliability of cutting tools in 

plasma-assisted turning and explored the prediction of machining characteristics by collecting data on tool 

wear, surface roughness, and other relevant parameters. Le (2022) performed the experimental study using 

three cutting tools’ parameters, namely the number of pieces, cutting piece material, and tip radius, 

considering three cutting mode parameters, i.e., cutting speed, feed rate, and DOC variation in each 

experiment. Zhang et al. (2023) investigated the reliability of CNC machine tools concerning machining 

accuracy by considering geometric and vibration errors. Therefore, to obtain accurate reliability estimates, 

it is crucial to consider various factors that can influence the failure process (Bazaz et al., 2023a; Bazaz et 

al., 2023b). The Proportional Hazards Model (PHM) is suitable for this purpose, as it can analyze the 

relationship between failure time and multiple predictor variables (Sharma et al., 2022). Using this model, 

we can determine which factors impact the likelihood of failure and how they affect failure rates over time. 

This information can help us design more reliable cutting tools and minimize the risk of failure.  

 

Some researchers have used PHM to estimate the reliability of the cutting tools. Liu and Makis (1996) 

utilize PHM to analyze the reliability of cutting tools at different cutting speeds, feed, and DOC by 

determining the distribution of failure times of the cutting tools. Equeter et al. (2016) investigated the Cox 

PHM for predicting the lifespan of the cutting tools by considering cutting speed as a covariate. The 

literature is limited in exploring more variables and considering only three variables, namely cutting speed, 

feed, and DOC, which affect tool wear when estimating reliability. However, there is still a scope to include 

additional co-variates such as cutting tool thermal conductivity, cutting edge angle, hardness, and 

machinability, among others (Bazaz et al., 2023a). 

 

1.1 Problem Statement  
The problems leading to under or overestimation of reliability, while conducting reliability studies, arise 
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because of neglecting crucial factors that affect life of cutting tools. Including more number of factors for 

reliability analysis may increase experimental setup cost and require significant amount of data. Hence, 

undertaking qualitative studies before reliability estimation is essential to determine which factors impact 

tool lifespan most. Additionally, there is a limited application of Multi-Criteria Decision-Making (MCDM) 

techniques to evaluate factor weights in case of unavailability of cutting tools failure data, which can be 

further explored to evaluate the cutting tools’ performance. Thus, there is a need to establish the effect of 

prominent factors on tool life through MCDM models to further develop a reliability estimation model 

whose performance can be validated with the help of advanced experimental design techniques. Addressing 

this problem will lead to more precise reliability assessments, benefiting industries reliant on predictive 

maintenance and system longevity. Furthermore, the absence of validated analytical models for cutting tool 

inventory estimation hinders efficient resource allocation and may lead to overstocking or shortages. 

Solving this problem will enhance manufacturing efficiency, reduce costs, and ensure optimal tool 

availability for production processes. 

 

1.2 Research Gaps  
The literature review reveals the following research gaps in the domain of reliability analysis of the cutting 

tools:  

 

(i) The literature is limited in performing the qualitative analysis for prioritizing the factors that may affect 

the tool’s life and reliability. Non-consideration of such factors may underestimate or overestimate 

cutting tools’ reliability, leading to imprecise tool life prediction.  

(ii) Most of the papers utilized a maximum of three factors for estimating reliability through PHM since 

studies related to qualitative analysis for identifying various factors affecting the tool’s life are found 

limited in the literature, as mentioned in point 1.  

(iii) The literature has primarily utilized the PHM model to estimate reliability parameters with only three 

factors as covariates. The inclusion of the fourth covariate in PHM after qualitative investigation, along 

with the validation of the estimated parameters with the use of advanced experimental design models, 

is found to be limited.  

(iv) The literature is also found limited in estimating the inventory of cutting tools required by using the 

parameters obtained with the help of the analytical model that uses important covariates duly validated 

with the help of experimental design models. 

 

1.3 Aim and Objectives  
To address the research gaps mentioned above, this paper endeavors to propose an integrated Analytic 

Hierarchy Process - Response Surface Methodology - Proportional Hazard Model (AHP-RSM-PHM) based 

approach for a comprehensive reliability analysis of cutting tools.  

 

The aim of the research paper is to precisely estimate and enhance the life and reliability of the cutting 

tools. This is achieved by initially identifying and prioritizing factors influencing tool lifespan through 

Analytic Hierarchy Process (AHP) followed by integration of such factors into a Proportional Hazard model 

for reliability estimation, validated experimentally with the help of Response Surface Methodology (RSM). 

Ultimately, the established reliability model is utilized to determine optimal job completions and cutting 

tool requirements. Towards achieving the aim of this research work, four objectives are formulated, as 

stated below: 

  

(i) To identify and prioritize the factors that influence cutting tool lifespan using the Analytic Hierarchy 

Process (AHP).  

(ii) To develop a model using PHM that can estimate the reliability of cutting tools by considering the 
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prioritized factors as covariates.  

(iii) To develop an advanced experimental design model, such as Response Surface Methodology (RSM), 

that can be used to validate the parameters as obtained from the analytical reliability model as 

mentioned in point 2.  

(iv) To determine the number of job completions and cutting tools required per machine tool in a day by 

application of the developed reliability model duly validated with the help of an advanced experimental 

design model for industrial applications.  

 

To achieve the first objective, an extensive literature review (Weinert and Kempmann, 2004; Ezugwu et al., 

2005; Musfirah et al., 2017) is carried out supported by a series of industrial visits to understand and finally 

arrive at seventeen factors that affect the reliability of the cutting tools. It is worthwhile mentioning here 

that no such precedence is found in the literature for comprehension of factors affecting the reliability of 

the cutting tools. After establishing the factors, an AHP model is utilized to assess the relative importance 

of each factor through pair-wise comparisons. This model allows decision-makers to model relative 

probabilities and risk-adjusted values, providing flexibility in assessing various scenarios. Unlike other 

MCDM methods, AHP does not impose specific time scales or geographical limitations (Hontoria and 

Munier, 2021). However, it carries limitations, assuming a second-degree polynomial, which might not 

always be accurate, presenting an approximation that may not precisely represent the actual relationship. 

The study prioritizes four significant “critical to reliability” factors out of the identified seventeen factors 

that affect the reliability of cutting tools using AHP.  

 

In the second objective, prioritized factors identified by the AHP are chosen as covariates for the 

development of a PHM model that can estimate the reliability, hazard rate, and tool life. Then, the unknown 

parameters of the PHM are determined using the maximum likelihood estimation method. The PHM Model 

offers advantages such as not assuming a specific distribution for survival times, suitability for censored 

data, and the ease of interpreting hazard ratios. This makes it a robust option for model the reliability of 

cutting tools, particularly when dealing with complex and dynamic industrial scenarios (Harrell, 2015). The 

ability to handle censored data aligns well with the often-incomplete nature of reliability studies in practical 

applications, providing a more realistic representation of the survival experience of cutting tools in a 

manufacturing environment, making it a sound choice compared to the other traditional reliability 

estimation models. Nonetheless, its results can be biased if the proportional hazards assumption is violated, 

and it does not directly estimate the survival function.  

