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Abstract 

The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is an effective tool for monitoring small shifts 

in the mean vector of multiple correlated variables over time. The traditional MEWMA control charts are not appropriate when 

dealing with data that has indeterminacy. For the purpose of dealing with indeterminate data, we present a novel Neutrosophic 

MEWMA Control Chart that incorporates bootstrap control limits in this research. A simulation study is conducted to compare the 

performance of the proposed method with the neutrosophic Hotelling T2 control chart. The study considered Alarm Rate (AR) and 

Average Run Length (ARL) have been used as the performance evaluation metrics. Finally, an illustrative example from the 

chemical industry was used to demonstrate the application of the proposed chart. It is considered that the proposed chart can be 

effectively applied to a wide range of manufacturing processes, providing significant benefits in process monitoring and control. 

 

Keywords- SPC, Multivariate control charts, Hotelling's T2 control chart, MEWMA, Neutrosophic logic, AR, ARL. 

 

 

 

1. Introduction 
In the modern world, updates are made on a daily basis and for the manufacturing industry, it is difficult to 

survive in the market. However, ensuring the quality of a product is necessary and the Statistical Process 

Control (SPC) is the method of quality control which is used to monitor and control entire production 

process. Control charts are the most prevalently employed tool in SPC. (Aslam et al., 2021), and they help 

to detect the sources of errors by identifying the special and common causes of variations. Mostly in a 

production process, we need to monitor and control more than one variable at a time. In such situations, it 

is mandatory to use multivariate control charts for better results. The multivariate approach to the control 

chart technique offers a more comprehensive understanding of the production process and helps to identify 

sources of variation over time (Chong et al., 2019).  

 

Hotelling's T2 control chart is a popular method used in multivariate control charts which measures the 

difference between the sample mean vector and the target mean vector, standardized by the sample 

covariance matrix. Since, Hotelling's T2 control charts are not highly sensitive to small or moderate shifts 

in the mean vector as they only use information from the current sample (Tiryaki and Aydin, 2022). 

Researchers have suggested the development of the Multivariate Cumulative Sum (MCUSUM) (Haq, 2018) 

and MEWMA (Kim et al., 2017) control chart to improve the sensitivity of multivariate quality control 

problems to small shifts. These control charts, provide an efficient approach by monitoring the cumulative 

deviations of the sample mean from the target value or by applying weights to the observation depending 

on the time of occurrence. Since, they are capable of detecting minor changes to the process mean vector 
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as soon as possible. As a result, they provide a major advantage where the early identification of process 

change is vital in ensuring high-quality products and maintaining customer satisfaction. The MEWMA 

control chart has the advantage over the MCUSUM control chart in that it considers variable correlation, 

whereas the MCUSUM chart assumes variable independence. This indicates that, compared to the 

MCUSUM chart, the MEWMA control chart is more sensitive to small changes in the process mean. 

Furthermore, the MEWMA control chart may accommodate variations in the process mean with greater 

flexibility. On the other hand, if there are modifications to the variable’s correlation structure, the 

MCUSUM chart can require recalibration. A computer programme has been developed by Molnua et al. 

(2001) to compute ARLs for the MEWMA control chart. Moreover, Scranton et al. have demonstrated that 

by restricting its application to the primary components of the variables under observation, the ARL 

performance of MEWMA control chart can be further enhanced (Scranton et al., 1996). 

 

Control limits of multivariate control chart are frequently determined using assumptions about the 

distribution of the data, such as normality. In actuality, though, the data might not be distributed normally. 

