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Abstract 

This paper considers a Markovian retrial queueing system with an optional service, unreliable server, balking and feedback. An 

arriving customer can avail of immediate service if the server is free. If the potential customer encounters a busy server, it may 

either join the orbit or balk the system. The customers may retry their request for service from the orbit after a random amount of 

time. Each customer gets the First Essential Service (FES). After the completion of FES, the customers may seek the Second 

Optional Service (SOS) or leave the system. In the event of unforeseen circumstances, the server may encounter a breakdown, at 

which point an immediate repair process will be initiated. After the service completion, the customer may leave the system or re-

join the orbit if not satisfied and demand regular service as feedback. In this investigation, the stationary queue size distributions 

are framed using a recursive approach. Various system performance measures are derived. The effects induced by the system 

parameters on the performance metrics are numerically and graphically analysed. 

 

Keywords- Retrial queue, Optional service, Feedback, Unreliable server.  

 

 

 

1. Introduction  
In our standard daily regimen, it is not always possible to get immediate services. When the demand for 

service is high, customers are expected to wait in a queue to receive service. It might be experienced in 

supermarkets, hospitals, banking sectors, ticket counters, etc. In retrial queueing, if the server is busy at the 

time of arrival, then the customer may enter into the orbit. From the orbit, the customers may check the 

server availability and retry their service after a certain period of time. For example, the router’s transmitted 

packets are buffered when waiting for data transmission in a packet-switched network. 

 

If a customer arrives when the server is busy and observes a long queue waiting for service, the customer 

may not join the queue and leave the service area. This phenomenon is termed as balking. For example, a 

customer arriving at a restaurant may observe a long queue due to unexpectedly high demand for service 

and not enter the restaurant. The arriving customers are all mandated to receive the first essential service. 
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On completion of first essential service, customers may request a second optional service or depart the 

system. For example, let us consider a fuel station. Every customer arriving needs to fill fuel in their vehicles. 

Apart from this, customers may require to fill air in their vehicle tyres, which is a second optional service; 

otherwise, the vehicles may leave the fuel station. 

 

After completion of service, customers who are not satisfied with the service can re-join the orbit and 

receive regular service as feedback. For example, a user facing some issues with their mobile network may 

report to the customer care center for service. If, after receiving the service, the issue persists, the customer 

may report back to the call center and again request service. Due to unexpected circumstances, the server 

may be subject to breakdown. As the server becomes unable to provide service, the queue length blows up 

which provokes customers to balk the system. This has an adverse effect on the revenue of the system. To 

overcome this situation, an immediate repair process begins. Following this, the system resumes regular 

service. For example, consider the production of solar panels. When the trimming machine unexpectedly 

fails to work, the production process is temporarily stopped. To reactivate production, the machine is 

subject to immediate repair. 

 

In the present era, a comprehensive service system is highly desirable to meet the diverse needs of customers. 

Such a system typically includes optional services and a feedback mechanism to ensure customer 

satisfaction. However, the real-world implementation of such a system is prone to service disruptions due 

to unreliable servers. Moreover, the busy lifestyles of customers may also result in impatience, causing 

them to avoid long queues and opt out of seeking services. Therefore, it is crucial to conduct a technical 

analysis of the proposed model’s efficiency under these challenging conditions. 

 

2. Literature Review 

A single-server Markovian queueing system has been investigated by Engel and Hussin (2017) with two 

types of queues: a virtual queue, which is a regular type of queue, and a non-preemptive priority queue, 

which is known as a manual queue. The manual queue was found to be comparatively expensive. Dutta and 

Choudhary (2020) investigated a M/M/1 queueing system for its performance measures using simulation 

techniques. The performance of the system is effectively described with the use of substitution estimators 

and alternative estimators. Civelek et al. (2021) used an advanced simulation technique called the Vector-

Auto-Regressive-to-Anything (VARTA) to analyse the impact of the time related dependencies in M/M/1 

queueing systems. The simulation approach enables us to study the impact on non-exponentially distributed 

systems.  

 

Retrial queueing system has been surveyed by Kim and Kim (2016). They have established the analytic 

findings on various performance metrics and briefed several real-life applications. Fiems (2022) reviewed 

the concept of retrial queues with a general retrial time. Different queueing systems are considered with 

general distribution of interarrival and service times. Dimitriou (2023) has studied the asymptotic behaviour 

of a retrial queue with increased retrial rates and varying arrival rates dependent on events. 

 

A single server retrial queueing system with balking was inspected by Morozov et al. (2019), in which they 

considered a multiclass server. The Regenerative method is used to analyse the system, subject to generally 

distributed service times. The stability conditions and performance measures are established and validated 

through extensive simulation. 

 

The concept of breakdown and repairs in a single server retrial queue was explored by Li et al. (2014). They 

have also incorporated observable balking strategies into their model. Chen and Zhou (2015) have studied 

an unreliable M/M/1 queue subject to setup times and balking strategies in both observable and non-
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observable cases. Chang and Wang (2018) determined a M/M/1 retrial queue with unreliable server and a 

set-up time for reactivating an idle server. Two types of repair processes have been considered: perfectly 

repaired systems and partially repaired systems. Nazarov et al. (2019) have investigated a finite source 

single server Markovian retrial queue in which customer collisions were analysed. The server was 

considered to undergo unpredictable breakdowns and repairs based on its status.  

 

Li and Wang (2021) have discussed a single-server Markovian retrial queueing system, subject to 

catastrophes. Following a repair process, a customer may re–join or balk the system subject to observable 

and unobservable levels. Lakaour et al. (2022) have discussed the effects of collisions, transmission errors, 

and unreliability in a single-server Markovian retrial queue. The steady state distribution has been derived 

by using the generating function method. The effectiveness of the system is validated through numerical 

illustration. Poongothai et al. (2022) have investigated two heterogeneous unreliable server retrial queueing 

models with customer discouragement. Using the recursive technique, the steady-state distribution and 

probabilities of the model have been obtained.  