 

Moreover, in the next step, RSM and Weibull fit are employed to validate the estimated values of the 

unknown parameters in the PHM. RSM is advantageous for not assuming a specific distribution, requiring 

fewer experiments, and aiding in the identification of variable interactions (Khuri and Mukhopadhyay, 

2010). However, its reliance on a second-degree polynomial model as an approximation introduces the risk 

of bias if the assumed model class is incorrect. 

 

 In consideration of the industrial applications outlined in the fourth objective of this research paper, the 

developed methodology proposes model to determine the daily inventory of cutting tools per machine tool 

by applying the proposed model’s median life and comparing it to experimental time-to-failure data. Hence, 

the research contribution of this paper lies in developing an AHP-RSM-PHM based integrated approach 

for the estimation of tool life by including the prioritized factors as covariates for reliability estimation. 

 

The paper is structured into four sections. The second section outlines the methodology and algorithms used 

in the study. The third section presents the results and discussions based on the findings. Next, the fourth 

section states the findings and real industry applications. Finally, the fifth section concludes the paper by 
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summarizing the key contributions of the research. 

 

2. Proposed Methodology 
This section outlines the proposed methodology to better understand the anticipated approach for 

prioritizing factors, reliability estimation, validation, and inventory estimation while considering “critical 

to reliability” factors. The flow chart of the proposed methodology is illustrated in Figure 1. The first step 

of this flow chart initiates a thorough qualitative study of the factors that impact cutting tools’ performance 

and tool life with the help of an extensive literature review (Weinert and Kempmann, 2004; Ezugwu et al., 

2005; Lee and Lee, 2009; Musfirah et al., 2017; Bazaz et al., 2023a) and investigative studies with the help 

of a series of industrial visits, which led to the identification of seventeen such factors and sub-factors. 

Then, four sub-factors deemed “critical to reliability” are prioritized as per the weights obtained through 

pairwise comparisons, considering their impact on the reliability of the cutting tools through the Analytic 

Hierarchy Process (AHP). Furthermore, these are selected as covariates for the Proportional Hazard Model 

(PHM) to estimate reliability, hazard rate, and tool life using Maximum Likelihood Estimation (MLE). The 

estimated parameters are then validated using Response Surface Methodology (RSM) on previously 

conducted experimental data. Finally, the methodology enables the estimation of reliability, median life, 

number of job completions, and number of cutting tools required per day of the working period for a 

machine tool, which can be used for industrial applications. 

 

 
 

Figure 1. Flowchart of the proposed methodology. 

 

 

This section is divided into six sub-sections. Section 2.1 discusses the AHP and the factors that impact the 

reliability of cutting tools with their hierarchical framework. The subsequent step is to create the PHM 

model, as illustrated in Section 2.2. The MLE method for determining the unknown parameters of the PHM 

model is covered in Section 2.3. In Section 2.4, the experimental data of the cutting tool has been explained. 

The design of the experiment using the RSM is further discussed in Section 2.5. Finally, Section 2.6 

explains the methodology for determining the number of jobs or workpiece completion and the optimal 

number of cutting tools required for machining. 
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2.1 Factors Listing and Hierarchical Framework for AHP 
The analytic hierarchy process is a decision-making tool developed by Saaty (Whitaker, 1987), which helps 

in breaking complex problems into simple criteria. The AHP relies on three fundamental principles: 

problem decomposition, comparative judgment, and relative importance or rankings synthesis. The 

associated goal, categorial factors, and sub-factors affecting the reliability of the cutting tools, as identified 

through extensive surveys, are organized into a hierarchical structure, as shown in Figure 2, with their 

respective acronyms. In this Figure, categorial factors are Cutting Parameters (CP), Cutting Tools 

Properties (CTP), Cutting Tools Geometry (CTG), Workpiece Properties (WP), and lastly External and 

Environmental factors (EE). These categorical factors (CF) are enlisted with their respective sub-factors 

(SF), which are Cutting Speed (CS), Depth of Cut (DOC), Feed Rate (FR), Hardness (HR), Toughness 

(TH), Thermal Conductivity (TCO), Strength (SH), Rake Angle (RA), Nose Radius (NR), Cutting Edge 

Angle (CEA), Workpiece Hardness (WH), Workpiece Surface finish (WS), Workpiece Machinability 

(WM), Lubricants (LU), Environmental Temperature (ET), Environmental Vibration (EV) and Cutting 

Cost (CC). 

 

 
 

Figure 2. Hierarchy of the AHP model. 

 

Further to this, pair-wise comparisons of all seventeen factors and sub-factors are performed. The pairwise 

comparison involves assigning values to express the relative importance or preference between two 

elements or factors, as shown in Table 1 for categorical factors. Typically, a numerical scale, such as the 

Saaty scale (1 to 9), is employed, where a higher value indicates a stronger preference or greater importance 

for the factor on the left compared to the one on the right. Pair-wise comparisons for other sub-factors are 

executed in similar manners. The consistency ratio (CR) values have been found well within limits i.e., less 

than 0.1. 

 
Table 1. Comparison matrix for CF. 

 

 CP CTP CTG WP EE 

CP 1 2 4 3 5 

CTP 0.5 1 2 1 3 

CTG 0.25 0.5 1 0.33 0.5 

WP 0.33 1 3 1 3 

EE 0.2 0.33 2 0.33 1 
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The next step of the AHP approach is to normalize the matrix by dividing each element by the sum of its 

column. The eigenvectors found from the pair-wise matrix are normalized so that its elements sum to 1. 

These normalized values represent the relative importance of the elements in the given level. Finally, this 

process is repeated for each level in the hierarchy for categorial factors and sub-factors. At last, the local 

weights for each element are combined across all levels to obtain the global weights. The weights of 

categorial factors and sub-factors so obtained are placed in Table 2. In this Table, the second column 

denotes the weights assigned to categorical factors, while the fourth column indicates the local weights 

assigned to sub-factors. On the other hand, the last column reflects the overall global weights assigned 

across all factors. 

 
Table 2. Local and global weights of factors and sub-factors. 

 

CF Weight SF Local weight Global Weight 

CP 0.4298 

CS 0.54995 0.23641 

DOC 0.24021 0.10326 

FR 0.20984 0.09020 

CTP 0.2021 

HR 0.27777 0.05616 

SH 0.36586 0.07397 

TCO 0.23256 0.04702 

TH 0.12381 0.02503 

CTG 0.0868 

RA 0.29696 0.02579 

CEA 0.16342 0.01419 

NR 0.53961 0.04686 

WP 0.2051 

WH 0.4126 0.0847 

WS 0.25992 0.0533 

WM 0.32748 0.0672 

EE 0.0759 

LU 0.27718 0.02105 

ET 0.09543 0.00725 

EV 0.16009 0.01216 

CC 0.4673 0.03549 

 

 

Figure 3 illustrates the sub-factors arrangement in descending order of significance, determined by their 

corresponding global weights as outlined in Table 2. The results indicate that the cutting speed, DOC, feed 

rate, and workpiece hardness are the most crucial sub-factors that are “critical to reliability” for the cutting 

tool. The effects of the four most influencing factors are appended in Table 3 after an investigative study. 