Without assuming anything about the underlying distribution, the bootstrap approach can estimate the 

distribution of the statistic of interest (such as the mean or standard deviation) from the sample data (Haydée 

Baranzano, 2011).The bootstrap method can be useful in control charts for improving the effectiveness of 

the control limits, mainly when dealing with small sample sizes or non-normal data. Mostajeran et al. (2016) 

proposed the percentile bootstrap method to obtain Hotelling's T2 control limits under the non-multivariate 

normal distribution. However, this method had limitations as it only detected large shifts by collapsing the 

multivariate data into univariate. Furthermore, it did not address the out-of-control signal issue. For further 

development, Ikpotokin and Ishiekwene (2017) introduced the Bootstrap Multivariate Exponentially 

Weighted Moving Average (BMEWMA) method based on non-parametric control chart approach for 

addressing the problems of violating multivariate distributional assumptions and the inability to detect small 

to moderate shifts in the process mean vector. In this study, they adopted a bootstrap control limit for the 

MEWMA control chart by applying the bootstrap control limit, which offers a significant advantage over 

the traditional method in deriving the control limit in a complex manner. 

 

Generally, the design of the classical approach to the control chart technique is based on the assumption of 

accurate data values, which may not be readily available. The underlying uncertainty in the parameters of 

control charts or inaccuracy in observed quality characteristics can lead to inaccurate data in practical 

situations. In such cases, it is not recommended to use traditional control charts, and it necessitates the 

development of a fuzzy control chart to handle data uncertainty (Shu and Wu, 2011). The literature reveals 

a growing trend among researchers to develop control charts based on fuzzy parameters (Ghosh et al., 2022; 

Giri et al., 2023a; Giri et al., 2023b; Maity and Roy, 2019; Mondal et al., 2023). The primary benefit of 

fuzzy control charts is that they are more sensitive than traditional control charts. These approaches to 

uncertainly provide an immense amount of flexibility for users to handle fuzzy data (Sentürk et al., 2014). 

In addition to offering considerable flexibility, this method allows users to manage fuzzy data encountered 

during the measurement process. According to Bradshaw (1983), fuzzy theory was introduced into the 

construction of control charts for product conformity to specified limits. This approach illustrates the 

realism of graded product criteria by utilizing graded product criteria in a fuzzy concept over a binary 

category. Further investigation of the fuzzy approach in designing control charts for linguistic variables has 

been attempted (El-Shal and Morris, 2000; Rowlands and Wang, 2000). Furthermore, Fuzzification has 

also been applied to construct traditional CUSUM and EWMA control charts (Tannock, 2003; Wang, 

2006). The design of multivariate control charts in fuzzy mode has been explored in the work by Moheb 

Alizadeh et al. (2010). 
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In recent years, the theory of neutrosophic logic, a broader framework that incorporates fuzzy sets has 

gained recognition in a variety of fields. Neutrosophic logic, an extension of fuzzy logic, has developed for 

dealing with indeterminate data. This is the case since many real-world scenarios are neutrosophic, which 

means the data obtained may be incomplete, imprecise, or inconsistent. For instance, we can consider a 

plastic containers manufacturing process. The process is controlled by monitoring variables such as 

thickness and weight of the containers. However, the measurements of thickness and weight may be 

inaccurate and indeterminate due to changes in the manufacturing process. In such situations traditional 

control charts may not provide accurate decision to manage this data. While the indeterminacy is present in 

data we could not express in data terms of crisp values so we need to go for interval values instead of crisp 

numbers. Furthermore, including indeterminacy in to investigation, neutrosophic logic provides a flexible 

frame work for control chart technique. It permits the use of truth, falsehood, and indeterminacy to describe 

uncertainty (Smarandache, 2014). Control charts that use neutrosophic logic may take into consideration 

the uncertainty in the data, which makes the chart more sensitive and enhances the precision of process 

control. The effectiveness of neutrosophic-based analysis has been demonstrated by Chen et al. (2017a), 

through applying neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. 

The application of neutrosophic logic has been increasing in recent studies, such as in the chemical industry, 

health sector, rock measuring industry, etc. (Aslam, 2018; Aslam, 2019a; Aslam, 2019b; Aslam et al., 2018; 

Aslam and Albassam, 2019; Chen et al., 2017b; Giri and Roy, 2022). 

