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Abstract 

This paper explores the application of fractional calculus to solve fractional partial differential equations (FPDEs) using the Sawi 

transform in combination with the Atangana-Baleanu fractional derivative. The Atangana-Baleanu derivative, formulated in both 

Caputo and Riemann-Liouville senses, offers a powerful tool for modeling memory and hereditary properties in complex physical 

systems. We extend the Sawi transform’s operational framework to efficiently handle FPDEs by deriving new properties and 

convolution theorems relevant to the fractional derivatives. The combination of the Sawi transform with the homotopy perturbation 

method yields a novel approach, termed the Sawi-Transform-Homotopy Perturbation Method, which facilitates the analytical 

solution of nonlinear FPDEs. The proposed method was validated using fractional Kolmogorov and Rosenau-Hyman equations, 

achieving exact solutions in some cases and series solutions with rapid convergence in others. Numerical results demonstrated a 

reduction in computational complexity by approximately 30% compared to traditional methods, highlighting its efficiency and 

accuracy. This work underscores the utility of fractional calculus in solving real-world problems and advances analytical techniques 

for solving FPDEs using modern fractional operators. 

 

Keywords- Sawi transform, Homotopy perturbation method, Fractional partial differential equations, Atangana-Baleanu Caputo 

fractional derivative. 
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1. Introduction 
Fractional calculus has gained significant attention in recent years due to its ability to model complex 

systems with memory and hereditary properties, which are prevalent in various fields such as physics, 

engineering, biology, and finance (Abu-Ghuwaleh et al., 2022; Podlubny, 1999; Saadeh et al., 2025). 

FPDEs have emerged as powerful tools for describing phenomena like anomalous diffusion, viscoelastic 

materials, and chaotic systems that cannot be accurately captured by classical integer-order models (Altaie 

et al., 2022; Alzahrani et al., 2024; Metzler and Klafter, 2000; Mainardi, 2022). However, solving FPDEs 

remains a challenging task due to the complexities introduced by fractional derivatives and the non-local 

nature of these equations (Baleanu et al., 2021; Chandan et al., 2024; Herrmann, 2011). 

 

The Atangana-Baleanu fractional derivative, formulated in both Caputo and Riemann-Liouville senses, 

introduces a non-singular and non-local kernel based on the generalized Mittag-Leffler function (Atangana 

and Baleanu, 2016; Atangana and Gómez-Aguilar, 2018a; Qazza et al., 2022; Singh, 2024a). This derivative 

addresses some limitations of classical fractional derivatives by eliminating singularities and better 

capturing the dynamics of real-world processes (Atangana and Gómez-Aguilar, 2018b; Xiao-Jun et al., 

2016). Its ability to model memory effects more accurately makes it a powerful tool for solving FPDEs in 

complex physical systems (Haubold et al., 2011; Qazza et al., 2023; Sousa and de Oliveira, 2018; Singh, 

2024b). 

 

Simultaneously, the Sawi transform, a relatively recent integral transform, has shown promise in 

simplifying the process of solving differential equations by efficiently handling convolution-type integrals 

and derivative operators (Mahgoub, 2019; Zayed, 1996). Extending the operational framework of the Sawi 

transform to fractional calculus involves deriving new properties and convolution theorems relevant to 

fractional derivatives, significantly enhancing its capability to solve FPDEs (Higazy and Aggarwal, 2021; 

Khirsariya and Rao, 2023; Saadeh et al., 2023). 

 

In this paper, we propose a novel analytical approach by combining the Sawi transform with the Homotopy 

Perturbation Method (HPM), termed the Sawi-Transform-Homotopy Perturbation Method (STHPM) 

(Ganji and Sadighi, 2006; He, 1999; Saadeh et al., 2022a). This method leverages the strengths of both the 

Sawi transform's operational simplicity and HPM's ability to handle nonlinear problems, facilitating the 

analytical solution of nonlinear FPDEs (Odibat and Momani, 2008; Saadeh et al., 2022b; Singh and Kumar, 

2018). By integrating the Atangana-Baleanu fractional derivative into this framework, we can efficiently 

address the challenges associated with solving FPDEs involving memory and hereditary properties. 

 

We demonstrate the effectiveness and accuracy of the proposed method through detailed examples, 

including the fractional Kolmogorov and Rosenau-Hyman equations (Rosenau and Hyman, 1993; Uddin et 

al., 2018). The STHPM not only generates exact solutions but also provides series solutions where exact 

solutions are unattainable, highlighting its utility in advancing analytical techniques for solving FPDEs 

using modern fractional operators (Guner and Bekir, 2018; Momani and Odibat, 2006). This work 

underscores the significant role of fractional calculus in solving real-world problems and contributes to the 

ongoing development of analytical methods in this field (El-Ajou et al., 2010; Zephania and Sil, 2023). 

 

This study addresses the challenges of solving nonlinear fractional partial differential equations (FPDEs), 

which exhibit memory and hereditary effects that classical methods fail to capture accurately. The novelty 

lies in developing a new analytical framework that combines the Sawi Transform with the Atangana-

Baleanu fractional derivative in both Caputo and Riemann-Liouville senses. Unlike traditional methods, 

this approach utilizes non-singular and non-local kernels, enhancing accuracy and computational 

efficiency. By extending the operational properties and convolution theorems of the Sawi Transform, the 
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study enables a more robust solution process for nonlinear FPDEs. Applied to well-known equations, such 

as the fractional Kolmogorov and Rosenau-Hyman equations, the proposed method demonstrates faster 

convergence, reduced computational complexity, and broader applicability to real-world systems. This 

work fills critical gaps in the literature and advances fractional calculus techniques for use in physics, 

engineering, and applied mathematics. 

 

In Section 2, we introduce the fundamental concepts of fractional calculus, the Sawi Transform, and the 

Atangana-Baleanu fractional derivative. Section 3 develops the theoretical framework of the proposed 

Sawi-Transform-Homotopy Perturbation Method (STHPM) and derives the necessary operational 

properties and convolution theorems. In Section 4, we apply the proposed method to solve specific 

nonlinear FPDEs, including the fractional Kolmogorov and Rosenau-Hyman equations, and analyze the 

results. Finally, Section 5 presents the conclusions, highlights the significance of the findings, and suggests 

directions for future research. 

 

2. Basic Concepts and Theorems of Sawi Transform 
This section is concerned with the presentation of the Sawi transform. We outline basic properties regarding 

the existence conditions, linearity and the inverse of this transform. Moreover, some essential properties 

and results are used to the Sawi transform for elementary basic Euler functions. We introduce the Sawi 

convolution theorem and the derivative properties. 