 

Customer feedback in unreliable single server retrial queues was studied by Chang et al. (2018). The 

impatience of customers with the concepts of balking and reneging has been taken into consideration. A 

comparison of the cost analysis between classical and constant retrial rates has been made. Bouchentouf et 

al. (2019) have analysed a single server Markovian finite capacity queueing system with multiple vacations, 

feedback, balking and reneging during busy periods. The steady-state solution of the model has been 

derived using a recursive approach. Akin and Ormeci (2022) have considered the Intensive Care Unit (ICU) 

as an example of a loss system with feedback.  

 

The concept of optional service was explored by Kalidass and Kasturi (2014), who studied a single server 

queue with two service phases along with a finite number of immediate feedbacks. Arivudainambi and 

Godhandaraman (2015) determined a single server retrial queueing scenario with optional service, balking, 

and vacation. Using supplementary variable technique, explicit expressions for the probability generating 

functions of the server states, orbit length, and system length are established. The Stochastic decomposition 

law of the queueing system is also obtained.  

 

Sundari and Srinivasan (2017) have considered a general service distribution with one essential and two 

optional services. Steady state as well as time-dependent solutions, along with various performance 

measures, have been established. Numerical examples were used to conduct a sensitivity analysis and 

determine how different parameters impact the system. Wang et al. (2017) have considered finite sources 

in single-server retrial queues with SOS. They have established some general results on queue size. Sasikala 

et al. (2018) have investigated the interactive telemedicine single server retrial queue model with optional 

service, breakdown, and multi-vacation. The steady state queueing system has been solved using the 

supplementary variable technique. Hoshur and Haji (2020) have considered a single-server queueing model 

with server breakdown and general service distribution of essential as well as optional services.  

 

Zhang et al. (2018) have formed a queueing model for a dual-mode EV charging station and formulated a 

customer attrition minimization problem to effectively minimise the service drop rate of potential customers. 

Kumar et al. (2020) have come up with a solution to optimise the resource allocation subject to energy 

consumption and maxspan time. Mastoi et al. (2022) have carried out a deep analysis of planning the 

infrastructure for charging electric vehicles, considering the policies implemented. Future trends have also 

been taken into consideration. 
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However, to the best of our knowledge, there is no research work on single-server retrial queues with 

optional service, unreliable server, balking, or feedback. Several real-life scenarios require considering all 

the above-mentioned criteria when being modelled as a queueing system. This motivates us to develop such 

a retrial queueing model. Our concept is applicable to electrical vehicle charging stations. 

 

The following sections of the paper are organised as follows: In Section 3, the real-life application of the 

proposed model is described. A detailed description of the working of the model is presented in Section 4. 

Section 5 derives the steady-state probabilities of queue size distribution by using a recursive approach. 

Various performance measures are presented in Section 6. Section 7 presents the results obtained through 

numerical analysis of the performance metrics. Also, the conclusion is provided in Section 8. 

 

3. Model Implementation in Electrical Vehicle (EV) Charging Station  

Electric Vehicle (EV) charging station is a potential application of the proposed model. as shown in Figure 

1. EVs are completely eco-friendly, with zero percent toxic emissions, reduced noise pollution, and 

considerably low maintenance costs. With a large number of people switching to EVs, several EV charging 

stations are required. Electrical cars can be charged using level 2 and level 3 DC fast charging outlets. Level 

2 charging outlets (208-240 Volts) are mainly used at homes, parking garages, malls, hotels, etc. Level 3 

DC fast charging outlets (400-900 Volts) are intended for public and commercial areas. 

 

 
 

Figure 1. Electrical vehicle charging station. 

 

In an EV charging station, an arriving EV is immediately served if the server is free. In the case of a busy 

server, the EV can join the waiting space or leave without getting service. From the waiting space, EVs can 

retry for service after checking the server’s availability. Level 3 DC fast charging is highly preferable for 

electric cars at public charging stations. After getting the vehicles charged, the EV may get their tyres air 

filled or leave the charging station. If the charging machine undergoes failure due to some unexpected 

reasons, an immediate repair process is started, and the system resumes service upon recovery. Charged 
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EVs that have departed the charging station, on finding the proposed range not being covered by the vehicle, 

may rejoin the waiting space for getting service. 

 

4. Model Description  

The transition diagram of a Markovian retrial queueing system with an optional service, unreliable server, 

balking and feedback is depicted in Figure 2. The primary customers arrive at a Poisson rate 𝜆. All arriving 

customers enter the system to get the FES, which is provided at an exponential rate 𝜇1. Having received the 

FES, the customer may either leave the system with a probability 𝑟̅ or join the SOS with probability 𝑟. The 

SOS is assumed to follow exponential distribution with a rate of 𝜇2.  

 

If the server is busy, an arriving customer can either join the orbit with probability 𝑏 or leave the system 

with probability 1 − 𝑏. After random amount of time, the customer may retry their request at an exponential 

rate 𝛾. After the service completion, the customer either departs the system being fully satisfied with 

probability 𝜃 or joins the retrial orbit for repeated service as feedback with probability 1 − 𝜃. The server 

breakdown occurs at an exponential rate 𝛼. The failed server is then immediately subject to repair at an 

exponential rate 𝛽. 

 

 
 

Figure 2. State transition diagram of a M/M/1 retrial queueing system with an optional service, unreliable server, 

balking and feedback. 