 

In recent studies, Wibawati et al. (2022) have developed a multivariate Hotelling T2 control chart for 

neutrosophic data for individual measurements using the beta distribution. For further developments, 

Saritha and Varadharajan (2023) proposed a novel approach to Hotelling T2 control chart for sub grouped 

data in a neutrosophic environment by using F distribution. Additionally, to compare the effectiveness of 

the method, the Neutrosophic Alarm Rate (NARL) has been calculated. The Neutrosophic Hotelling T2 

control chart is an efficient tool for monitoring multivariate data in a neutrosophic environment but it is 

often inadequate for detecting small shifts in the process. To overcome this issue, mainly in non-parametric 

circumstances, we developed an NMEWMA control chart that combines the benefits of neutrosophic logic 

with the bootstrap approach. 

 

The current study is structured into five sections. Section 2 briefly outlines the design of the neutrosophic 

BMEWMA control chart. In Section 3, a simulation study is conducted and compared to Hotelling's T2 

control chart. An illustrative example is presented in Section 4. Finally, Section 5 provides the conclusion 

of this study. 

 

2. Designing of the Control Chart  
This section focuses on developing an expression for the control limit of the proposed neutrosophic 

BMEWMA control chart. This section assumes that the observations are taken from a neutrosophic 

multivariate normal distribution. 

Let 𝑋̃𝑖𝑁 ∈ [𝑋̃𝑖𝐿 , 𝑋̃𝑖𝑈] =

[
 
 
 
 

[
 
 
 
𝑋̃𝑖1𝐿

𝑋̃𝑖2𝐿

⋮
𝑋̃𝑖𝑝𝐿]

 
 
 

,   

[
 
 
 
𝑋̃𝑖1𝑈

𝑋̃𝑖2𝑈

⋮
𝑋̃𝑖𝑝𝑈]

 
 
 

]
 
 
 
 

   denote the ith neutrosophic observation taken from a p-variate 

neutrosophic normal distribution. i.e., 

 

𝑋̃𝑖𝑁 ∈ [𝑋̃𝑖𝐿 , 𝑋̃𝑖𝑈]     ∼   𝑁𝑝𝑁[[𝜇𝐿   , 𝜇𝑈]  , [Σ𝐿   , Σ𝑈]]                                                                                    (1) 

 

where, i varies from 1 to n and j varies from 1 to p. 



Saritha & Varadharajan: Multivariate Exponentially Weighted Moving Average Control Chart under … 
 

 

838 | Vol. 9, No. 4, 2024 

The neutrosophic sample mean vector corresponding to ith subgroup is 

𝑋̅̃𝑁 ∈ [[
1

n
∑n

𝑖=1 𝑋̃𝐿] , [
1

n
∑n

𝑖=1 𝑋̃𝑈]] =

[
 
 
 
 
 
 

[
 
 
 
 
 𝑋̅̃1𝐿

𝑋̅̃2𝐿

..

.

𝑋̅̃𝑝𝐿]
 
 
 
 
 

,

[
 
 
 
 
 𝑋̅̃1𝑈

𝑋̅̃2𝑈

..

.

𝑋̅̃𝑝𝑈]
 
 
 
 
 

]
 
 
 
 
 
 

                                                                                   (2) 

 

sample covariance matrix is  

𝑆̃𝑁 ∈ [𝑆̃𝐿  ,    𝑆̃𝑈] =

[
 
 
 
 

[
 
 
 
 
𝑆̃11𝐿 𝑆̃12𝐿 .  .  . 𝑆̃1𝑝𝐿

𝑆̃21𝐿 𝑆̃22𝐿 .  .  . 𝑆̃2𝑝𝐿

. .   .  .  . .
𝑆̃𝑝1𝐿 𝑆̃𝑝2𝐿 .  .  . 𝑆̃𝑝𝑝𝐿]

 
 
 
 

  ,

[
 
 
 
 
𝑆̃11𝑈 𝑆̃12𝑈 .  .  . 𝑆̃1𝑝𝑈

𝑆̃21𝑈 𝑆̃22𝑈 .  .  . 𝑆̃2𝑝𝑈

. .   .  .  . .
𝑆̃𝑝1𝑈 𝑆̃𝑝2𝑈 .  .  . 𝑆̃𝑝𝑝𝑈]

 
 
 
 

  

]
 
 
 
 

                                  (3) 