 

Definition 2.1 Let 𝜉(𝑡) be a function of 𝑡 defined over a positive domain. Then, Sawi transformation of 

𝜉(𝑡), denoted by ℘[𝜉(𝑡)], is given by 

℘[𝜉(𝑡)] = ℚ(𝑠) =
1

𝑠2 ∫ 𝑓(𝑡)𝑒
−𝑡

𝑠 𝑑𝑡
∞

0
, 𝑡 ≥ 0, (s > 0) ∈ ℂ                                                                        (1) 

 

The inverse Sawi transformation is provided as 

℘−1[ℚ(𝑠)] =
1

2𝜋𝑖
∫

1

𝑠2 𝑒
𝑡

𝑠ℚ(𝑠)𝑑𝑠
𝑟+𝑖∞

𝑟−𝑖∞
= 𝜉(𝑡), 𝑡 > 0, 𝑟 ∈ ℝ                                                                     (2) 

 

Theorem 2.1 If 𝜉(𝑡) is continuous function defined for 𝑡 > 0 and of exponential order 𝑞, i.e. |𝜉(𝑡)| ≤
𝛾𝑒𝑞𝑡. Then ℘[𝜉(𝑡)] exists for 𝑠 > 𝑞 and 𝛾 > 0. 

 

Suppose that ℘[𝜉(𝑡)] = ℚ(𝑠) and ℘[𝜁(𝑡)] = ℂ(𝑠) and 𝒶, 𝒷 ∈ ℝ, then the following properties hold: 

• ℘[𝒶 𝜉(𝑡) + 𝒷 𝜁(𝑡)] = 𝒶 ℘[𝜉(𝑡)] + 𝒷 ℘[𝜁(𝑡)]. 

• ℘−1[𝒶 ℚ(𝑠) + 𝒷 ℂ(𝑠)] = 𝒶 ℘−1[ℚ(𝑠)] + 𝒷 ℘−1[ℂ(𝑠)]. 

• ℘[𝑡𝒷] = 𝑠𝒷−1Γ(𝒷 + 1). 

• ℘[𝑒𝒷𝑡] =
1

𝑠(1−𝒷𝑠)
. 

• ℘[cos(𝒷𝑡)] =
1

𝑠(1+𝒷2𝑠2)
. 

• ℘[sin(𝒷𝑡)] =
𝒷

1+𝒷2𝑠2. 

• ℘[cosh(𝒷𝑡)] =
1

𝑠(1−𝒷2𝑠2)
. 

• ℘[sinh(𝒷𝑡)] =
𝒷

1−𝒷2𝒷2. 
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• ℘ [
𝑑𝑛𝜉(𝑡)

𝑑𝑡𝑛 ] =
℘[𝜉(𝑡)]

𝑠𝑛 − ∑
𝜉(𝑖)(0)

𝑠𝑛−𝑖+1
𝑛−1
𝑖=0 . 

 

Theorem 2.2 Let ℘[𝜉(𝑡)] = ℚ(𝑠). Then, 

℘[𝜉(𝑡 − 𝜌)𝐻(𝑡 − 𝜌)] = 𝑒− 
𝜌 

𝑠 
  ℚ(𝑠)                                                                                                              (3) 

 

where, 𝐻(𝑡) denotes the unit step function defined by 

𝐻(𝑡 − 𝜌) = {
1,    𝑡 > 𝜌,         
0,    otherwise 

                                                                                                                       (4) 

 

Theorem 2.3 (Sawi Convolution Theorem). If ℘[𝜉(𝑡)] = ℚ(𝑠) and ℘[𝜁(𝑡)] = ℂ(𝑠), then 

℘[(𝜉 ∗ 𝜁)(𝑡)] = 𝑠2 ℚ(𝑠)ℂ(𝑠)                                                                                                                     (5) 

 

3. Fundamental Facts of the Fractional Calculus 
In this section, some definitions and properties of the fractional calculus that will be used in this work are 

presented. 

 

Definition 3.1 (Saadeh et al., 2025) The Mittag-Leffler function is defined as 

𝐸𝛿,𝜑
𝜂 (𝑡) = ∑

𝑡𝑚

𝑚!

𝜂𝑚

Γ(𝛿𝑚+𝜑)
∞
𝑚=0   , 𝑡, 𝜂, 𝛿 ∈ ℂ   , 𝑅𝑒(𝛿) > 0                                                                                (6) 

 

Lemma 3.1 (Saadeh et al., 2025) Let 0 < 𝛿 < 1 and 𝜍 ∈ ℝ such that 𝑠 < |𝜍|−
1

𝛿,then 

℘ [𝑡𝜒−1𝐸𝛿,𝜒
𝜂

(𝜍𝑡𝛿)] =
𝑠𝜒−2

(1−𝜍𝑠𝛿)
𝜂                                                                                                                      (7) 

 

Corollary 3.1 Under the same conditions of Lemma 3.1, we have  

• ℘[𝑡𝒦−1𝐸𝛿(𝜍𝑡𝛿)] =
𝑠𝒦−2

1−𝜍𝑠𝛿. 

• ℘[𝐸𝛿(𝜍𝑡𝛿)] =
1

𝑠(1−𝜍𝑠𝛿)
. 

• ℘ [𝐸𝛿 (
𝛿

𝛿−1
𝑡𝛿)] =

1−𝛿

𝑠(𝛿𝑠𝛿−𝛿+1)
. 

 

Definition 3.2 (Saadeh et al., 2025). Let 𝜉(𝑡) ∈ 𝐻1(0,1)and 0 < 𝛿 < 1.Then the fractional Atangana-

Baleanu derivative is defined as 

𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑡) =

𝐺(𝛿)

1−𝛿
∫ 𝐸𝛿 (

𝛿(𝑡−𝜚)𝛿

𝛿−1
)

𝑡

0
𝜉′(𝜚)𝑑𝜚                                                                                                  (8) 

 

Definition 3.3 (Saadeh et al., 2025) Let 𝜉(𝑡) ∈ 𝐻1(0,1) and 0 < 𝛿 < 1. Then the fractional Atangana-

Baleanu (AB) is expressed in the sense Riemann-Liouville is defined as 

𝐷𝑡
𝛿

0
𝐴𝐵𝑅 𝜉(𝑡) =

𝐺(𝛿)

1−𝛿

𝑑

𝑑𝑡
∫ 𝐸𝛿 (

𝛿(𝑡−𝜚)𝛿

𝛿−1
) 𝜉(𝜚)𝑑𝜚

𝑡

0
                                                                                               (9) 

 

where, the normalization term 𝐺(𝛿) > 0 and satisfies these conditions 𝐺(1) = 𝐺(0) = 1. 
 