 

 

Let 𝑁(𝜏), 𝐶(𝜏) denote the number of customers present in the system and server’s status at any time 𝜏. We 

define, 

𝐶(𝜏) = {

0, idle state
1, FES state
2, SOS state
3, breakdown and repair state.
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Then {𝑁(𝜏), 𝐶(𝜏): 𝜏 ≥ 0} is a discrete state space Markov process in two variables. Let us denote the 

probability of 𝑛 customers in the system with the server in state 𝑠 by 𝑃𝑛,𝑠(𝜏) = 𝑃𝑟𝑜𝑏{𝑁(𝜏) = 𝑛, 𝐶(𝜏) = 𝑠}. 
The various probabilities in steady state are denoted by 𝑃𝑛,𝑠(𝜏) = lim

𝑡→∞
𝑃𝑛,𝑠(𝜏),  where 𝑛 ≥ 0, 𝑠 = 0,1,2,3. 

 

5. Governing Equations 
The steady state probability for retrial queueing system with an optional service, unreliable server, balking 

and feedback balance equation is formulated. Chapman-Kolmogorov equations for the system states related 

to different server states are formulated below. 

𝜆𝑃0,0 = (𝑟̅𝜇1 + 𝜃𝜇1)𝑃0,1 + 𝜇2𝑃0,2                                                                                                              (1) 

(𝜆 + 𝑛𝛾)𝑃𝑛,0 = (𝑟̅𝜇1 + 𝜃𝜇1)𝑃𝑛,1 + 𝜃̅𝜇1𝑃𝑛−1,1 + 𝜇2𝑃𝑛,2;       𝑛 ≥ 1                                                                     (2) 

(𝑏𝜆 + 2𝜇1 + 𝛼)𝑃0,1 = 𝜆𝑃0,0 + 𝛽𝑃0,3 + 𝛾𝑃1,0.                                                                                                 (3) 

(𝑏𝜆 + 2𝜇1 + 𝛼)𝑃𝑛,1 = 𝜆𝑃𝑛,0 + 𝛽𝑃𝑛,3 + (𝑛 + 1)𝛾𝑃𝑛+1,0 + 𝑏𝜆𝑃𝑛−1,1;       𝑛 ≥ 1                                         (4) 

(𝜆 + 𝜇2)𝑃0,2 = 𝑟𝜇1𝑃0,1                                                                                                                                   (5) 

(𝜆 + 𝜇2)𝑃𝑛,2 = 𝑟𝜇1𝑃𝑛,1 + 𝜆𝑃𝑛−1,2;       𝑛 ≥ 1                                                                                              (6) 

𝛽𝑃𝑛,3 = 𝛼𝑃𝑛,1;       𝑛 ≥ 0                                                                                                                                  (7) 

 

5.1 Steady-State Analysis 

We derive the steady state solution for the retrial queueing system with an optional service, unreliable server, 

balking and feedback model by solving Equations (1) - (7) recursively. Recursive technique is employed to 

examine the steady state probabilities in terms of 𝑃0,0. 

Solving equation (5), we get,  

𝑃0,2 =
𝑟𝜇1

𝜆+𝜇2
𝑃0,1                                                                                                                                                    (8) 

 

Using Equation (8) in (1), we get the probability of the first customer getting FES,  

𝑃0,1 =
𝜉0

𝜂
𝑃0,0;         where  𝜉0 = 𝜆(𝜆 + 𝜇2)  and  𝜂 = (𝜆 + 𝜇2)(𝑟̅𝜇1 + 𝜃𝜇1) + 𝑟𝜇1𝜇2                                       (9) 

 

Applying Equation (9) in (8), we get the probability of the first customer getting SOS,  

𝑃0,2 =
𝜈0

𝜂
𝑃0,0;         where  𝜈0 = 𝜆𝑟𝜇1                                                                                                                  (10) 

 

Considering 𝑛 = 0 in equation (7) and substituting in equation (9), we get the probability of the system’s 

breakdown during the service of the first customer,  

𝑃0,3 = (
𝛼

𝛽
)

𝜉0

𝜂
𝑃0,0                                                                                                                                                    (11) 

 

Using Equations (7) and (9) in Equation (3), we get the probability of having one customer in the orbit,  

𝑃1,0 =
𝜁1

𝛾𝜂
𝑃0,0;          where 𝜁1 = (𝑏𝜆 + 2𝜇1)𝜉0 − 𝜆𝜂                                                                                               (12) 

 

Substituting 𝑛 = 1 in equation (6), we get,  

𝑃1,2 =
𝑟𝜇1

𝜆+𝜇2
𝑃1,1 +

𝜆

𝜆+𝜇2
𝑃0,2                                                                                                                                (13) 

 

While 𝑛 = 1 in Equation (2), the Equations (9), (10), (12) and (13) give the probability of the customer 

from the orbit receiving FES given that there is only one customer in the orbit,  

𝑃1,1 =
𝜉1

𝛾𝜂2 𝑃0,0;       where 𝜉1 = (𝜆 + 𝛾)(𝜆 + 𝜇2)𝜁1 − 𝜃̅𝛾𝜇1(𝜆 + 𝜇2)𝜉0 − 𝜆𝜇2𝜈0𝛾                                                (14) 
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On substituting Equations (10) and (14) in Equation (13), we get the probability of the customer from the 

orbit having received FES, opting for SOS, given that there is only one customer in the orbit,  

𝑃1,2 =
𝜈1

(𝜆+𝜇2)𝛾𝜂2 𝑃0,0;         where  𝜈1 = 𝑟𝜇1𝜉1 + 𝜆𝜈0𝛾𝜂                                                                                     (15) 

 

Applying Equation (14) in Equation (7) with 𝑛 = 1 yields the probability that the system breakdown during 

the service of the only customer in the orbit,  

𝑃1,3 = (
𝛼

𝛽
)

𝜉1

𝛾𝜂2 𝑃0,0                                                                                                                                          (16) 

 

Taking 𝑛 = 1 in Equation (4) and using equations (7), (9), (12) and (14), the probability of having two 

orbital customers is obtained as,  

𝑃2,0 =
𝜁2

2𝛾2𝜂2 𝑃0,0;         where  𝜁2 = (𝑏𝜆 + 2𝜇1)𝜉1 − 𝜆𝜁1𝜂 − 𝑏𝜆𝜉0𝛾𝜂                                                                   (17) 