 

Then the Neutrosophic Hotelling's T 2 𝑁 statistic is  

𝑇𝑖𝑁
2 ∈ [𝑇𝑖𝐿

2  , 𝑇𝑖𝑈
2 ] = [[n(𝑋̃𝑖𝐿 − 𝑋̅̃𝐿)

𝑇
(𝑆̃𝐿)

−1
(𝑋̃𝑖𝐿 − 𝑋̅̃𝐿)] , [n(𝑋̃𝑖𝑈 − 𝑋̅̃𝑈)

𝑇
(𝑆̃𝑈)

−1
(𝑋̃𝑖𝑈 − 𝑋̅̃𝑈)]]                 (4) 

 

Now we can define the neutrosophic MEWMA statistic as 

𝑍̃𝑖𝑁 = 𝑟𝑋̃𝑖𝑁 + (1 − 𝑟)𝑍̃(𝑖−1)𝑁 ∈ [𝑟𝑋̃𝑖𝐿 + (1 − 𝑟)𝑍̃(𝑖−1)𝐿, 𝑟𝑋̃𝑖𝑈 + (1 − 𝑟)𝑍̃(𝑖−1)𝑈]                                         (5) 

 

By considering the 𝑍0𝑁 = [0] and with an optimal choice of the weight parameter r. 

 

And the corresponding variance is 

𝑉(𝑍̃𝑖𝑁) = 𝑆̃𝑖𝑁 =
𝑟(1−(1−𝑟)2𝑖)

2−𝑟
𝑆̃𝑁                                                                                                                    (6) 

 

As the sample size becomes large 

𝑆̃𝑍𝑖𝑁 →
𝑟

2−𝑟
𝑆̃𝑁                                                                                                                                                (7) 

 

The MEWMA statistics to be plotted is, 

𝑇𝑖𝑁
2 = 𝑍𝑖𝑁

𝑇 𝑆̃𝑍𝑖𝑁
−1 𝑍𝑖𝑁 ∈ [𝑍𝑖𝐿

𝑇 𝑆̃𝑍𝑖𝐿
−1𝑍𝑖𝐿 , 𝑍𝑖𝑈

𝑇 𝑆̃𝑍𝑖𝑈
−1 𝑍𝑖𝑈]                                                                                            (8) 

 

This reduces to Equation (4) neutrosophic Hotelling's T2 statistic when the weight parameter r = 1. 

 

We have employed the bootstrap method to determine the control limits for the proposed NMEWMA 

control chart. This technique involves repeatedly drawing a sample of size k, where k represents the number 

of observations in the dataset without replacement. Then we calculated the upper control limit (UCLN) for 

each sample point using the formula 𝑇𝑁 (1−𝛼)
2 , 100(1-α)th percentile. This process was repeated a large 

number of times, denoted as G, to obtain a distribution of UCLN values. Generally, for each iteration j of 

the bootstrap process, we obtained a corresponding UCLN value denoted as 𝑈𝐶𝐿𝑁
(𝑗)

. To derive the control 

limit for the bootstrap sample, we computed the average of the bootstrap UCLN values, and it is given as, 
 

𝑈𝐶𝐿𝑁(1 − 𝛼) =
1

𝐺
∑ 𝑈𝐶𝐿𝑁

(𝑗)𝐺
𝑗=1 ∈ [

1

𝐺
∑ 𝑈𝐶𝐿𝐿

(𝑗)𝐺
𝑗=1 ,

1

𝐺
∑ 𝑈𝐶𝐿𝑈

(𝑗)𝐺
𝑗=1 ]                                                             (9) 
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which provides a reliable estimate of the true UCLN. Using the bootstrap approach, we can estimate the 

distribution of UCLN values and give a more accurate control limit for the NMEWMA control chart. 