Theorem 3.1 Let ℚ(𝑠) be a Sawi transform of 𝜉(𝑡).Then the Sawi transform of fractional Atangana-

Baleanu derivative according to the sense of Caputo is expressed as 
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℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑡)] =

G(δ)

𝛿𝑠𝛿−𝛿+1
(ℚ(𝑠) −

1

𝑠
𝜉(0))                                                                                               (10) 

 

Proof: From the definition of convolution integral, then we get 

∫ 𝐸𝛿 (
𝛿(𝑡−𝜚)𝛿

𝛿−1
) 𝜉′(𝜚)𝑑𝜚

𝑡

0
= 𝐸𝛿 (

𝛿𝑡𝛿

𝛿−1
) ∗ 𝜉′(𝑡).  

 

Thus, 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑡)] = ℘ [

G(δ)

1−𝛿
∫ 𝐸𝛿 (

𝛿(𝑡−𝜚)𝛿

𝛿−1
) 𝜉′(𝜚)𝑑𝜚

𝑡

0
]  =

G(δ)

1−𝛿
℘ [𝐸𝛿 (

𝛿𝑡𝛿

𝛿−1
) ∗ 𝜉′(𝑡)].  

 

Using the Sawi transform and convolution theorem, we get 

℘[ 𝐷𝑡
δ

0
𝐴𝐵𝐶 𝜉(𝑡)] =

G(δ)

1−δ
(𝑠2℘ [𝐸δ (

𝛿𝑡𝛿

𝛿−1
)] ℘[𝜉′(𝑡)]).  

 

Using Lemma 3.1 and applying the result obtained in Corollary 3.1, and derivative properties of Sawi 

transform, then we have 

℘[ 𝐷𝑡
δ

0
𝐴𝐵𝐶 𝜉(𝑡)] =

G(δ)

1−δ
((

1−δ

𝑠(δ𝑠δ−δ+1)
) (𝑠 𝜉(𝑠) − 𝜉(0))).  

 

Therefore, 

℘[ 𝐷𝑡
δ

0
𝐴𝐵𝐶 𝜉(𝑡)] =

G(δ)

δ𝑠δ−δ+1
(𝜉(𝑠) −

1

𝑠
𝜉(0)).  

 

Theorem 3.2 Let ℚ(𝑠) is Sawi transform of ξ(𝑡) .Then the Sawi transform of fractional Atangana-Baleanu 

derivative according to the sense of Riemann-Liouville is expressed as 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝑅 𝜉(𝑡)] =

𝐺(𝛿)ℚ(𝑠)

𝛿𝑠𝛿−𝛿+1
                                                                                                                             (11) 

 

Proof: By definition of convolution integral, then we have 

∫ 𝐸𝛿 (
𝛿(𝑡−𝜚)𝛿

𝛿−1
) 𝜉(𝜚)𝑑𝜚

𝑡

0
= 𝐸𝛿 (

𝛿𝑡𝛿

𝛿−1
) ∗ 𝜉(𝑡).  

 

Thus, 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝑅 𝜉(𝑡)] =

𝐺(𝛿)

1−𝛿
℘ [

𝑑

𝑑𝑡
(𝐸𝛿 (

𝛿𝑡𝛿

𝛿−1
) ∗ 𝜉(𝑡))].  

 

Using derivative properties of Sawi transform, we get 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝑅 𝜉(𝑡)] =

𝐺(𝛿)

1−𝛿
(

1

𝑠
℘ [𝐸𝛿 (

𝛿𝑡𝛿

𝛿−1
) ∗ 𝜉(𝑡)] −

1

𝑠2 𝐸𝛿(0) ∗ 𝜉(0)).  

 

Using convolution theorem of Sawi transform and applying the result obtained in Corollary 3.1, then we 

have 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝑅 𝜉(𝑡)] =

𝐺(𝛿)ℚ(𝑠)

𝛿𝑠𝛿−𝛿+1
.  

 

4. Analysis of Sawi Transform Homotopy Perturbation Method 
In this part of the paper, we give the fundamental idea of STHPM for FPDEs. In order to show the 

fundamental plan of the Sawi Adomian decomposition method, we consider the following general partial 
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differential equations: 

𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡) = 𝑅(𝜉(𝑣, 𝑡)) + 𝑁(𝜉(𝑣, 𝑡)), (𝑣, 𝑡) ∈ [0,1] × ℝ  , 0 < 𝛿 ≤ 1                                               (12) 

 

with initial conditions 

𝜉(𝑣, 0) = 𝜁(𝑣)                                                                                                                                            (13) 

 

where, 𝐿, 𝑁  are linear and nonlinear differential operators, 𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡)denotes the Atangana-Baleanu 

fractional derivative with respect to the variable 𝑡, 𝜉(𝑣, 𝑡) is the unknown function. Applying the Sawi 

transform for Equation (12), we obtain 

℘[ 𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡)] = ℘[𝑅(𝜉(𝑣, 𝑡)) + 𝑁(𝜉(𝑣, 𝑡))]                                                                                      (14) 

 

The fractional Atangana-Baleanu derivative is given by 

℘[𝜉(𝑣, 𝑡)] =
𝜁(𝑣)

𝑠
+ (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑅(𝜉(𝑣, 𝑡)) + 𝑁(𝜉(𝑣, 𝑡))])                                                                     (15) 

 

We involve the nonlinear operator as 

𝒩[𝜓(𝑣, 𝑡; 𝜎)] = ℘[𝜓(𝑣, 𝑡; 𝜎)] −
𝜁(𝑣)

𝑠
+ ((

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝐿𝜓(𝑣, 𝑡; 𝜎) + 𝑁𝜓(𝑣, 𝑡; 𝜎)]) = 0                      (16) 

 

where, 𝜓(𝑣, 𝑡; 𝜎) is the real-valued function with respect to 𝑣, 𝑡 and 𝜎 ∈ [0,
1

𝑚
] , 𝑚 ≥ 1 is the embedding 

parameter. Now, we define a homotopy as follows 

(1 − 𝜎𝑞)℘[𝜓(𝑣, 𝑡; 𝜎) − 𝜉0(𝑣, 𝑡)] = ℎ𝑞ℋ(𝑣, 𝑡)𝑁[𝜉(𝑣, 𝑡)]                                                                       (17) 

 

where, ℎ ≠ 0 is an auxiliary parameter, ℘ is Sawi transform.  

 

Thus, by intensifying 𝑞 from 0 to 
1

𝜎
, the solution 𝜓(𝑣, 𝑡; 𝜎) varies from initial guess 𝜉0(𝑣, 𝑡) to 𝜉(𝑣, 𝑡).We 

define 𝜓(𝑣, 𝑡; 𝑞) with respect to 𝑞 by using the Taylor theorem, we get 

𝜓(𝑣, 𝑡; 𝑞) = 𝜉0(𝑣, 𝑡) + ∑ 𝜉𝑚(𝑣, 𝑡)𝑞𝑚∞
𝑚=1                                                                                                  (18) 

 

where, 

𝜉𝑚(𝑣, 𝑡) =
1

𝑚!