In addition to the enumeration of such factors, the evidence and testimony of their impact on the reliability 

of cutting tools are illustrated in the third column of Table 3. The experimental study further testifies these 

effects, and these four sub-factors are shortlisted to be used as covariates in the PHM model, as discussed 

in the subsequent section. 

 

 

Figure 3. Ranking of sub-factors. 
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Table 3. Factors and sub-factors list. 
 

CF SF Effects 

CP CS Higher CS generates higher temperatures, accelerating the tool’s wear and tear. 

DOC Higher DOC leads to higher cutting forces and temperatures, speeding up the tools’ deterioration. 

FR High FR can lead to increased cutting temperatures, speeding up tool wear, while inadequate feed rates can 
cause tool failure by generating heat as the tool rubs against the workpiece. 

WP WH Harder materials require more effort and energy to cut. Due to this stress and increased wear, the cutting 

tool may dull or break faster. 

 
 

2.2 Cox Proportional Hazards Model 
The proportional hazards model proposed by Cox (Therneau and Grambsch, 2000) has been utilized to 

model the tools’ reliability and hazard functions. According to Cox, reliability depends not solely on time 

but also on external factors that may influence failure rates, as illustrated in Equation (1). 

𝜆(𝑡, 𝑋)  =  𝜆𝑜(𝑡). 𝑔(𝑋, 𝐴)                                                                                                                                    (1) 

 

The baseline hazard rate is a time-dependent function, denoted as 𝜆𝑜(𝑡) . The function 𝑔(𝑋, 𝐴)  is a 

positively valued entity that remains constant over time and includes the influence of multiple covariates. 

The covariates are represented as a row vector 𝑋 = (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑚), while the regression parameters are 

represented as a column vector 𝐴 = 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑚 , where, “ 𝑚 ” denotes the number of variables 

associated with stress. 

 

In this study, Weibull distribution is used as a base function for estimating the hazard rate. The Weibull 

distribution is commonly employed in the reliability study of diverse systems because of its ability to adapt 

to different shapes of distribution (Ndlovu and Ayomoh, 2023). To confirm that the experimental data 

follows Weibull distribution, we have conducted a Goodness-of-Fit test in section 3.1. This distribution is 

characterized by certain parameters, which are used to determine the shape and characteristics of the hazard 

rate function. Equation (2) provides a hazard rate function for Weibull distribution. 

𝜆𝑜(𝑡)  =  
𝛽

𝜃
[

𝑡

𝜃
]

(𝛽−1)
                                                                                                                                         (2) 

 

where, 𝛽  represents the shape parameter, and 𝜃  the characteristic life of the Weibull distribution. The 

relationship between the dependent variable (tool life) and the independent variables of the process 

parameters (cutting speed 𝑣, feed 𝑓, DOC 𝑑, workpiece hardness ℎ) is depicted by modified Taylor’s tool 

life Equation (3).  

𝑇𝐿 = 𝐶𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4                                                                                                                                         (3) 

 

The PHM used in this study includes Taylor’s tool life equation to predict the likelihood of the cutting 

tools’ failures based on the cutting parameters being used. Equation (4) provides the proposed formula to 

estimate the failure rate of the cutting tool. 

𝑔(𝑋, 𝐴) = 𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4                                                                                                                             (4) 

 

where, 𝑋 is a row vector consisting of the covariates 𝑋 = vector of (𝑣, 𝑓, 𝑑, ℎ) and 𝐴 is a column vector 

consisting of the unknown parameters 𝜌1, 𝜌2, 𝜌3 and 𝜌4. Therefore, from Equations (1), (2), and (4), the 

PHM hazard rate function is reformed as illustrated in Equation (5). 

𝜆(𝑡)  =
𝛽

𝜃
[

𝑡

𝜃
]

(𝛽−1)
𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4                                                                                                                 (5) 

 

The hazard rate can be estimated by dividing the probability density function 𝑓(𝑡) by the survival or 

reliability function 𝑅(𝑡) as shown in Equation (6). The reliability function is placed at Equation (7).  
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𝜆(𝑡)  =  
𝑓(𝑡)

 𝑅(𝑡)
                                                                                                                                                  (6) 

𝑅(𝑡, 𝑋) = 𝑒𝑥𝑝(− ∫ 𝜆(𝑢)𝑑𝑢)
𝑡

0
                                                                                                                        (7) 

 

Further, Equation (8) can be derived by integrating Equation (7) over the time interval from 0 to t, which is 

the function of covariates and time. 

𝑅(𝑡, 𝑋) = 𝑒𝑥𝑝 [(−(
𝑡

𝜃
)(𝛽)) 𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4]                                                                                                     (8) 

 

The 𝑓(𝑡) Equation (9) for cutting tools can be derived with the help of Equations (5), (6), and (8). 

𝑓(𝑡, 𝑋) =
𝛽

𝜃
[

𝑡

𝜃
]

(𝛽−1)
𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4 𝑒𝑥𝑝 [(−(

𝑡

𝜃
)(𝛽)) 𝑣𝜌1𝑓𝜌2𝑑𝜌3ℎ𝜌4]                                                                 (9) 

 

Further, Equation (9) is utilized for parameter estimation with the help of the MLE technique, as explained 

in the next section. 

 

2.3 Maximum Likelihood Estimation (MLE) 
Maximum likelihood estimation is a statistical method that maximizes the likelihood function to estimate 

probability distribution parameters (Myung, 2003). In this paper, the MLE method aims to determine the 

unknown parameter values of a proposed model (Equation 9) and maximize the likelihood of observing the 

given data. The derived 𝑓(𝑡) (Equation 9) is characterized by six unknowns, namely β, θ, 𝜌1, 𝜌2, 𝜌3 and 

𝜌4. A likelihood function is formalized to determine the unknown parameters, as demonstrated through 

Equation (10). 

𝐿(𝜃, 𝛽, 𝜌1, 𝜌2, 𝜌3, 𝜌4 ) =  ∏
𝛽

𝜃
[

𝑡𝑖

𝜃
]

(𝛽−1)
𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4𝑒𝑥 𝑝 [(−(

𝑡𝑖

𝜃
)(𝛽)) 𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4] 𝑛

𝑖=1                          (10) 

 

The log-likelihood function is derived by taking the natural logarithm of Equation (10), resulting in 

Equation (11). 