 

3. Simulation Study 
In this section, we have conducted a simulation study to evaluate the effectiveness of the proposed method 

in detecting small shifts in the process. The study was conducted by Microsoft R v4.0.2. The objective of 

the study is to compare the performance of the Neutrosiophic MEWMA control chart with the neutrosophic 

Hotelling's T2 chart. In order to generate the simulation data, we have created multivariate neutrosophic 

normal data by using the numbers of components P = 3, 5, and 10. The control limits were obtained by 

using the bootstrap approach and been discussed in detail in Section 2 of this article. Equivalent to a 0.005 

false alarm rate, we set the ARL under control at 200. The primary focus of this simulation study is to 

investigate the effectiveness of the proposed NMEWMA control chart in identifying small shifts by 

introducing different levels of shifts to the process mean, such as 0.25, 0.5, 0.75, and 1. The NAR1 and 

NARL1were estimated based on 1000 iterations and with tuning parameters of 0.1, 0.2, 0,3, 0.8. Table 1 

and Table 2 demonstrates the results of the simulation study. The combination of multivariate neutrosophic 

normal data and the bootstrap method to determine control limits improves the adaptability and accuracy 

of the analysis. The comparison with the neutrosophic Hotelling's T2 chart provides a foundation to evaluate 

the proposed chart's effectiveness for detecting small shifts. 

 
Table 1. NAR and NARL for hotelling's T2 control chart with bootstrap control limits. 

 

 P = 3 P = 5 P = 10 

Shift NAR NARL NAR NARL NAR NARL 

0.00 [0.0037, 0.0038] [263.15, 270.27] [0.0044, 0.0046] [217.39, 227.27] [0.0036, 0.0049] [204.08, 277.77] 

0.25 [0.0065, 0.0082] [121.95, 153.85] [0.0065, 0.0094] [106.38, 153.85] [0.0067, 0.0068] [147.06, 149.25] 

0.50 [0.0104, 0.0128] [78.12, 96.16] [0.0092, 0.0162] [61.73, 108.69] [0.0121, 0.0183] [54.65, 82.64] 

0.75 [0.0228, 0.0303] [33.01, 43.86] [0.0181, 0.0311] [32.15, 55.25] [0.0269, 0.0368] [27.17, 37.17] 

1.00 [0.039, 0.049] [20.41, 25.64] [0.0365, 0.0613] [16.31, 27.39] [0.0559, 0.0692] [14.45, 17.89] 

 

 

Table 2. NAR and NARL for NMEWMA control chart with bootstrap control limits. 
 

  P = 3 P = 5 P = 10 

r Shift NAR NARL NAR NARL NAR NARL 

0.1 0.00 [0.0036, 0.005] [200, 270.27] [0.0053, 0.008] [121.9512, 227.272] [0.004, 0.0042] [238.0952, 277.777] 
 0.25 [0.044, 0.094] [10.56, 153.84] [0.051, 0.094] [10.6157, 153.846] [0.044, 0.169] [5.88582, 149.253] 
 0.50 [0.322, 0.483] [2.07, 96.15] [0.394, 0.534] [1.870, 108.695] [0.574, 0.812] [1.231, 82.644] 
 0.75 [0.824, 0.896] [1.12, 43.86] [0.913, 0.944] [1.058, 55.248] [0.985, 0.996] [1.0037, 37.174] 
 1.00 [0.988, 0.996] [1.00, 25.64] [0.996, 0.998] [1.002, 27.397] [0.994, 0.995] [1.005, 17.889] 

0.2 0.00 [0.004, 0.005] [185.18, 263.16] [0.004, 0.046] [217.391, 217.393] [0.047, 0.005] [200, 277.777] 
 0.25 [0.027, 0.05] [19.88, 166.67] [0.023, 0.039] [25.38, 185.185] [0.021, 0.066] [14.992, 153.846] 
 0.50 [0.129, 0.208] [4.79, 90.09] [0.149, 0.223] [4.474, 104.166] [0.174, 0.361] [2.769, 80.645] 
 0.75 [0.416, 0.526] [1.89, 51.02] [0.464, 0.570] [1.754, 55.248] [0.678, 0.824] [1.213, 37.174] 
 1.00 [0.768, 0.830] [1.20, 23.92] [0.861, 0.897] [1.114, 27.397] [0.955, 0.981] [1.0187, 19.193] 