𝜕𝑚𝜓(𝑣,𝑡;𝑞)

𝜕𝑞𝑚 |
𝑞=0

, 𝑚 = 0,1,2, ….                                                                                             (19) 

 

The series (18) converges at 𝑞 =
1

𝜎
 for the proper choice of 𝜉0(𝑣, 𝑡), 𝜎 and ℎ. Then 

𝜉(𝑣, 𝑡) = 𝜉0(𝑣, 𝑡) + ∑
𝜉𝑚(𝑣,𝑡)

𝜏𝑚
∞
𝑚=1                                                                                                               (20) 

 

By differentiate the zero-order deformation Equation (17) 𝑚-times with respect to 𝜎 and taking 𝜎 = 0 and 

finally dividing them by 𝑚!, it yields 

℘[𝜉𝑚(𝑣, 𝑡) − Υ𝑚𝜉𝑚−1(𝑣, 𝑡)] = ℎℋ(𝑣, 𝑡)ℛ[𝜉𝑚−1(𝑣, 𝑡)]                                                                           (21) 

 

We define the vectors as 

𝜉𝑚(𝑣, 𝑡) = 𝜉0(𝑣, 𝑡), 𝜉1(𝑣, 𝑡), 𝜉2(𝑣, 𝑡), … , 𝜉𝑚(𝑣, 𝑡)                                                                                     (22) 

 

Taking the inverse Sawi transform on Equation (20), we have 
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𝜉𝑚(𝑣, 𝑡) = Υ𝑚𝜉𝑚−1(𝑣, 𝑡) + ℎ ℘−1 [ℋ(𝑣, 𝑡)ℛ[𝜉𝑚−1(𝑣, 𝑡)]]                                                                    (23) 

 

where,  

ℛ[𝜉𝑚−1] = ℘[𝜉𝑚−1(𝑣, 𝑡)] − (1 −
Υ𝑚

𝑛
)

𝜉0(𝑣,𝑡)

𝑠
+ (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝑅𝜉𝑚−1(𝑣, 𝑡) + 𝑁𝜉𝑚−1(𝑣, 𝑡)]                  (24) 

 

and, 

Υ𝑚 = {
0        𝑖𝑓     𝑚 ≤ 1,
𝑛         𝑖𝑓     𝑚 > 1.

  

 

Using the Equations (23) and (24), one can get the series of 𝜉𝑚(𝑣, 𝑡). Lastly, the series q-HASTM solution 

is defined as 

𝜉(𝑣, 𝑡) = ∑ 𝜉𝑚(𝑣, 𝑡)∞
𝑚=0                                                                                                                             (25) 

 

5. Convergence Analysis 
In this section, we demonstrate the uniqueness and convergence of the Sawi transform homotopy 

perturbation method for fractional Atangana-Baleanu STHPMFAB. 

 

Theorem 5.1 The solution derived with the aid of the STHPMFAB of Equation (12) is unique whenever  

0 < (
(𝔊1+𝔊2)(𝛿𝑡−𝛿+1)

𝐺(𝛿)
) < 1  

 

where, 𝔊1 and 𝔊2 are constants. 

 

Proof: Assume that 𝑋 = (𝐶[𝐼], ‖∙‖) be the Banach space for all continuous functions over the interval 𝐼 =
[0, 𝑇], with the norm ‖Φ(𝑡)‖ = 𝑚𝑎𝑥𝑡∈𝐼|Φ(𝑡)| 
Define the mapping 𝔘: 𝑋 →  𝑋, where, 

𝜉 = 𝜉0 + ℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑅(𝜉(𝑣, 𝑡)) + 𝑁(𝜉(𝑣, 𝑡))]] , 𝑛 ≥ 0.  

 

Let 𝑅(𝜉(𝑣, 𝑡)) and 𝑁(𝜉(𝑣, 𝑡)) are satisfy the Lipschitz conditions with Lipschitz constants 𝔊1 and 𝔊2. 

and, 

|𝑅(𝜉) − 𝑅(𝜉)| < 𝔊1|𝜉 − 𝜉|, |𝑁(𝜉) − 𝑁(𝜉)| < 𝔊2|𝜉 − 𝜉|,  
 

where, 𝜉 = 𝜉(𝑣, 𝑡) and 𝜉 = 𝜉(𝑣, 𝑡) are the values of two distinct functions. 

Thus, 

‖𝔘(𝜉(𝑣, 𝑡)) − 𝔘(𝜉(𝑣, 𝑡))‖ = 𝑚𝑎𝑥𝑡∈𝐼 (℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑅(𝜉(𝑣, 𝑡)) + 𝑁(𝜉(𝑣, 𝑡))]] −

℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘ [𝑅(𝜉(𝑣, 𝑡)) + 𝑁 (𝜉(𝑣, 𝑡))]]) ≤ 𝑚𝑎𝑥𝑡∈𝐼 (|℘−1 [

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘ [𝑅(𝜉(𝑣, 𝑡)) −

𝑅 (𝜉(𝑣, 𝑡))]]| + |℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘ [𝑁(𝜉(𝑣, 𝑡)) − 𝑁 (𝜉(𝑣, 𝑡))]]|) ≤≤
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𝑚𝑎𝑥𝑡∈𝐼 (|𝔊1℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝜉(𝑣, 𝑡) − 𝜉(𝑣, 𝑡)]]| + |𝔊2℘−1 [

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝜉(𝑣, 𝑡) − 𝜉(𝑣, 𝑡)]]|) ≤

𝑚𝑎𝑥𝑡∈𝐼 (|{𝔊1 + 𝔊1}℘−1 [(
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝜉(𝑣, 𝑡) − 𝜉(𝑣, 𝑡)]]|) ≤ (

(𝔊1+𝔊2)(𝛿𝑡−𝛿+1)

𝐺(𝛿)
) ‖𝜉(𝑣, 𝑡) − 𝜉(𝑣, 𝑡)‖.  

 

𝔘 is contraction as 0 < (
(𝔊1+𝔊2)(𝛿𝑡−𝛿+1)

𝐺(𝛿)
) < 1. Thus, the result of Equation (12) is unique with the aid of 

the Banach fixed-point theorem. 

 

Theorem 5.2 The solution derived from Equation (12) using the STHPMFAB converges if 0 < 𝜉 < 1 and 

‖𝜉𝑖‖ < ∞, where 𝜉 =
(𝔊1+𝔊2)(𝛿𝑡−𝛿+)1

𝐺(𝛿)
. 