𝑙𝑛 (𝐿)  =  𝑙𝑛 ∏
𝛽

𝜃
[

𝑡𝑖

𝜃
]

(𝛽−1)
𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4𝑒𝑥 𝑝 [(−(

𝑡𝑖

𝜃
)(𝛽)) 𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4] 𝑛

𝑖=1                                               (11) 

 

The final log-likelihood Equation (12) for the cutting tools is obtained by reworking Equation (11). 

𝑙𝑛(𝐿) = 𝑛𝑙𝑛𝛽 − 𝑛𝛽𝑙𝑛𝜃 + (𝛽 − 1) ∑ 𝑙𝑛 𝑡𝑖 + 𝜌1𝑙𝑛 ∑ 𝑣𝑖 + 𝜌2𝑙𝑛 ∑ 𝑓𝑖 + 𝜌3𝑙𝑛 ∑ 𝑑𝑖 + 𝜌4𝑙𝑛 ∑ 𝑑𝑖 −
1

𝜃𝛽 [∑𝑡𝑖
𝛽

𝑣𝑖
𝜌1𝑓𝑖

𝜌2𝑑𝑖
𝜌3ℎ𝑖

𝜌4]                                                                                                                                 (12) 

 

In order to obtain the maximum value, log-likelihood Equation (12) is differentiated partially with respect 

to each unknown parameter, equated to zero, resulting in Equations (13-18). These six equations are 

simultaneously solved in MATLAB with the “fsolve” function in an optimization toolbox to determine the 

unknown parameters’ values. 

𝑛𝜃𝛽 −  𝛽𝜃𝛽𝑛 𝑙𝑛𝜃 +  𝛽𝜃𝛽 ∑ 𝑙𝑛 𝑡𝑖 −  𝛽[∑ 𝑡𝑖
𝛽

𝑙𝑛
𝑡𝑖

𝜃
𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4] = 0                                                        (13) 

𝜃 = [
∑𝑡𝑖

𝛽
𝑣𝑖

𝜌1𝑓𝑖
𝜌2𝑑𝑖

𝜌3ℎ𝑖
𝜌4

𝑛
]

1/𝛽

                                                                                                                          (14) 

𝑙𝑛 ∑ 𝑣𝑖 −
1

𝜃𝛽 [∑𝑡𝑖
𝛽

𝑣𝑖
𝜌1𝑓𝑖

𝜌2𝑑𝑖
𝜌3ℎ𝑖

𝜌4𝑙𝑛𝑣𝑖] =  0                                                                                               (15) 
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𝑙𝑛 ∑ 𝑓𝑖 −
1

𝜃𝛽 [∑𝑡𝑖
𝛽

𝑣𝑖
𝜌1𝑓𝑖

𝜌2𝑑𝑖
𝜌3ℎ𝑖

𝜌4𝑙𝑛𝑓𝑖] =  0                                                                                                 (16) 

𝑙𝑛 ∑ 𝑑𝑖 −
1

𝜃𝛽 [∑𝑡𝑖
𝛽

𝑣𝑖
𝜌1𝑓𝑖

𝜌2𝑑𝑖
𝜌3ℎ𝑖

𝜌4𝑙𝑛𝑑𝑖] =  0                                                                                                (17) 

𝑙𝑛 ∑ ℎ𝑖 −
1

𝜃𝛽 [∑𝑡𝑖
𝛽

𝑣𝑖
𝜌1𝑓𝑖

𝜌2𝑑𝑖
𝜌3ℎ𝑖

𝜌4𝑙𝑛ℎ𝑖] =  0                                                                                                   (18) 

 

The obtained values are further discussed in the results and discussions in section 3.1. In order to ensure 

the accuracy of the proposed model, unknown parameters are validated using RSM and Weibull fits by 

utilizing the experimental data, as explained in section 3.1. 

 

2.4 Experimental Setup and Data  
The unknown parameters of the likelihood Equations (13-18) are estimated using experimental data, which 

are collected with the help of an experiment conducted by Qehaja et al. (2017). For more details on 

experiment setup, please refer Qehaja et al. (2017). The tool is considered to have failed under two 

conditions: (1) When the maximum width of end clearance wear or nose wear approached 0.2 mm threshold, 

and (2) When a catastrophic failure took place. Four factors are selected from the AHP model to develop a 

tool life prediction model with three levels of each factor. Table 4 outlines the selected parameters for the 

experiment, including their respective units, limits, and their three levels as obtained from the experiment. 

The three levels are coded in such a way that the low level corresponds to −1, the middle level 0, and the 

high level corresponds to +1 by transformation of the equations, as shown in the third column of Table 4. 

For example, for factor 𝑣 (m/min) at serial number 1, the calculation is as follows: 

 

For high level: -   
𝑙𝑛 𝑣 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→  

𝑙𝑛 180 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→ 1  

 

For Middle level: -   
𝑙𝑛 𝑣 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→  

𝑙𝑛 135 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→ 0  

 

For low level: -     
𝑙𝑛 𝑣 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→  

𝑙𝑛 100 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
→ −1.04 ≈  −1 

 

The calculation for remaining factors with all three code levels has been performed in a similar manner. 

Further to this, the experiment design is conducted at three code levels using RSM, which involves a total 

of 24 runs, as discussed in the subsequent section. 

 
Table 4. Code level of cutting tools factors (Qehaja et al., 2017). 

 

Cutting actors and their levels 

S. No. Factors Code level High level Middle level Low level 

+1 0 -1 

1. 𝑣 (m/min) 𝑋1(
𝑙𝑛 𝑣 − 𝑙𝑛 135

𝑙𝑛 180 − 𝑙𝑛 135
) 180 135 100 

2. 𝑓 (mm/rev) 𝑋2(
𝑙𝑛 𝑓 − 𝑙𝑛 0.214

𝑙𝑛 0.285− 𝑙𝑛 0.214
)      0.285 0.214 0.178 

3. d (mm) 𝑋3(
𝑙𝑛 𝑑 − 𝑙𝑛 0.85

𝑙𝑛 1.5 − 𝑙𝑛 0.85
) 1.5 0.85 0.5 

4. ℎ (HRC) 𝑋4(
𝑙𝑛 ℎ − 𝑙𝑛 45

𝑙𝑛 55 − 𝑙𝑛 45
) 55 45 35 

 
 

2.5 Response Surface Methodology (RSM) 
Box and Wilson (1951) developed RSM as a means to enhance production in chemical process engineering. 

Response surface methodology consists of a group of mathematical and statistical techniques used in the 
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development of an adequate functional relationship between a response of interest, Y, and a number of 

associated control (or input) variables denoted by 𝑥𝑖 and 𝑥𝑗. The RSM regression equation is obtained using 

second-order polynomial equations, represented by Equation (19). 