 

Substituting 𝑛 = 2 in equation (6), we get,  

𝑃2,2 =
𝑟𝜇1

𝜆+𝜇2
𝑃2,1 +

𝜆

𝜆+𝜇2
𝑃1,2                                                                                                                              (18) 

 

Considering 𝑛 = 2 in Equation (2) and using Equations (14), (15), (17) and (18), we get the probability of 

the second customer from the orbit receiving FES,  

𝑃2,1 =
𝜉2

2𝛾2𝜂3(𝜆+𝜇2)
𝑃0,0;        where 𝜉2 = (𝜆 + 2𝛾)(𝜆 + 𝜇2)

2𝜁2 − 2𝜃̅𝛾𝜇1𝜉1(𝜆 + 𝜇2)
2 − 2𝜆𝜇2𝛾𝜈1               (19) 

 

On substituting Equations (15) and (19) in equation (18), we get the probability of the second customer 

from the orbit who has received the FES and is opting for the SOS,  

𝑃2,2 =
𝜈2

2𝛾2𝜂3(𝜆+𝜇2)2
𝑃0,0;       where 𝜈2 = 𝑟𝜇1𝜉2 + 2𝜆𝜈1𝛾𝜂                                                                              (20) 

 

Taking 𝑛 = 2 in Equation (7) and using Equation (19), we get the probability that the system breaks down 

during the service of the second customer in the orbit,  

𝑃2,3 = (
𝛼

𝛽
)

𝜉2

2𝛾2𝜂3(𝜆+𝜇2)
𝑃0,0                                                                                                                               (21) 

 

Similarly solving Equation (4), the probability of having 𝑛 orbital customers is obtained as,  

𝑃𝑛,0 =
𝜁𝑛

𝑛!𝛾𝑛𝜂𝑛(𝜆+𝜇2)𝑛−2 𝑃0,0                                                                                                                                      (22) 

 

where, 𝜁𝑛 = (𝑏𝜆 + 2𝜇1)𝜉𝑛−1 − 𝜆𝜁𝑛−1𝜂(𝜆 + 𝜇2) − (𝑛 − 1)𝑏𝜆𝜉𝑛−2𝛾𝜂(𝜆 + 𝜇2). 
 

Solving Equation (2) in a similar way, we get the probability of the 𝑛𝑡ℎ customer from the orbit receiving 

First Essential Service,  

𝑃𝑛,1 =
𝜉𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛−1 𝑃0,0                                                                                                                                (23) 

 

where 𝜉𝑛 = (𝜆 + 𝑛𝛾)(𝜆 + 𝜇2)
2𝜁𝑛 − 𝑛𝛾(𝜆 + 𝜇2)

2𝜃̅𝜇1𝜉𝑛−1 − 𝑛𝜆𝜇2𝛾𝜈𝑛−1. 
 

After getting the FES, the probability of the 𝑛𝑡ℎ customer from the orbit receiving SOS can be obtained 

using Equation (6),  

𝑃𝑛,2 =
𝜈𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛
𝑃0,0;       where  𝜈𝑛 = 𝑟𝜇1𝜉𝑛 + 𝑛𝜆𝛾𝜂𝜈𝑛−1                                                                     (24) 
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Equation (7) yields the probability that the system breaks down during the service of the 𝑛𝑡ℎ customer in 

the orbit,  

𝑃𝑛,3 = (
𝛼

𝛽
)

𝜉𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛−1 𝑃0,0                                                                                                                             (25) 

 

To obtaine 𝑃0,0, the normalized expression is given below,  

∑∞
𝑛=0 ∑3

𝑠=0 𝑃𝑛,𝑠 = 1                                                                                                                                                (26) 

 

Further few algebraic manipulations give the probability value of 𝑃0,0 as,  

𝑃0,0 = (
1

1+𝐴+𝐵+𝐶𝐷+∑∞
𝑛=3 (𝐸𝑛+𝐹𝑛+𝐺𝑛𝐷)

)                                                                                                                     (27) 

 

where, 𝐴 =
𝜁1

𝛾𝜂
+

𝜁2

2𝛾2𝜂2 , 𝐵 =
𝜈0

𝜂
+

𝜈1

𝛾𝜂2(𝜆+𝜇2)
+

𝜈2

2𝛾2𝜂3(𝜆+𝜇2)2
, 𝐶 =

𝜉0

𝜂
+

𝜉1

𝛾𝜂2 +
𝜉2

2𝛾2𝜂3(𝜆+𝜇2)
.   

𝐷 = 1 +
𝛼

𝛽
, 𝐸𝑛 =

𝜁𝑛

𝑛!𝛾𝑛𝜂𝑛(𝜆+𝜇2)𝑛−2 , 𝐹𝑛 =
𝜈𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛
 and 𝐺𝑛 =

𝜉𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛−1.  

 

5.2 Stability Condition 
The existence of finite long run expectations of a queueing system is essential to deem the system as stable. 

To guarantee the stability of our proposed model, we derive an essential condition. Considering the 

lexicographical sequence for the states, we get the infinitesimal generator 𝑄 of the process as follows: 

 

𝑄 =

[
 
 
 
 
 
 
𝑋0 𝑌       
𝑍1 𝑋1 𝑌      
 𝑍2 𝑋2 𝑌     
  ⋱ ⋱ ⋱    
     𝑍𝑁 𝑋𝑁 𝑌   
     𝑍𝑁 𝑋𝑁 𝑌  
       ⋱ ⋱ ⋱]

 
 
 
 
 
 

; where 𝑌 = [

0 0 0 0
𝜃̅𝜇1 𝑏𝜆 0 0
0 0 𝜆 0
0 0 0 0

], 

 

𝑋𝑁 = [

−(𝜆 + 𝑁𝛾) 𝜆           0              0
(𝑟̅𝜇1 + 𝜃𝜇1) −(𝑏𝜆 + 2𝜇1 + 𝛼)          𝑟𝜇1           𝛼

𝜇2

0
0
𝛽

−(𝜆 + 𝜇2)
0

    0
−𝛽

] and 𝑍𝑁 = [

0 𝑁𝛾 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]. 