Proof: Let 𝜉𝑖 = ∑ 𝜉𝑢
𝑖
𝑢=0  be a partial sum of series. To prove that 𝜉𝑖 is a Cauchy sequence in the Banach 

space 𝑋, we consider 

‖𝜉𝑗 − 𝜉𝑖‖ = 𝑚𝑎𝑥𝑡∈𝐼|∑ 𝜉𝑢
𝑗
𝑢=𝑖+1 |, 𝑖 = 1,2,3, …  

≤ 𝑚𝑎𝑥𝑡∈𝐼 |℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘ [𝑅(∑ 𝜉𝑢

𝑗
𝑢=𝑖+1 (𝑣, 𝑡)) + 𝑁 (∑ 𝜉𝑢

𝑗
𝑢=𝑖+1 (𝑣, 𝑡))]]|  

≤ 𝑚𝑎𝑥𝑡∈𝐼 |℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑅(𝜉𝑗−1) − 𝑅(𝜉𝑖−1) + 𝑁(𝜉𝑗−1) − 𝑁(𝜉𝑖−1)]]|  

≤ 𝑚𝑎𝑥𝑡∈𝐼 (|𝔊1℘−1 [
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑅(𝜉𝑗−1) − 𝑅(𝜉𝑖−1)]]| + |𝔊2℘−1 [

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
℘[𝑁(𝜉𝑗−1) − 𝑁(𝜉𝑖−1)]]|) ≤

(
(𝔊1+𝔊2)(𝛿𝑡−𝛿+1)

𝐺(𝛿)
) ‖𝜉𝑗−1 − 𝜉𝑖−1‖ ≤ 𝑝‖𝜉𝑗−1 − 𝜉𝑖−1‖.  

where, 𝑝 =
(𝔊1+𝔊2)(𝛿𝑡−𝛿+1)

𝐺(𝛿)
. If 𝑗 = 𝑖 + 1, then 

‖𝜉𝑖+1 − 𝜉𝑖‖ ≤ 𝑝‖𝜉𝑖 − 𝜉𝑖−1‖ ≤ 𝑝2‖𝜉𝑖−1 − 𝜉𝑖−2‖ ≤ ⋯ ≤ 𝑝𝑖‖𝜉1 − 𝜉0‖.  
 

In a similar way, 

‖𝜉𝑗 − 𝜉𝑖‖ ≤ ‖𝜉𝑗 − 𝜉𝑗−1 + 𝜉𝑗−1 − 𝜉𝑗−2 + ⋯ + 𝜉𝑖+2 − 𝜉𝑖+1 + 𝜉𝑖+1 − 𝜉𝑖‖ ≤ ‖𝜉𝑗 − 𝜉𝑗−1‖ + ‖𝜉𝑗−1 −

𝜉𝑗−2‖ + ⋯ + ‖𝜉𝑖+2 − 𝜉𝑖+1‖ + ‖𝜉𝑖+1 − 𝜉𝑖‖ ≤ 𝑝𝑗−1‖𝜉1 − 𝜉0‖ + 𝑝𝑗−2‖𝜉1 − 𝜉0‖ + ⋯ + 𝑝𝑖+1‖𝜉1 − 𝜉0‖ +

𝑝𝑖‖𝜉1 − 𝜉0‖ ≤ (𝑝𝑗−1 + 𝑝𝑗−2 + ⋯ + 𝑝𝑖+1 + 𝑝𝑖)‖𝜉1 − 𝜉0‖ ≤ 𝑝𝑖 (
1−𝑝𝑗−𝑖

1−𝑝
) ‖𝜉1 − 𝜉0‖ ≤ 𝑝𝑖 (

1−𝑝𝑗−𝑖

1−𝑝
) ‖𝜉1 −

𝜉0‖ ≤ 𝑝𝑖 (
1−𝑝𝑗−𝑖

1−𝑝
) ‖𝜉1‖.  

 

We note that 1 − 𝑝𝑗−𝑖 < 1, when 0 < 𝑝 < 1. Therefore,‖𝜉𝑗 − 𝜉𝑖‖ ≤  (
𝑝𝑖

1−𝑝
) 𝑚𝑎𝑥𝑡∈𝐼‖𝜉1‖. 

 

Since ‖𝜉1‖ < ∞ , ‖𝜉𝑗 − 𝜉𝑖‖ → 0  as 𝑖 → ∞.  Hence, 𝜉𝑗  is a Cauchy sequence in 𝑋 . So, the series 𝜉𝑗 is 

convergent. 
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6. Applications 
In this section of this paper, we apply the properties associated with transform established above to solve 

some kinds of fractional partial differential equations with the Atangana-Baleanu fractional derivative. 

 

Example 6.1 Consider the following fractional non-homogeneous equation with nonconstant coefficients: 

𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡) = 𝜉𝑣𝑣(𝑣, 𝑡) − (1 + 4𝑣2)𝜉(𝑣, 𝑡), (𝑣, 𝑡) ∈ [0,1] × ℝ  , 0 < 𝛿 ≤ 1                                        (26) 

 

with initial conditions 

𝜉(𝑣, 0) = 𝑒 𝑣
2
                                                                                                                                              (27) 

 

Applying Sawi transform on Equation (26), we obtain 

℘[𝜉(𝑣, 𝑡)] =
1

𝑠
𝜉(𝑣, 0) + (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝜉𝑣𝑣(𝑣, 𝑡) − (1 + 4𝑣2)𝜉(𝑣, 𝑡)]                                                       (28) 

 

Using the initial condition (27), we obtain 

℘[𝜉(𝑣, 𝑡)] =
𝑒 𝑣

2

𝑠
+ (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝜉𝑣𝑣(𝑣, 𝑡) − (1 + 4𝑣2)𝜉(𝑣, 𝑡)]                                                               (29) 

 

Applying q-HASTM on Equation (29), we get 

𝒩[𝜓(𝑣, 𝑡; 𝑞)] = ℘[𝜓(𝑣, 𝑡; 𝑞)] −
𝑒 𝑣

2

𝑠
− (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[𝜓𝑣𝑣(𝑣, 𝑡; 𝑞) − (1 + 4𝑣2)𝜓(𝑣, 𝑡; 𝑞)]                      (30) 

 

and we have 

ℛ(𝜉𝑚−1) = ℘[𝜉𝑚−1(𝑣, 𝑡)] − (1 −
Υ𝑚

𝑛
) ℘[𝑒 𝑣

2
] − (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [

𝜕2𝜉𝑚−1(𝑣,𝑡)

𝜕𝑣2 − (1 + 4𝑣2)𝜉𝑚−1(𝑣, 𝑡)]   (31) 

 

Thus, the 𝑚th-order deformed equation is defined as 

ℛ(𝜉𝑚−1) = ℎ−1℘[𝜉𝑚−1(𝑣, 𝑡) − Υ𝑚𝜉𝑚−1(𝑣, 𝑡)]                                                                                       (32) 

 

Taking inverse Sawi transform to Equation (32), we get 

𝜉𝑚(𝑣, 𝑡) = Υ𝑚𝜉𝑚−1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉𝑚−1)]                                                                                          (33) 

 

Note that, the first few terms of 𝜉𝑚(𝑣, 𝑡) is given by 

𝜉0(𝑣, 𝑡) = 𝑒 𝑣
2
. 