0.3 0.00 [0.004, 0.005] [188.68, 250] [0.003, 0.005] [181.818, 263.157] [0.004, 0.005] [185.185, 212.766] 
 0.25 [0.016, 0.027] [36.76, 138.88] [0.014, 0.023] [43.103, 185.185] [0.015, 0.037] [26.666, 149.253] 
 0.50 [0.076, 0.117] [8.51, 80] [0.077, 0.125] [7.974, 99.009] [0.085, 0.206] [4.837, 71.428] 
 0.75 [0.218, 0.296] [3.378, 47.619] [0.268, 0.360] [2.771, 48.780] [0.346, 0.524] [1.907, 39.840] 
 1.00 [0.499, 0.581] [1.719, 25.445] [0.578, 0.647] [1.544, 26.809] [0.767, 0.860] [1.162, 17.889] 

0.8 0.00 [0.004, 0.005] [178.571, 270.270] [0.004, 0.005] [200, 285.714] [0.004, 0.004] [208.333, 277.777] 
 0.25 [0.008, 0.010] [91.743, 153.846] [0.009, 0.012] [79.365, 163.934] [0.007, 0.012] [78.740, 153.846] 
 0.50 [0.019, 0.027] [35.971, 79.365] [0.019, 0.029] [34.364, 94.339] [0.017, 0.026] [37.735, 80.645] 
 0.75 [0.036, 0.054] [18.382, 48.309] [0.040, 0.060] [16.528, 54.347] [0.044, 0.067] [14.727, 39.840] 
 1.00 [0.074, 0.102] [9.765, 24.390] [0.0816, 0.116] [8.598, 25.906] [0.105, 0.154] [6.468, 17.889] 

0.9 0.00 [0.004, 0.005] [200, 238.095] [0.004, 0.005] [222.222, 263.157] [0.004, 0.005] [232.558, 277.777] 
 0.25 [0.007, 0.010] [96.153, 147.058] [0.007, 0.011] [87.719, 163.934] [0.006, 0.010] [95.238, 153.846] 
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Table 2 continued… 

 
 0.50 [0.015, 0.022] [45.454, 72.463] [0.013, 0.022] [44.247, 94.339] [0.013, 0.020] [49.7512, 80.645] 
 0.75 [0.026, 0.041] [23.866, 50.761] [0.028, 0.045] [22.026, 54.347] [0.033, 0.052] [19.2307, 37.174] 
 1.00 [0.052, 0.076] [13.054, 26.178] [0.055, 0.086] [11.600, 25.906] [0.068, 0.105] [9.460, 19.193] 

 

 

The results of this simulation study reveal that the proposed NMEWMA control chart, based on a bootstrap 

approach, outperforms the bootstrap-based neutrosophic Hotelling T2 control chart in terms of NAR and 

NARL at different levels of shifts in various numbers of components. The proposed NMEWMA control 

chart based on the bootstrap approach provides a higher response rate than the Neutrosophic Hotelling T2 

control chart. Additionally, we have investigated the effects of the NMEWMA smoothing parameters and 

observed that the smoothing parameter r increased to 1. Then the NMEWMA control chart performed 

similarly to the neutrosophic Hotelling T2 control chart. From the results obtained from the simulation 

study, we can infer that the proposed NMEWMA control chart based on the bootstrap approach performs 

efficiently in monitoring small shifts in the neutosophic environment. 

 

4. Illustrative Example 

To assist in understanding the preceding idea of the proposed chart, neutrosophic data have been generated 

according to the procedure defined in (Škrabánek and Martinková, 2019) by taking the mean vector and 

covariance matrix provided in (Tracy et al., 1992). Here we have utilized data from a chemical industry 

with three variables such as X1, X2, and X3 where they denote the percentage of impurities, temperature, and 

concentration strength, respectively. The bootstrap control limits for the proposed control chart were 

determined as [UCLL, UCLU] = [4.29, 5.60]. Table 3 provides the generated data and the corresponding 

NMEWMA statistic for the control chart, which is illustrated in Figure 1. 