𝑌 = 𝛽0 + ∑  𝑘
𝑖=1 𝛽𝑖𝑥𝑖 + ∑  𝑘

𝑖=1 𝛽𝑖𝑖𝑥𝑖
2 + ∑  𝑘−1

𝑖=1 ∑  𝑘
𝑗>1 𝛽𝑖𝑗𝑥𝑖𝑥𝑗.                                                                                          (19) 

 

Equation (19) includes a response variable, denoted by 𝑌, as well as a constant coefficient (𝛽0), linear 

coefficient (𝛽𝑖), quadratic coefficient (𝛽𝑖𝑖), and interaction coefficient (𝛽𝑖𝑗). Furthermore, the independent 

factors are denoted by coded values (𝑥𝑖 and 𝑥𝑗). In our case, there are four factors: speed, feed, DOC, and 

w/p hardness. The reason to use a second-order polynomial in response surface methodology with four 

factors is to account for curvature in the response surface, which may indicate a minimum or maximum of 

the response variable. A second-order model can also include interaction terms between the factors, which 

is important for understanding the effects of the factors on the response. 

 

The study used cutting speed, feed, DOC, and workpiece hardness as v, f, d, and h, respectively for 

experiment design and reliability estimation. To achieve this, a circumscribed central composite design 

(CCD) is used as RSM design for the selected factors and levels. The aim of the RSM is to assess the 

unknown parameters and their interactions in order to determine the optimal response while conducting the 

least number of trials possible. This design includes 16 factorial points and 8 centre points. The 

experimental error and reproducibility of data are examined by analyzing the centre points. To minimize 

experimental costs, the axial points are avoided in this experimental design. Hence, the experimental design 

proposed by the RSM involved a total of 24 runs, as outlined in Table 5.  

 
Table 5. Experiment factors combination and response (Qehaja et al., 2017). 

 

Test No. 

Coded factors Performance Measures 

𝑿𝟎 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 Tool wear (mm) 
Tool failure time 

(TTF) (min) 

1. +1 -1 -1 -1 -1 0.201 95 

2. +1 -1 -1 -1 1 0.198 50 

3. +1 -1 -1 1 -1 0.207 48 

4. +1 -1 -1 1 1 0.192 85 

5. +1 -1 1 -1 -1 0.199 60 

6. +1 -1 1 -1 1 0.210 50 

7. +1 -1 1 1 -1 0.194 70 

8. +1 -1 1 1 1 0.208 46 

9. +1 1 -1 -1 -1 0.200 35 

10. +1 1 -1 -1 1 0.203 55 

11. +1 1 -1 1 -1 0.191 37 

12. +1 1 -1 1 1 0.211 61 

13. +1 1 1 -1 -1 0.206 35 

14. +1 1 1 -1 1 0.201 48 

15. +1 1 1 1 -1 0.197 42 

16. +1 1 1 1 1 0.196 9 

17. +1 0 0 0 0 0.209 80 

18. +1 0 0 0 0 0.198 68 

19. +1 0 0 0 0 0.199 75 

20. +1 0 0 0 0 0.192 52 

21. +1 0 0 0 0 0.200 74 

22. +1 0 0 0 0 0.198 40 

23. +1 0 0 0 0 0.191 55 

24. +1 0 0 0 0 0.198 45 

 

The unknown parameters obtained from the RSM regression model are utilized for the validation of the 

proposed model (sections 2.2 and 2.3), and the results are shown in section 3.1. Further to this, the next 
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section is dedicated to proposing the methods and equations for the estimation of the number of job 

completions and cutting tools required for a machine tool in a day. 

 

2.6 Methodology for Determining Cutting Tools Inventory for Industrial Applications  
This paper proposes methodology in the form of Equations (20-25) for determining the number of jobs or 

workpieces that can be completed and the optimal number of cutting tools required for machining within 

an eight-hour working period in a day. Where, D, TL, and 𝐿𝑝𝑖𝑒𝑐𝑒 denote the diameter of a workpiece, cutting 

tool life, and length of a workpiece, respectively. 

 

Step 1: Calculate the length of machining per cutting tool: 

𝐿𝑡𝑜𝑡𝑎𝑙 = (
𝑓∗𝑣∗1000

𝜋∗𝐷
) ∗ 𝑇𝐿                                                                                                                                   (20) 

 

Step 2: Calculate the number of workpieces cut per cutting tool: 

𝑁𝑡𝑜𝑡𝑎𝑙 =
𝐿𝑡𝑜𝑡𝑎𝑙

𝐿𝑝𝑖𝑒𝑐𝑒
                                                                                                                                                 (21) 

 

Step 3: Calculate the effective time to process the workpiece per cutting tool: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝐿 + (𝑁𝑡𝑜𝑡𝑎𝑙 − 1) ∗ 0.5                                                                                                                                                  (22) 

 

Step 4: Calculate the effective working time per workpiece to complete: 

𝑇𝑝𝑖𝑒𝑐𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
.                                                                                                                                                  (23) 

 

Step 5: Calculate the number of workpieces produce in 8 hrs. shift: 

𝑁8 ℎ𝑟 =
𝑁𝑡𝑜𝑡𝑎𝑙∗8∗60

𝑇𝑡𝑜𝑡𝑎𝑙
                                                                                                                                                  (24) 

 

Step 6: Calculate the number of times cutting tools change in 8 hrs. shift: 

𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑁8 ℎ𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
                                                                                                                                                 (25) 

 

This paper then demonstrates the results of the proposed model with the help of experimental data to 

estimate the optimal number of tools required for machining the workpiece duly illustrated in the results 

and discussion in section 3.3. 

 

3. Results & Discussion 
This section provides a comprehensive overview of the outcomes obtained from the proposed methodology. 

This section is divided into four subsections as follows: 

Section 3.1. Validation of unknown parameters of the proposed model using RSM estimated unknowns. 

Section 3.2. Analysis of cutting tools’ reliability, hazard curve, and median life. 

Section 3.3. Determination of workpiece completion and cutting tools’ requirements for a day. 

 

3.1 Validation of Unknown Parameters of the Proposed Model using RSM Estimated 

Unknowns 
Equation (27) has been developed in the form of a modified Taylor’s tool life equation. This Equation has 

been derived by substituting code-level transformation equations (Table 4) in the RSM Equation (26). 

𝑌𝑒𝑠𝑡 =  4.085 −  0.264 ∗ 𝑥1  −  0.164 ∗ 𝑥2  −  0.088 ∗ 𝑥3  −  0.059 ∗ 𝑥4                                                         (26) 

𝑇𝑇𝐹 =  6653.9613 ∗ 𝑣−0.918 ∗  𝑓−0.5723 ∗  𝑑−0.15520 ∗ ℎ−0.295                                                                                 (27) 
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The RSM is utilized to determine the optimal settings of the four factors to determine optimal tool life. The 

tool life is estimated with the help of Minitab software (version 19.1 and 64-bit) by considering the four 

independent variables in RSM (Equation 27). The response surface plots generated to obtain the optimal 

tool life are placed in Figures 4, 5, and 6. In Figure 4, the response surface plot shows the dynamic 

relationship between velocity or cutting speed with (a) w/p hardness and (b) feed on tool life. As cutting 

speed increases, tool life decreases convexly, with an optimal range identified between low and moderate 

cutting speeds. Additionally, an increase in w/p hardness positively impacts tool life at higher speed, and if 

feed increases, tool life decreases.  