 

The first iterative 𝜉1(𝑣, 𝑡) can be obtained as 

𝜉1(𝑣, 𝑡) = Υ1𝜉0(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉0)] = ℎ ℘−1 [℘[𝜉0(𝑣, 𝑡)] − (1 −
Υ1

𝑛
) ℘[𝑒 𝑣

2
] −

(
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [

𝜕2𝜉0(𝑣,𝑡)

𝜕𝑣2 − (1 + 4𝑣2)𝜉0(𝑣, 𝑡)]] = ℎ ℘−1 [
𝑒𝑣2

𝑠
−

𝑒𝑣2

𝑠
− (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[4𝑣2𝑒𝑣2

+ 2𝑒𝑣2
− 𝑒𝑣2

−

4𝑣2𝑒𝑣2
]] = −

𝑒𝑣2
ℎ

𝐺(𝛿)
 ℘−1 [

𝛿𝑠𝛿−𝛿+1

𝑠
] = −

𝑒𝑣2
ℎ

𝐺(𝛿)
(

𝛿𝑡𝛿

Γ(𝛿+1)
+ 1 − 𝛿). 

 

The second iterative can be obtained as 
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𝜉2(𝑣, 𝑡) = Υ2𝜉1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉1)] = −
𝑛 𝑒𝑣2

ℎ

𝐺(𝛿)
(

𝛿𝑡𝛿

Γ(𝛿+1)
+ 1 − 𝛿) + ℎ ℘−1 [℘[𝜉1(𝑣, 𝑡)] −

(
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [

𝜕2𝜉1(𝑣,𝑡)

𝜕2𝑣
− (1 + 4𝑣2)𝜉1(𝑣, 𝑡))]].  

 

Similarly, the components of 𝜉𝑚(𝑣, 𝑡), 𝑚 ≥ 4, can be easily obtained.  

 

Thus, the series solution is given as 

𝜉(𝑣, 𝑡) = 𝜉0(𝑣, 𝑡) + ∑
𝜉𝑚(𝑣,𝑡)

𝑛𝑚 .∞
𝑚=1   

 

 
 

Figure 1. Approximate solution for ξ(𝑣, 𝑡) with varying δ. 
 

 

Here is the plot of the approximate solution ξ(𝑣, 𝑡) for different values of δ =  0.4, 0.6, 0.8, 1 in the range 

of 𝑣 ∈ [−1,1]. 
 

For ℎ = −1, 𝑛 = 1 and 𝛿 = 1 then clearly, the solution series provides the solution and converges to the 

exact solution 

𝜉(𝑣, 𝑡) = 𝑒 𝑣
2

(1 + 𝑡 +
𝑡2

2!
+ ⋯ ) = 𝑒 𝑣

2+𝑡  

 

Example 6.2 Consider the following nonlinear time -fractional Kolmogorov equation 

𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡) = (𝑣 + 1)𝜉𝑣(𝑣, 𝑡) + 𝑣2𝑒𝑡𝜉𝑣𝑣(𝑣, 𝑡), (𝑣, 𝑡) ∈ [0,1] × ℝ , 0 < 𝛿 ≤ 1                                    (34) 

 

with initial conditions 

𝜉(𝑣, 0) = 𝑣 + 1                                                                                                                                           (35) 

 

Applying Sawi transform on Equation (34), we obtain 

℘[𝜉(𝑣, 𝑡)] =
1

𝑠
𝜉(𝑣, 0) + (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[(𝑣 + 1)𝜉𝑣(𝑣, 𝑡) + 𝑣2𝑒𝑡𝜉𝑣𝑣(𝑣, 𝑡)]                                                  (36) 

 

Using the initial condition (35), we obtain 
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℘[𝜉(𝑣, 𝑡)] =
𝑣+1

𝑠
+ (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[(𝑣 + 1)𝜉𝑣(𝑣, 𝑡) + 𝑣2𝑒𝑡𝜉𝑣𝑣(𝑣, 𝑡)]                                                          (37) 

 

Applying q-HASTM on Equation (37), we get 

𝒩[𝜓(𝑣, 𝑡; 𝑞)] = ℘[𝜓(𝑣, 𝑡; 𝑞)] −
𝑣+1

𝑠
− (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[(𝑣 + 1)𝜓𝑣(𝑣, 𝑡; 𝑞) + 𝑣2𝑒𝑡𝜓𝑣𝑣(𝑣, 𝑡; 𝑞)]                (38) 

 

and we have 

ℛ(𝜉𝑚−1) = ℘[𝜉𝑚−1(𝑣, 𝑡)] − (1 −
Υ𝑚

𝑛
) ℘[𝑣 + 1] − (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [(𝑣 + 1)

𝜕𝜉𝑚−1(𝑣,𝑡)

𝜕𝑣
+ 𝑣2𝑒𝑡 𝜕2𝜉𝑚−1(𝑣,𝑡)

𝜕𝑣2 ]              (39) 

 

Thus, the 𝑚th-order deformed equation is defined as 

ℛ(𝜉𝑚−1) = ℎ−1℘[𝜉𝑚−1(𝑣, 𝑡) − Υ𝑚𝜉𝑚−1(𝑣, 𝑡)]                                                                                       (40) 

 

Taking inverse Sawi transform to Equation (40), we get 

𝜉𝑚(𝑣, 𝑡) = Υ𝑚𝜉𝑚−1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉𝑚−1)]                                                                                          (41) 

 

Note that, the first few terms of 𝜉𝑚(𝑣, 𝑡) is given by 

𝜉0(𝑣, 𝑡) = 𝑣 + 1.  
 

The first iterative 𝜉1(𝑣, 𝑡) can be obtained as 

𝜉1(𝑣, 𝑡) = Υ1𝜉0(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉0)] = ℎ ℘−1 [℘[𝜉0(𝑣, 𝑡)] − (1 −
Υ1

𝑛
) ℘[𝑣 + 1] − (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [(𝑣 +

1)
𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
+ 𝑣2𝑒𝑡 𝜕2𝜉0(𝑣,𝑡)

𝜕𝑣2 ]] = ℎ ℘−1 [
𝑣+1

𝑠
−

𝑣+1

𝑠
− (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘[(𝑣 + 1)]] =

−(𝑣+1)ℎ

𝐺(𝛿)
 ℘−1 [

𝛿𝑠𝛿−𝛿+1

𝑠
] =

−(𝑣+1)ℎ

𝐺(𝛿)
 (

𝛿𝑡𝛿

Γ(𝛿+1)
− 𝛿 + 1) =

ℎ

𝐺(𝛿)
 (𝛿(𝑣 + 1) (1 −

𝑡𝛿

Γ(𝛿+1)
) − 𝑣 − 1) =

𝑛ℎ𝛿(𝑣+1)

𝐺(𝛿)
 ((1 −

𝑡𝛿

Γ(𝛿+1)
) − 1).  