 
Table 3. The neutrosophic data generated and the corresponding NMEWMA statistic. 

 

[X1L, X1U] [X2L, X2U] [X3L, X3U] [TL, TU] 

[1.83, 1.75] [1.66, 1.58] [0.77, 0.69] [3.26, 3.62] 

[-1.04, -1.17] [-1.3, -1.44] [-1.5, -1.63] [2.28, 2.52] 

[-0.33, -0.38] [-0.78, -0.82] [-1.53, -1.58] [2.91, 2.94] 

[-1.59, -1.97] [-1.24, -1.63] [0.21, -0.16] [6.3, 6.46] 

[-0.56, -0.46] [-0.99, -0.9] [-1.69, -1.59] [2.83, 3.22] 

[-1.01, -1.3] [-1.06, -1.35] [-0.94, -1.23] [1.26, 1.88] 

[0.82, 0.97] [0.77, 0.92] [0, 0.14] [2.93, 3.09] 

[-0.02, -0.47] [-0.09, -0.54] [-0.54, -0.99] [1.4, 2.35] 

[-0.65, -0.64] [-0.25, -0.23] [0.56, 0.58] [1.89, 1.91] 

[1.21, 0.71] [1.39, 0.89] [1.4, 0.9] [0.98, 2.2] 

[-0.57, -0.31] [-0.28, -0.02] [0.52, 0.78] [1.67, 1.89] 

[1.73, 1.9] [1.37, 1.54] [0.83, 1] [5.53, 5.73] 

[1.28, 1.45] [1.23, 1.4] [1.07, 1.24] [2.5, 2.66] 

[0.28, 0.17] [0.61, 0.51] [0.39, 0.28] [4.88, 4.98] 

[0.9, 1.17] [1.11, 1.38] [1.29, 1.56] [1.71, 2.32] 

[-0.16, -0.11] [0.13, 0.18] [0.53, 0.58] [0.9, 0.91] 

[-0.95, -0.66] [-1.48, -1.19] [-1.71, -1.42] [4.67, 4.85] 

[-0.95, -0.75] [-0.44, -0.24] [0.43, 0.63] [2.76, 3.13] 

[-0.38, -0.23] [-0.26, -0.11] [-0.07, 0.07] [0.17, 0.32] 

[0.17, 0.37] [-0.09, 0.1] [-0.05, 0.13] [2.91, 3.07] 



Saritha & Varadharajan: Multivariate Exponentially Weighted Moving Average Control Chart under … 
 

 

841 | Vol. 9, No. 4, 2024 

 
 

Figure 1. Neutrosophic BMEWMA control chart was obtained for the data given in Table 3. 

 

The NEWMA control chart with bootstrap limit is explained in Figure 1. Furthermore, the results obtained 

from the illustrative example reveal that the two points (corresponding to sample numbers 6 and 8) lie 

outside the control limits. Thus, we can infer that the process is in an out-of-control state. The thickness of 

the points on the graph represents the level of indeterminacy in the process. 

 

5. Conclusion 
This research proposes the adoption of the NMEWMA control chart based on the bootstrap method as a 

robust tool for detecting subtle shifts in multivariate processes operating within a neutrosophic 

environment. This is particularly relevant in situations where there are multiple characteristics are need to 

be controlled. Based on the simulation study, our findings suggest that the NMEWMA control chart 

outperforms Neutrosophic Hotelling's T2 chart regarding response rate, as evidenced by higher neutrosophic 

AR and ARL for detecting more minor shifts. In addition to highlighting the effectiveness of the proposed 

method, it is imperative to point out the importance of using neutrosophic logic when dealing with real-

world issues that are characterized by uncertain, incomplete, or imprecise information. We considered an 

example from the chemical industry to demonstrate how our suggested approach might be used in practice 

to manage data in a neutrosophic environment. The limitation of this study is that the indeterminacy level 

in data is not uniform; it varies across different data points. To overcome this, we could give equal 

importance to each data point and assign weights based on the range of indeterminacy for each. This 

approach could be investigated in future research to strengthening our findings and make existing methods 

more widely applicable. 
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