 

 

Representing the long run probability vector as 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4], we have 𝑥(𝑋𝑁 + 𝑌 + 𝑍𝑁) = 0 and 

𝑥𝑒4 = 1, where 0 is a row vector of zeros with dimension 4 and 𝑒4  is a column vector of unity with 

dimension 4. According to the stability condition obtained in Neuts (1981), the steady state probabilities 

exist if and only if 𝑥𝑌𝑒 < 𝑥𝑍𝑁𝑒. 

i.e., 
𝜆+𝑛𝛾

2𝑛𝛾
[
𝜆𝑏

𝜇1
+

𝜆𝑟

𝜇2
+ 1] < 1                                                                                                                      (28) 

 

6. Performance Indices 

To investigate the proposed model, certain measures are essential to evaluate its performance. Based on the 

steady-state queue size distribution, the long-run probabilities of the server being in different states, the 

expected number of customers, and their corresponding average waiting times are evaluated in the 

following manner. 
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Probability that the server is idle 𝑃𝐼,  

𝑃𝐼 = ∑∞
𝑛=0 𝑃𝑛,0 = (1 + 𝐴 + ∑∞

𝑛=3
𝜁𝑛

𝑛!𝛾𝑛𝜂𝑛(𝜆+𝜇2)𝑛−2)𝑃0,0                                                                               (29) 

 

Probability that the server is busy 𝑃𝐵,  

𝑃𝐵 = ∑∞
𝑛=0 (𝑃𝑛,1 + 𝑃𝑛,2) = [𝐵 + 𝐶 + ∑∞

𝑛=3
(𝜆+𝜇2)𝜉𝑛+𝜈𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛
] 𝑃0,0                                                              (30) 

 

Probability that the server is in breakdown state 𝑃𝐵𝐷,  

𝑃𝐵𝐷 = ∑∞
𝑛=0 𝑃𝑛,3 =

𝛼

𝛽
[𝐶 + ∑∞

𝑛=3
𝜉𝑛

𝑛!𝛾𝑛𝜂𝑛+1(𝜆+𝜇2)𝑛−1] 𝑃0,0                                                                            (31) 

 

Fraction of lost customers due to balking (LCB), 

𝐿𝐶𝐵 = ∑ 𝜆(1 − 𝑏)(𝑃𝑛,0 + 𝑃𝑛,1) = 𝜆(1 − 𝑏)[1 + 𝐴 + 𝐶 + ∑ (𝐸𝑛 + 𝐺𝑛)∞
𝑛=3 ]∞

𝑛=0 𝑃0,0                                   (32) 

 

Fraction of lost customers due to breakdown (LCBD), 

𝐿𝐶𝐵𝐷 = ∑ 𝜆(1 − 𝑏)𝑃𝑛,3 =
𝜆(1−𝑏)𝛼

𝛽
[𝐶 + ∑ 𝐺𝑛

∞
𝑛=3 ]∞

𝑛=0 𝑃0,0                                                                             (33) 

 

The mean number of customers in the orbit 𝐸(𝑁𝑂),  

𝐸(𝑁𝑂) = ∑∞
𝑛=0 𝑛𝑃𝑛,0 = [

𝜁1𝛾𝜂+𝜁2

𝛾2𝜂2 + ∑∞
𝑛=3 𝑛𝐸𝑛] 𝑃0,0                                                                                         (34) 

 

The mean number of customers in the system 𝐸(𝑁𝑆),  

𝐸(𝑁𝑆) = ∑∞
𝑛=0 𝑛(𝑃𝑛,0 + 𝑃𝑛,1 + 𝑃𝑛,2 + 𝑃𝑛,3)  

            = 𝐸(𝑁𝑂) + {[
((𝜆+𝜇2)2𝛾𝜂𝜉1+(𝜆+𝜇2)𝜉2)𝐷+(𝜆+𝜇2)𝛾𝜂𝜈1+𝜈2

𝛾2𝜂3(𝜆+𝜇2)2
] + ∑∞

𝑛=3 𝑛(𝐸𝑛 + 𝐷𝐺𝑛)}𝑃0,0                           (35) 

 

Expected waiting time of customer in the orbit (𝑊𝑂),  

𝑊𝑂 =
𝐸(𝑁𝑂)

𝜆𝑒𝑓𝑓
=

1

𝜆𝑒𝑓𝑓
[
𝜁1𝛾𝜂+𝜁2

𝛾2𝜂2 + ∑∞
𝑛=3 𝑛𝐸𝑛] 𝑃0,0                                                                                                   (36) 

 

Expected waiting time of customer in the system (𝑊𝑆),  

𝑊𝑆 =
𝐸(𝑁𝑆)

𝜆𝑒𝑓𝑓
=

𝐸(𝑁𝑂)

𝜆𝑒𝑓𝑓
+

1

𝜆𝑒𝑓𝑓
{[

((𝜆+𝜇2)2𝛾𝜂𝜉1+(𝜆+𝜇2)𝜉2)𝐷+(𝜆+𝜇2)𝛾𝜂𝜈1+𝜈2

𝛾2𝜂3(𝜆+𝜇2)2
]+∑∞

𝑛=3 𝑛(𝐸𝑛 + 𝐷𝐺𝑛)}}𝑃0,0    (37) 

where, 𝜆𝑒𝑓𝑓 = 𝑏𝜆. 