 

 
 

Figure 4. (a) Surface plot of time to failure vs w/p hardness, velocity. (b) Surface plot of time to failure vs feed, 

velocity. 

 

 

The surface plots of Figure 5 illustrate the dynamic relationship between (a) velocity vs DOC vs tool life 

and (b) feed vs DOC tool life. As velocity increases, tool life decreases convexly, with an optimal range 

identified between low and moderate cutting speeds. Additionally, with an increase in DOC, tool life 

decreases at higher speed and feed, and if feed increases, tool life decreases. 

 

 
 

Figure 5. (a) Surface plot of time to failure vs DOC vs velocity. (b) Surface plot of time to failure vs DOC vs feed. 

 

The 3D response surface plot Figure 6 illustrates the dynamic relationship between (a) DOC vs w/p 

hardness vs tool life and (b) feed vs w/p hardness vs tool life. As DOC increases, tool life decreases and an 

optimal range of DOC is identified between low and moderate levels of DOC where tool life in maximum. 
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Additionally, with an increase in w/p hardness, tool life slightly increases at higher DOC and lower feed, 

but decreases at higher feed. Similarly, if feed increases, tool life decreases at higher w/p hardness.  

 

 
 

Figure 6. (a) Surface plot of time to failure vs w/p hardness, DOC. (b) Surface plot of time to failure vs w/p 

hardness, feed. 

 

The surface plot aids in identifying the optimal parameter combinations for maximizing tool life, which is 

crucial for effective machining processes. The optimum tool life obtained is 72.550 mins, and the optimal 

setting values of the factors are presented in Table 6. 

 
Table 6. Optimal parameters and tool life obtained from RSM model. 

 

v (m/min) f (mm/rev) d (mm) h (HRC) Tool life (min) 

110.5051 0.17820 1.5 55 72.550 

 

 

The Weibull fit test is then performed to examine the fitness of the Weibull distribution of twenty-four 

failure times for the cutting tools (Table 5). The results of the test, depicted in Figure 7, indicate a good fit 

for the Weibull distribution. 

 

In addition to the aforementioned method, Mann’s Goodness-of-Fit test (Mann, 2006) for the Weibull 

failure distribution is performed. The parameters obtained from this test are presented in Table 7. Since 

𝑀 < 𝐹𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, at 𝛼 = 0.05 the data follows a Weibull distribution.  

 
Table 7. Mann’s test parameters obtained. 

 

Test Statistics (M) Degree of Freedom 1 Degree of Freedom 2 Significance level 𝜶 𝑭𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 from F-distribution 

1.3123 23 24 0.05 1.9932 

 

 

The four most important sub-factors, as identified in Figure 3, are selected as covariates for the proposed 

model, as shown in Equation (9). Next, the unknown parameters are estimated using the maximum 

likelihood estimation method (Equations (13-18)) and validated using the RSM model and Weibull fit test, 

as presented in Table 8. The obtained results demonstrate that the beta (𝛽) and theta (𝜃) values determined 

using the proposed model exhibit insignificant difference when compared with the Weibull fit. Additionally, 

when comparing the remaining unknown parameters with the RSM, the difference is again insignificant, 

except for parameter 𝜌2. The limitation of applying the Weibull fit directly to the time-to-failure lies in its 

failure to account for the effects of factors. This is evident in Table 8, where it is observed that the 

characteristic life is overestimated. Additionally, while Response Surface Methodology (RSM) is employed, 
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it does not offer insights into the shape and characteristics life. But the analysis of unknown parameters 

through the proposed PHM model considers the effects of covariates as well and reveals that the influence 

of feed is the most significant, followed by speed, then depth of cut (DOC), and lastly, workpiece hardness. 

 

 
 

Figure 7. Weibull fit plot. 

 

 
Table 8. Validation of proposed model unknowns with RSM and Weibull Fit. 

 

 β 𝜃 𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝆𝟒 

Weibull fit 3.17601 60.9570  

Cox-PHM model (proposed) 3.5261 56.5014 0.8432 3.0384 0.1749 0.091 

RSM   0.918 0.5723 0.15520 0.295 

 

 

3.2 Analysis of Cutting Tools’ Reliability, Hazard Curve, and Median Life 
The hazard and reliability plots derived from the proposed model are illustrated in Figures 8 and 9, 

respectively. These plots clearly demonstrate the significant impact of variations in factors on both the 

hazard and reliability curves. Furthermore, the observation reveals that in the 16th case of the cutting tool, 

denoted as H16, deteriorates significantly faster compared to other cases, exhibiting an extreme wear-out 

condition since the cutting tool is operated at the highest level of all four factors. Similarly, the H15 cutting 

tool, representing the 15th case, shows a relatively less but noticeable degradation compared to the 16th case. 

This tool operates with three factors set at higher levels, while one factor, specifically the w/p hardness, is 

set at the lowest level. The findings suggest that the impact of w/p hardness on the hazard rate is less 

significant compared to other parameters, as it exhibits similar effects at both high and low levels. It is also 

proved from the values of the unknown parameters in Table 8. However, estimated accuracy could be 

further improved if more data is made available to estimate the parameters. 

 

It can be further observed from the reliability curve in Figure 9 that the reliability of the 16th case of cutting 

tool denoted as R16 in Figure 9 has drastically decreased as compared to the other cases due to extreme 

wear out. Similarly, the R15 cutting tool degrades the same as R16 but is still noticeable due to three factors 

being set higher, while w/p hardness is set lowest. The findings suggest that w/p hardness has a lesser effect 

than other factors in showing the effect on the reliability curve. 
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Figure 8. The hazard rate of cutting tools in different conditions. 

 

 

 

 
 

Figure 9. Reliability of cutting tools in different conditions. 

 

In this case, the median life is considered to be a more significant outcome for cutting tools reliability 

analysis than the mean life of the cutting tool, as the median is not susceptible to outliers (Liu et al., 2020). 

The median life of a cutting tool is the point at which its reliability reaches 0.5, beyond which the likelihood 

of tool failure increases. The proposed model is used to predict the median lifespan of twenty-four cutting 

tools, as shown in Figure 10. For example, the coordinates (1,72) represent that 1st case of the cutting tool 

has a median lifespan of 72 mins. In this Figure, the points that are closer to the central point indicate a 

relatively lower median lifespan in relation to their respective cases. According to Figure 10, the highest 

median life value observed is 72 mins, which aligns with the optimal life obtained through RSM-based 

analysis, as presented in Table 6. Hence, the proposed model emerges as highly suitable for conducting a 

reliability analysis of cutting tools with varying factors. 
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Figure 10. Median life of 24 cutting tools. 