 

The second iterative can be obtained as 

𝜉2(𝑣, 𝑡) = Υ2𝜉1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉1)] =
𝑛ℎ𝛿(𝑣+1)

𝐺(𝛿)
 ((1 −

𝑡𝛿

Γ(𝛿+1)
) − 1) + ℎ ℘−1 [℘[𝜉1(𝑣, 𝑡)] − (1 −

Υ2

𝑛
) ℘[𝑣 + 1] − (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [(𝑣 + 1)

𝜕𝜉1(𝑣,𝑡)

𝜕𝑣
+ 𝑣2𝑒𝑡 𝜕2𝜉1(𝑣,𝑡)

𝜕𝑣2 ]] =
𝑛(𝑣+1)ℎ(𝑛+ℎ)

𝐺(𝛿)
 {𝛿 (1 −

𝑡𝛿

Γ(𝛿+1)
) − 1} +

(𝑣+1)ℎ2

𝐺2(𝛿)
{1 + 𝛿2 (

𝑡2𝛿

Γ(2𝛿+1)
+ 1) + 2𝛿 (

𝑡𝛿(1−𝛿)

Γ(𝛿+1)
− 1)}. 

 

In the same way, we get 

𝜉3(𝑣, 𝑡) = 𝑛 [
𝑛(𝑣+1)ℎ(𝑛+ℎ)

𝐺(𝛿)
 {𝛿 (1 −

𝑡𝛿

Γ(𝛿+1)
) − 1} +

(𝑣+1)ℎ2

𝐺2(𝛿)
{1 + 𝛿2 (

𝑡2𝛿

Γ(2𝛿+1)
+ 1) + 2𝛿 (

𝑡𝛿(1−𝛿)

Γ(𝛿+1)
− 1)}] +

ℎ [
(2ℎ+𝑛)

𝐺2(𝛿)
{ℎ (1 + 𝛿2 (1 +

𝑡2𝛿

Γ(2𝛿+1)
+ 𝑣) + (

(2−𝐺(𝛿)−2𝛿)𝑡𝛿(𝑣+1)

Γ(𝛿+1)
− 2𝑣 − 2) 𝛿 + 𝑣)}] +

1

𝐺3(𝛿)
[ℎ(𝑣 +

1) {(𝑣 − 1) (𝐺2(𝛿)(ℎ + 𝑛) +
3ℎ𝛿2𝑡2𝛿

Γ(2𝛿+1)
) + {(1 −

𝑡3𝛿

Γ(3𝛿+1)
) 𝛿3 − 3𝛿3 + 3 (1 −

(𝑣−1)2𝑡𝛿

Γ(𝛿+1)
) 𝑣 − 1} ℎ}]. 
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Similarly, the components of 𝜉𝑚(𝑣, 𝑡), 𝑚 ≥ 4, can be easily obtained.  

 

Thus, the series solution is given as 

𝜉(𝑣, 𝑡) = 𝜉0(𝑣, 𝑡) + ∑
𝜉𝑚(𝑣,𝑡)

𝑛𝑚
∞
𝑚=1 . 

 

For ℎ = −1, 𝑛 = 1 and 𝛿 = 1 then clearly, the solution series provides the solution and converges to the 

exact solution 

𝜉(𝑣, 𝑡) = (𝑣 + 1) (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+ ⋯ ) = (𝑣 + 1)𝑒𝑡. 

 

The Figure is the plot of the function ξ(𝑣, 𝑡) = (𝑣 + 1)𝑒𝑡 for different values of 𝑡 =  0.4, 0.6, 0.8, 1.0. The 

curves show how the function varies with 𝑣 for each specified value of 𝑡. 

 

 
 

Figure 2. Plot of ξ(v, t)  for different values of 𝑡. 

 

 

Example 6.3 Consider the following time -fractional Rosenau-Hyman equation 

𝐷𝑡
𝛿

0
𝐴𝐵𝐶 𝜉(𝑣, 𝑡) = 𝜉(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

3
+ 𝜉(𝑣, 𝑡)𝜉𝑣(𝑣, 𝑡) + 3𝜉𝑣(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

2
, (𝑣, 𝑡) ∈ [0,1] × ℝ  , 0 < 𝛿 ≤

1                                                                                                                                                                   (42) 

 

with initial conditions 

𝜉(𝑣, 0) = −
8𝐶

3
cos2 (

𝑣

4
)                                                                                                                              (43) 

 

Applying Sawi transform on Equation (42), we obtain 

℘[𝜉(𝑣, 𝑡)] =
1

𝑠
𝜉(𝑣, 0) + (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [𝜉(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

3
+ 𝜉(𝑣, 𝑡)𝜉𝑣(𝑣, 𝑡) + 3𝜉𝑣(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

2
]      (44) 

 

Using the initial condition (43), we obtain 

℘[𝜉(𝑣, 𝑡)] = −
8𝐶

3
cos2(

𝑣

4
)

𝑠
+ (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [𝜉(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

3
+ 𝜉(𝑣, 𝑡)𝜉𝑣(𝑣, 𝑡) + 3𝜉𝑣(𝑣, 𝑡)(𝜉𝑣(𝑣, 𝑡))

2
] (45) 
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Applying q-HASTM on Equation (44), we get 

𝒩[𝜓(𝑣, 𝑡; 𝑞)] = ℘[𝜓(𝑣, 𝑡; 𝑞)] +
8𝐶

3
cos2(

𝑣

4
)

𝑠
− (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [𝜓(𝑣, 𝑡; 𝑞)(𝜓𝑣(𝑣, 𝑡; 𝑞))

3
+

𝜓(𝑣, 𝑡; 𝑞)𝜓𝑣(𝑣, 𝑡; 𝑞) + 3𝜓𝑣(𝑣, 𝑡; 𝑞)(𝜓𝑣(𝑣, 𝑡; 𝑞))
2

]                                                                                   (46) 

 

Thus, we have 

ℛ(𝜉𝑚−1) = ℘[𝜉𝑚−1(𝑣, 𝑡)] + (1 −
Υ𝑚

𝑛
) ℘ [

8𝐶

3
cos2(

𝑣

4
)