 

7. Numerical Results 
Consider an EV charging station. Suppose these EVs arrive at the EV charging station at a rate 𝜆. An 

arriving EV is immediately charged at a rate 𝜇1, if the EV charging machine is free at the time of arrival. 

After being charged, the EVs can get their tyres air-filled or leave the charging station, with a probability 𝑟 

and 𝑟̅, respectively. An EV gets their tyres air filling at a rate 𝜇2. In case, the EV charging machine is busy, 

an arriving EV can join the waiting space or leave without getting service, with probability 𝑏 and 1 − 𝑏, 

respectively. 

 

From the waiting space, EVs can retry for the availability of the EV charging machine at a rate 𝛾. If the 

charging machine undergoes failure at a rate 𝛼  due to some unexpected reasons, an immediate repair 

process is initiated at a rate of 𝛽. The charging machine resumes service provision upon recovery. After 
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getting charged, an EV that finds the proposed range not being attained may rejoin the waiting space or 

leave the charging station with probability 𝜃 or 1 − 𝜃 respectively. 

 

The influence of system parameters on performance metrics is validated through numerical analysis. The 

effects of variations in parameters on the probabilities of the EV charging machine being idle [𝑃𝐼], busy 
[𝑃𝐵], breakdown [𝑃𝐵𝐷] on the Expected number of EVs in the charging station [𝐸(𝑁𝑆)] are analysed. By 

varying these parameters, their influence on the performance metrics is measured in the following cases 

using MATLAB: The choice of the parameters is subject to satisfying the stability condition established.  

 

Case 1: For the following choice of parameters 𝜇1 = 10, 𝜇2 = 8, 𝛾 = 2, 𝛼 = 0.5, 𝛽 = 4, 𝑟 = 0.3, and  𝜃̅ =
0.2, the results of variations in 𝜆  and  𝑏 are depicted in Figure 3. It is observed that irrespective of the 

choice of 𝑏, when the arrival rate increases, the expected number of EVs in the EV charging station also 

increases proportionally. Further, the effect of the same choice of parameters along with a fixed value of 

𝑏 = 0.8 is depicted in Figure 4 against variations in 𝜆. This indicates that the probability of the EV charging 

machine being busy and being subject to breakdown increases, whereas the probability of the EV charging 

machine being idle decreases, corresponding to an increase in the arrival rate of EVs. 

 

 

 
 

              Figure 3. 𝜆 for various in 𝑏 vs. 𝐸(𝑁𝑆).             Figure 4. 𝜆  vs.  𝑃𝐼 , 𝑃𝐵   and  𝑃𝐵𝐷 . 
 

 

 

 

Case 2: For 𝜆 = 3, 𝜇2 = 8, 𝛾 = 2, 𝛼 = 0.5, 𝛽 = 4, 𝑟 = 0.3, and  𝜃̅ = 0.2 , the effects of changes in 

𝜇1  and  𝑏 are shown in Figure 5. It can be seen that by increasing 𝜇1, the expected number of EVs in the 

EV charging station considerably decreases, irrespective of the choice of 𝑏. Moreover, the effect of the 

same set of values along with a particular choice of 𝑏 = 0.8 is depicted in Figure 6 against variations in 𝜇1. 

It is observable that the probability of the EV charging machine being idle considerably increases, whereas 

the probability of the EV charging machine being busy and being subject to breakdown declines with an 

increase in the service rate of the EV charging machine. 
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Figure 5. 𝜇1 for various in 𝑏 vs. 𝐸(𝑁𝑆).              Figure 6. 𝜇1  vs.  𝑃𝐼, 𝑃𝐵  and  𝑃𝐵𝐷. 
 

 

Case 3: By choosing 𝜆 = 3, 𝜇1 = 10, 𝛾 = 2, 𝛼 = 0.5, 𝛽 = 4, 𝑏 = 0.8, and  𝜃̅ = 0.2 , the effects of 

variations in 𝜇2  and  𝑟 are shown in Figure 7. It is observed that an increase in 𝜇2 results in an effective 

decrease in the expected number of EVs in the EV charging station irrespective of the choice of 𝑟. Further, 

the effect of the same choice of parameters along with a fixed value of 𝑟 = 0.3 is plotted in Figure 8 against 

variations in 𝜇2. This indicates that the chances of the air filling machine at the EV charging station being 

idle increases, and the chances of the machine being busy decrease with an increase in the service rate of 

the air filling machine. Further, this rate has no influence over the chances of the machine being subject to 

breakdown. 
 

 
 

                Figure 7. 𝜇2 for various in 𝑟 vs. 𝐸(𝑁𝑆).                                 Figure 8. 𝜇2  vs.  𝑃𝐼, 𝑃𝐵  and  𝑃𝐵𝐷. 
 

 

Case 4: Taking 𝜆 = 3, 𝜇1 = 10, 𝜇2 = 8, 𝛼 = 0.5, 𝛽 = 4, 𝑟 = 0.3, and  𝜃̅ = 0.2, the results of changes in 

𝛾  and  𝑏 are depicted in Figure 9. It is observed that when the retrial rate increases, the expected number 

of EVs in the EV charging station considerably decreases, irrespective of the choice of 𝑏. Further, the effect 

of the same parameter set along with a choice of 𝑏 = 0.8 is depicted in Figure 10 against variations in 𝛾. It 

can be seen that changes in retrial rate have no effect on the status of the EV charging machine. 
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Figure 9. 𝛾 for various in 𝑏 vs. 𝐸(𝑁𝑆).            Figure 10. 𝛾  vs.  𝑃𝐼, 𝑃𝐵  and  𝑃𝐵𝐷.   