 

3.3 Determination of Workpiece Completion and Cutting Tool Requirements for a Day 
It is essential for industries to determine the number of jobs that can be completed and the number of cutting 

tools required for a particular machine tool within a specific period, such as a day or a month, and there is 

a need to accommodate the factors that affect the lifespan of cutting tools. To address this issue, we have 

proposed a methodology to evaluate the number of cutting tools required per day. This assessment is based 

on twenty-four cases of cutting tools, as indicated in the experimental data (Table 5), and is determined by 

the median lifespan derived from the model given in section 2.2. This proposed methodology has already 

been explained in section 2.6.  

 

It should be noted that these calculations are based on some assumptions, as mentioned below: 

• A job consists of the machining of a workpiece with maximum length (𝐿𝑝𝑖𝑒𝑐𝑒) of 300 mm.  

• The life of a cutting tool ends at its median life. 

 

For the sake of better comprehension of the readers, the calculation for the results at case No. 1 is as 

appended below: 

Step 1: Calculation of length of machining per cutting tool: 

𝐿𝑡𝑜𝑡𝑎𝑙 = (
𝑓∗𝑣∗1000

𝜋∗𝐷
) ∗ 𝑇𝐿 →  (

0.178∗100∗1000

𝜋∗80
) ∗ 72 →  5101.911 𝑚𝑚. 

 

Step 2: Calculation of number of workpieces cut per cutting tool, where 𝐿𝑝𝑖𝑒𝑐𝑒 is 300 mm: 

𝑁𝑡𝑜𝑡𝑎𝑙 =
𝐿𝑡𝑜𝑡𝑎𝑙

𝐿𝑝𝑖𝑒𝑐𝑒
→  

5101.911

300
→  17.00637. 

 

Step 3: Calculation of effective time to process workpiece per cutting tool:  

𝑇𝑡𝑜𝑡𝑎𝑙 = {𝑇𝐿 + (𝑁𝑡𝑜𝑡𝑎𝑙 − 1) ∗ 0.5} → {72 + (18 − 1) ∗ 0.5} → 80.5 𝑚𝑖𝑛. 

 

Step 4: Calculation of effective working time per workpiece to complete:  

𝑇𝑝𝑖𝑒𝑐𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
→

80.5

18
→ 4.4722 𝑚𝑖𝑛. 
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Step 5: Calculation of the number of workpieces produces in 8 hrs. shift:  

𝑁8 ℎ𝑟 =
𝑁𝑡𝑜𝑡𝑎𝑙∗8∗60

𝑇𝑡𝑜𝑡𝑎𝑙
→

17.00637∗8∗60

80.5
→ 101.4044. 

 

Step 6: Calculation of the number of times the cutting tool changes in 8 hrs. shift:  

𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑁8 ℎ𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
→  

101.4044

17.00637
→ 5.666667. 

 

Similarly, calculations for other cases have been done, and the results are placed in Table 9. The results of 

this proposed methodology provide significant information for machining industries because it will help to 

enhance their operational efficiency and maximize their resource utilization. 

 
Table 9. Number of jobs completed and cutting tools requirement in a day. 

 

Case No. 𝑳𝒑𝒊𝒆𝒄𝒆(mm) 𝑳𝒕𝒐𝒕𝒂𝒍(mm) 𝑵𝒕𝒐𝒕𝒂𝒍 𝑻𝒕𝒐𝒕𝒂𝒍(𝒎𝒊𝒏) 𝑻𝒑𝒊𝒆𝒄𝒆(min) 𝑵𝟖 𝒉𝒓 𝑪𝑻𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 

1. 300 5101.911 17.006 80.5 4.472 101.404 5.667 

2. 300 5031.051 16.770 79.0 4.647 101.895 6.000 

3. 300 4818.471 16.061 76.0 4.470 101.441 6.000 

4. 300 4747.611 15.825 74.5 4.656 101.962 6.375 

5. 300 5559.315 18.531 58.0 3.052 153.360 8.105 

6. 300 5445.860 18.153 57.0 3.000 152.866 8.052 

7. 300 5218.949 17.396 54.5 3.027 153.217 8.555 

8. 300 5105.494 17.018 53.5 2.972 152.688 8.555 

9. 300 7907.962 26.359 75.0 2.777 168.703 6.259 

10. 300 7780.414 25.934 73.5 2.826 169.369 6.538 

11. 300 7652.866 25.509 72.5 2.788 168.891 6.500 

12. 300 7525.318 25.084 71.5 2.750 168.399 6.500 

13. 300 8577.229 28.590 56.0 1.931 245.064 8.483 

14. 300 8373.010 27.910 54.5 1.946 245.813 8.786 

15. 300 8168.790 27.229 53.5 1.911 244.300 8.750 

16. 300 7964.570 26.548 52.0 1.926 245.064 9.111 

17. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

18. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

19. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

20. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

21. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

22. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

23. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

24. 300 6440.446 21.468 66.5 3.023 154.958 7.045 

 

We also present the estimation of cutting tools required per day with the help of experimental TTF to 

understand a more precise inventory holding by the industry, and also conduct a comparative study between 

the cutting tools inventory value obtained from the proposed model considering median life and the 

experimental TTF data. For the sake of better comprehension of the readers, the calculation for the results 

at case No. 1 using the experimental TTF data is as appended below: 

 

Step 1: Calculation of length of machining per cutting tool: 

𝐿𝑡𝑜𝑡𝑎𝑙 = (
𝑓∗𝑣∗1000

𝜋∗𝐷
) ∗ 𝑇𝐿 →  (

0.178∗100∗1000

𝜋∗80
) ∗ 95 →  6731.687 𝑚𝑚. 

 

Step 2: Calculation of number of workpieces cut per cutting tool, where 𝐿𝑝𝑖𝑒𝑐𝑒 is 300 mm: 

𝑁𝑡𝑜𝑡𝑎𝑙 =
𝐿𝑡𝑜𝑡𝑎𝑙

𝐿𝑝𝑖𝑒𝑐𝑒
→  

6731.687

300
→  22.438. 

Step 3: Calculation of effective time to process workpiece per cutting tool:  

𝑇𝑡𝑜𝑡𝑎𝑙 = {𝑇𝐿 + (𝑁𝑡𝑜𝑡𝑎𝑙 − 1) ∗ 0.5} → {95 + (22 − 1) ∗ 0.5} → 105.5 𝑚𝑖𝑛. 
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Step 4: Calculation of effective working time per workpiece to complete:  

𝑇𝑝𝑖𝑒𝑐𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
→

105.5

22
→ 4.795 𝑚𝑖𝑛. 

 

Step 5: Calculation of the number of workpieces produces in 8 hrs. shift:  

𝑁8 ℎ𝑟 =
𝑁𝑡𝑜𝑡𝑎𝑙∗8∗60

𝑇𝑡𝑜𝑡𝑎𝑙
→

22.438∗8∗60

105.5
→ 102.092. 