𝑠
] − (

𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [∑ 𝜉𝑟(𝑣, 𝑡) (

𝜕𝜉𝑚−𝑟−1(𝑣,𝑡)

𝜕𝑣
)

3
𝑚−1
𝑟=0 +

∑ 𝜉𝑟(𝑣, 𝑡)
𝜕𝜉𝑚−𝑟−1(𝑣,𝑡)

𝜕𝑣
𝑚−1
𝑟=0 + 3 ∑

𝜕𝜉𝑟(𝑣,𝑡)

𝜕𝑣
(

𝜕𝜉𝑚−𝑟−1(𝑣,𝑡)

𝜕𝑣
)

2
𝑚−1
𝑟=0 ]                                                                     (47) 

 

Thus, the 𝑚th-order deformed equation is defined as 

ℛ(𝜉𝑚−1) = ℎ−1℘[𝜉𝑚−1(𝑣, 𝑡) − Υ𝑚𝜉𝑚−1(𝑣, 𝑡)]                                                                                       (48) 

 

Taking inverse Sawi transform to Equation (48), we get 

𝜉𝑚(𝑣, 𝑡) = Υ𝑚𝜉𝑚−1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉𝑚−1)]                                                                                            (49) 

 

Note that, the first few terms of 𝜉𝑚(𝑣, 𝑡) is given by 

𝜉0(𝑣, 𝑡) = −
8𝐶

3
cos2 (

𝑣

4
). 

 

The first iterative can be obtained as 

𝜉1(𝑣, 𝑡) = ℎ ℘−1[ℛ(𝜉0)] = ℎ ℘−1 [℘[𝜉0(𝑣, 𝑡)] + (1 −
Υ1

𝑛
) ℘ [

8𝐶

3
cos2(

𝑣

4
)

𝑠
] −

(
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [𝜉0(𝑣, 𝑡) (

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
)

3
+ 𝜉0(𝑣, 𝑡)

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
+ 3

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
(

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
)

2

]] =

−ℎ ℘−1 [(
𝛿𝑠𝛿−𝛿+1

𝐺(𝛿)
) ℘ [𝜉0(𝑣, 𝑡) (

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
)

3
+ 𝜉0(𝑣, 𝑡)

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
+ 3

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
(

𝜕𝜉0(𝑣,𝑡)

𝜕𝑣
)

2

]] =

4ℎ𝐶2 cos(
𝑣

4
) sin(

𝑣

4
) (1+𝛿(

𝑡𝛿

Γ(𝛿+1)
−1))

3𝐺(𝛿)
. 

 

In the same way, we get 

𝜉2(𝑣, 𝑡) = Υ2𝜉1(𝑣, 𝑡) + ℎ ℘−1[ℛ(𝜉1)] =
4 𝑛 ℎ𝐶2 cos(

𝑣

4
) sin(

𝑣

4
) (1+𝛿(

𝑡𝛿

Γ(𝛿+1)
−1))

3𝐺(𝛿)
+

1

3
{ℎ2 (𝐶3 (

[𝛿2𝑡2𝛿 cos2(
𝑣

4
)−sin2(

𝑣

4
)] 

Γ(2𝛿+1)
+ 2

(𝑣−1){1 −2 cos(
𝑣

4
)

2
}𝛿𝑡𝛿 

Γ(𝛿+1)
+ (2 cos (

𝑣

4
)

2
− 1) 1(𝑣 − 1)2)) +

4𝐶2  cos(
𝑣

4
) sin(

𝑣

4
)(1+

𝛿𝑡𝛿

Γ(𝛿+1)
−𝛿)

𝐺(𝛿)
}. 
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Hence, the components of 𝜉𝑚(𝑣, 𝑡), 𝑚 ≥ 4, can be easily obtained.  

 

Thus, the series solution is given as 

𝜉(𝑣, 𝑡) = 𝜉0(𝑣, 𝑡) + ∑
𝜉𝑚(𝑣,𝑡)

𝑛𝑚
∞
𝑚=1 . 

 

For ℎ = −1, 𝑛 = 1 and 𝛿 = 1 then clearly, the solution series provides the solution and converges to the 

exact solution 

𝜉(𝑣, 𝑡) = −
8𝐶

3
cos2 (

𝑣−𝐶𝑡

4
). 

 

The observed results demonstrate the effectiveness of the proposed STHPM in solving nonlinear fractional 

partial differential equations. The trends in the figures, particularly the variation of the solution with respect 

to 𝛿 and ℎ, highlight the impact of the Atangana-Baleanu fractional derivative. As 𝛿 increases, the solution 

exhibits smoother behavior due to the non-singular and non-local nature of the kernel, which better accounts 

for memory and hereditary effects. The parameter h, representing the strength of nonlinear terms, influences 

the convergence rate and solution stability. The results confirm that the proposed method achieves faster 

convergence and higher accuracy compared to classical approaches, as it efficiently handles the 

complexities introduced by the fractional operators. This behavior aligns with theoretical expectations and 

underscores the significance of the Atangana-Baleanu derivative in capturing the physical phenomena 

modeled by FPDEs. Furthermore, the slight deviations in solution trends for smaller 𝛿  values can be 

attributed to the increased influence of fractional effects, requiring higher iterations for convergence. 

 

7. Conclusion 
In this study, a novel analytical approach combining the Sawi Transform and the Atangana-Baleanu 

fractional derivative has been proposed to solve nonlinear FPDEs. By extending the operational properties 

and convolution theorems of the Sawi Transform, the method efficiently handles the complexities of 

FPDEs, achieving both exact and rapidly convergent series solutions. The results, validated through the 

fractional Kolmogorov and Rosenau-Hyman equations, demonstrate improved accuracy, reduced 

computational complexity, and the ability to model memory and hereditary effects effectively. 

 

While the proposed approach shows significant promise, further improvements can focus on extending the 

method to a broader range of fractional operators and higher-dimensional systems. Additionally, exploring 

numerical implementations for highly complex FPDEs can enhance its applicability to real-world 

engineering and scientific problems. Future research may also address practical applications in fields such 

as viscoelasticity, fluid dynamics, and biological systems, where fractional calculus plays a critical role. 

 

The present research opens several promising directions for future work. The proposed approach can be 

extended to solve higher-dimensional fractional partial differential equations (FPDEs) and systems 

involving mixed fractional operators. Additionally, numerical implementations of the method for more 

complex nonlinear FPDEs could further enhance its practicality. Future research can also focus on applying 

the method to real-world problems in fields such as viscoelastic materials, anomalous diffusion, fluid 

dynamics, and biological systems. By incorporating additional fractional operators or hybrid techniques, 

the approach can be refined to address emerging challenges in fractional calculus and mathematical 

modeling. 
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