 

 

Case 5: For 𝜆 = 3, 𝜇1 = 10, 𝜇2 = 8, 𝛾 = 2, 𝛽 = 4, 𝑟 = 0.3, and  𝜃̅ = 0.2, the effects of various choices of 

𝛼  and  𝑏 are shown in Figure 11. It is observed that with an increase in the breakdown rate, the expected 

number of EVs in the EV charging station considerably increases, irrespective of different choices of 𝑏. By 

fixing the value of 𝑏 as 0.8, the effect of the above parameter set is shown in Figure 12 against various 

choices of 𝛼. It shows that the chances of the EV charging machine becoming idle or busy decrease, 

whereas the machine is highly likely to breakdown with an increase in the breakdown rate of the EV 

charging machine. 

 

 

 
 

Figure 11. 𝛼 for various in 𝑏 vs. 𝐸(𝑁𝑆).          Figure 12. 𝛼  vs.  𝑃𝐼, 𝑃𝐵  and  𝑃𝐵𝐷.   
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Figure 13. 𝛽 for various in 𝑏 vs. 𝐸(𝑁𝑆).            Figure 14. 𝛽  vs.  𝑃𝐼, 𝑃𝐵  and  𝑃𝐵𝐷 .   

 

Case 6: Taking 𝜆 = 3, 𝜇1 = 10, 𝜇2 = 8, 𝛾 = 2, 𝛼 = 0.5, 𝑟 = 0.3, and  𝜃̅ = 0.2 , the effects of various 

values of 𝛽  and  𝑏 are plotted in Figure 13. It is evident that when the EV charging machine has a high 

repair rate in times of failure, the expected number of EVs in the EV charging station shows a declining 

trend, irrespective of the choice of 𝑏. Further, for a choice of 𝑏 = 0.8, the effect of the above parameter set 

is plotted in Figure 14 against various choices of 𝛽. It is observed that the chances of the EV charging 

machine becoming idle or busy increase with an increase in repair rates. Moreover, there is a considerable 

decline in the chance of the machine break down. 

 

From Table 1, it is observed that 𝑃𝐵 and 𝑃𝐵𝐷 increase and 𝑃𝐼 decrease, with an increase in 𝜆. Moreover, for 

various choices of 𝑏, an increase in 𝜆 produces an increase in 𝐸(𝑁𝑆). Table 2 displays an increase in 𝑃𝐼 and 

a decrease in 𝑃𝐵 and 𝑃𝐵𝐷 for increasing values of 𝜇1. Further, it also shows that for various choices of 𝑏, 

an increase in 𝜇1 results in a decrease in 𝐸(𝑁𝑆). 

 

From Table 3, it is observed that 𝑃𝐼 increases, 𝑃𝐵 decreases, and 𝑃𝐵𝐷 remains unaffected by an increasing 

trait of 𝜇2. Also, it shows that 𝐸(𝑁𝑆) decreases with an increase in 𝜇2 for different choices of 𝑟. Table 4 

shows that 𝑃𝐼 , 𝑃𝐵  and  𝑃𝐵𝐷 remain unaltered by changes in 𝛾. However, it is observed that 𝐸(𝑁𝑆) decreases 

with an increase in 𝛾 for various values of 𝑏. From Table 5, it can be seen that 𝑃𝐼 and 𝑃𝐵 decrease and 𝑃𝐵𝐷 

increase with an increase in 𝛼. For different choices of 𝑏, an increase in 𝛼 results in an increase in 𝐸(𝑁𝑆). 

It is evident from Table 6 that 𝑃𝐼 and 𝑃𝐵 increase, whereas 𝑃𝐵𝐷 decreases with an increase in 𝛽. Also, it is 

observed that an increase in 𝛽 over various values of 𝑏 results in a decrease in 𝐸(𝑁𝑆). 

 
Table 1. Effects of 𝜆 on performance metrics for different values of 𝑏. 

 

𝜆 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
𝑏 = 0.6 𝑏 = 0.7 𝑏 = 0.8 

0.5 0.0369     0.0379     0.0389     0.9587     0.0379     0.0034     

1 0.0937     0.0978     0.1020     0.9181     0.0750     0.0068     

1.5 0.1732     0.1834     0.1939     0.8783     0.1116     0.0101     

2 0.2791     0.2992     0.3202     0.8391     0.1475     0.0134     

2.5 0.4161     0.4512     0.4880     0.8007     0.1827     0.0166     

3 0.5891     0.6455     0.7055  0.7628     0.2174     0.0198     

3.5 0.8034     0.8890     0.9807  0.7257     0.2515     0.0229     

4 1.0640     1.1878     1.3215 0.6891     0.2850     0.0259     

4.5 1.3754 1.5476 1.7347 0.6532 0.3179 0.0289 
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Table 2. Effects of 𝜇1 on performance metrics for different values of 𝑏. 
 

𝜇1 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
𝑏 = 0.6 𝑏 = 0.7 𝑏 = 0.8 

5 0.9973     1.1650     1.3534     0.6053     0.3571     0.0376     

7 0.7460     0.8420     0.9464     0.6934     0.2790     0.0276     

9 0.6274     0.6930     0.7632     0.7445     0.2336     0.0218     

11 0.5590     0.6084     0.6606     0.7780     0.2040     0.0181     

13 0.5149     0.5543     0.5955     0.8015     0.1831     0.0154     

15 0.4841     0.5167     0.5507     0.8190     0.1676     0.0134     

17 0.4614     0.4893     0.5181     0.8325     0.1556     0.0119     

19 0.4441     0.4683     0.4934     0.8433     0.1461     0.0107     

21 0.4303     0.4518     0.4739     0.8520     0.1383     0.0097     

23 0.4192     0.4385     0.4583     0.8593     0.1319     0.0088     

25 0.4101 0.4275 0.4454 0.8654 0.1264 0.0082 

 

 
 

Table 3. Effects of 𝜇2 on performance metrics for different values of 𝑟. 
 