 

Step 6: Calculation of the number of times the cutting tool changes in 8 hrs. shift:  

𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑁8 ℎ𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
→  

102.092

22.438
→ 4.681. 

 

Similarly, calculations for other cases have been performed, and the final results of the required number of 

cutting tools are shown in Table 10. A comparative study on the cutting tools inventory required for one 

machine tool in a day computed using the proposed model’s median life and experimental TTF data is 

shown in Table 10 and Figure 11 for better comprehension of the readers.  

 
Table 10. Comparison table for 𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  for one machine tool per day using proposed model’s median life and 

experimental TTF. 
 

Case No.  𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (Using 

proposed model’s median 

life) 

𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (Using 

experimental TTF) 

Case No. 𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (Using proposed 

model’s median life) 

𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (Using 

experimental TTF) 

1. 5.667 4.682 13 8.483 10.250 

2. 6.000 8.584 14 8.786 7.454 

3. 6.000 9.364 15 8.750 8.483 

4. 6.375 5.100 16 9.111 42.667 

5. 8.105 6.694 17 7.045 5.000 

6. 8.053 8.105 18 7.045 6.000 

7. 8.556 5.961 19 7.045 5.379 

8. 8.500 9.117 20 7.045 7.800 

9. 6.259 11.400 21 7.045 5.571 

10. 6.538 7.435 22 7.045 10.467 

11. 6.500 10.625 23 7.045 7.428 

12. 6.500 6.538 24 7.045 9.235 

 

 
 

Figure 11. Represent the variation of 𝐶𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  for one machine tool per day using proposed model’s median life 

and experimental TTF. 

 

It can be observed from the graph in Figure 11 that, in the case of 16th, there is a noticeable variation in the 

number of cutting tools required as estimated via the median life and experimental TTF. This variation is 
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due to the value of Experimental TTF of 09 mins and the median life of 39 mins. 

 

4. Novelty of Findings and Real Industrial Applications 
The conclusion drawn from the results and discussion underscores the novelty of the paper’s findings, as 

outlined below: 

• An AHP model has been used to identify and prioritize the factors affecting cutting tools’ life and 

reliability. This model identifies speed, feed, depth of cut, and workpiece hardness as the primary 

determinants of significance, extending the analysis beyond the existing literature that primarily 

concentrates on three factors for the evaluation of reliability. 

• This study investigates the impact of four factors on reliability and hazard curves with 24 cases of cutting 

parameters, filling a gap in the existing literature where these aspects have not been previously addressed. 

• A comparison of the characteristic life estimates derived from Weibull fitting, which does not consider 

influencing factors, and those obtained from the proportional hazard model (PHM) reveals that the 

omission of these factors results in an overestimation of the characteristic life. Furthermore, both the 

Response Surface Methodology (RSM) and the proposed PHM model provide the same estimate of a tool 

life of 72 minutes when the factors’ effects are considered, thus validating the PHM model. Such a 

comparative study of PHM with the RSM model is found to be limited in the literature. 

• The findings from the analysis of unknown parameters, hazard curve, and reliability curve indicate that 

the impact of feed is highest, while the influence of w/p hardness is lowest.  

• The hazard and reliability curves indicate that a cutting tool operating at its maximum level across all 

factors exhibits a higher rate of increasing hazard and decreasing reliability. 

• This paper determines the required inventory of cutting tools per machine tool per day with the help of 

PHM results. This approach has received limited attention in the literature. 

 

This reliability analysis of cutting tools finds practical applications in industries for optimizing maintenance 

strategies, enhancing quality control, reducing production costs, improving overall equipment efficiency, 

and facilitating predictive maintenance. Reliable cutting tools contribute to stable and predictable 

machining processes, providing valuable data for decision-making in production planning, resource 

allocation, and tool investment in the areas of automotive manufacturing, aerospace industry, mining, and 

heavy equipment manufacturing.  

 

5. Conclusions & Future Scopes 
In today’s industrial environment, it is imperative to assess the reliability of cutting tools as it can affect the 

surface finish and dimensional accuracy of machined parts. Variations in cutting tool reliability due to 

factors affecting tool reliability and its life can have an adverse impact on machining operations and the 

economy. To address these challenges, this paper proposes a qualitative study to identify various factors 

impacting tools’ reliability and their life before conducting any experiments. Four “critical to reliability” 

factors are prioritized from seventeen identified factors through pair-wise comparisons and obtaining their 

weights through the AHP method. Then, the tool life data for the four factors, namely speed, feed, DOC, 

and material hardness, at three operating levels are obtained from the experiment conducted by Qehaja et 

al. (2017). This paper utilized this data to develop PHM for reliability and hazard rate estimation for 24 

cases of cutting tools and verified the effectiveness of the proposed model through the use of RSM and 

Weibull fit. Additionally, the study presented a methodology for industries to estimate the number of job 

completions and cutting tools required per machine per day. The tangible outcomes of this research work 

are (1) Identification and prioritization of factors and sub-factors affecting the life and reliability of cutting 

tools with the help of the AHP model; (2) Reliability parameter estimates with the help of the proposed 

PHM-based model considering four covariates as mentioned earlier; (3) Validation of the proposed PHM 
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based model by comparing it with the Weibull fit and RSM; (4) Required inventory of cutting tools per 

machine tool in a day.  

 

The hazard rate and reliability plots clearly demonstrate the significant impact of variations in factors on 

both the hazard and reliability of the cutting tools during their operation. It is also observed from the 

reliability and hazard curve that the 16th case of cutting tool has drastically changed as compared to the 

other cases due to extreme wear out. This is because the tool has been operated at the highest level of all 

the selected four factors. Thus, the proposed model emerges as highly suitable for conducting a reliability 

analysis of cutting tools with varying factors. This paper yields positive outcomes by examining four sub-

factors and analyzing their respective impacts on the cutting tools’ reliability, hazard rate, tool life, and 

necessary inventory. The paper also presents the median life of the 24 cutting tools. The highest median 

life value observed is 72 mins, which aligns with the optimal life obtained through RSM-based analysis. 

The findings from the analysis of unknown parameters, hazard curve, and reliability curve indicate that the 

impact of feed is highest, while the influence of w/p hardness is lowest. The results of the proposed 

methodology for evaluating cutting tool requirements provide significant information for machining 

industries to enhance their operational efficiency and maximize their resource utilization.  

 

Some potential research gaps of the proposed model are as follows: (1) Co-variate measurements’ precision 

impact model accuracy. (2) Offline application limits real-time prediction feasibility. (3) More the number 

of data points better the PHM predictions. (4) The model is limited in considering censored data. The future 

scope and studies that could improve the results by adding more co-variates, improving covariate 

measurement precision, real-time application, and integration with neural networks. 
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