𝜇2 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
 𝑟 = 0.2   𝑟 = 0.4   𝑟 = 0.6  

6 0.6866     0.8971     1.1246     0.7431     0.2372     0.0198 

8 0.6321     0.7814     0.9412     0.7628     0.2174     0.0198 

10 0.6010     0.7157     0.8375     0.7747     0.2055     0.0198 

12 0.5810     0.6738     0.7717     0.7826     0.1976     0.0198 

14 0.5672     0.6449     0.7264     0.7883     0.1920     0.0198 

16 0.5571     0.6238     0.6935     0.7925     0.1877     0.0198 

18 0.5493     0.6078     0.6686     0.7958     0.1845     0.0198 

20 0.5433     0.5952     0.6491     0.7984     0.1818     0.0198 

22 0.5384     0.5851     0.6334     0.8006     0.1797     0.0198 

24 0.5343 0.5768 0.6206 0.8024 0.1779 0.0198 

 

 

 

Table 4. Effects of 𝛾 on performance metrics for different values of 𝑏. 
 

𝛾 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
𝑏 = 0.6  𝑏 = 0.7  𝑏 = 0.8  

2 0.5891     0.6455     0.7055     0.7628 0.2174 0.0198  

4 0.3064     0.3350     0.3652     0.7628 0.2174 0.0198  

6 0.2181     0.2385     0.2601     0.7628 0.2174 0.0198  

8 0.1749     0.1915     0.2090     0.7628 0.2174 0.0198  

10 0.1493     0.1636     0.1787     0.7628 0.2174 0.0198  

12 0.1324     0.1452     0.1587     0.7628 0.2174 0.0198  

14 0.1203     0.1321     0.1445     0.7628 0.2174 0.0198  

16 0.1113     0.1223     0.1339     0.7628 0.2174 0.0198  

18 0.1043     0.1147     0.1256     0.7628 0.2174 0.0198  

20 0.0987 0.1086 0.1191 0.7628 0.2174 0.0198  

 

 

 

Table 5. Effects of 𝛼 on performance metrics for different values of 𝑏. 
 

𝛼 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
𝑏 = 0.6  𝑏 = 0.7  𝑏 = 0.8  

0.5 0.5891     0.6455     0.7055     0.7628     0.2174     0.0198     

1 0.5900     0.6466     0.7067     0.7481     0.2132     0.0388     

1.5 0.5909     0.6476     0.7078     0.7338     0.2091     0.0570     

2 0.5917     0.6486     0.7089     0.7201     0.2052     0.0746     

2.5 0.5925     0.6495     0.7100     0.7070     0.2015     0.0916     

3 0.5933 0.6505 0.7110 0.6942 0.1978 0.1079 
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Table 6. Effects of 𝛽 on performance metrics for different values of 𝑏. 
 

𝛽 
𝐸(𝑁𝑆) 

𝑃𝐼 𝑃𝐵 𝑃𝐵𝐷 
𝑏 = 0.6  𝑏 = 0.7   𝑏 = 0.8  

2 0.5900     0.6466     0.7067     0.7481     0.2132     0.0388     

3 0.5894     0.6459     0.7059     0.7579     0.2160     0.0262     

4 0.5891     0.6455     0.7055     0.7628     0.2174     0.0198     

5 0.5889     0.6453     0.7052     0.7659     0.2183     0.0159     

6 0.5888 0.6452 0.7050 0.7679 0.2188 0.0133 

 

The impact of different system parameters on the main performance metrics is portrayed using three- 

dimensional figures. While studying the effects, the values of 𝜆, 𝜇1  and  𝜇2 are arbitrarily varied, whereas 

the choice of other parameters such as 𝛼, 𝛾, 𝑏  and  𝜃̅  is subject to the stability condition. The surface 

depicted in Figure 15 shows an increasing trend of 𝐸(𝑁𝑆) against rising values of 𝜆  and  𝜇1. In particular, 

it is observed that 𝐸(𝑁𝑆) increases with an increase in 𝜆 and decreases with an increase in 𝜇1. Figure 16 

depicts a surface showing an upward trend of 𝐸(𝑁𝑆) against increasing values of 𝜆  and  𝜇2. Specifically, 

𝐸(𝑁𝑆) increases with an increase in 𝜆 and decreases with an increase in 𝜇2. 

 

 
 

      Figure 15. 𝜆 vs. 𝜇1 vs. 𝐸(𝑁𝑆).                   Figure 16. 𝜆 vs. 𝜇2 vs. 𝐸(𝑁𝑆).  

 
 

 
 

Figure 17. 𝜆 vs. 𝛾 vs. 𝐸(𝑁𝑆).                     Figure 18. 𝛾 vs. 𝜇2 vs. 𝐸(𝑁𝑆).   
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An upward trend of 𝐸(𝑁𝑆) against increasing values of 𝜆  and  𝛾 is seen in the surface shown in Figure 17, 

which more specifically implies that 𝐸(𝑁𝑆) increases with an increase in 𝜆 and decreases with an increase 

in 𝛾 . Figure 18 depicts a surface showing a downward trend of 𝐸(𝑁𝑆)  against increasing values of 

𝛾  and  𝜇2. In particular, it is seen that 𝐸(𝑁𝑆) decreases with an increase in 𝛾  and  𝜇2. The surface in Figure 

19 displays a downward trend of 𝐸(𝑁𝑆)  against increasing values of 𝜇2  and  𝑏 . Specifically, 𝐸(𝑁𝑆) 

decreases with an increase in 𝜇2 and increases with an increase in 𝑏. A downward trend of 𝐸(𝑁𝑆) against 

increasing values of 𝜇1  and  𝜃̅ is displayed in the surface depicted by Figure 20. It shows that 𝐸(𝑁𝑆) 

decreases with an increase in 𝜇1 and increases with an increase in 𝜃̅ in particular. Figure 21 depicts a surface 

showing a downward trend of 𝐸(𝑁𝑆) against increasing values of 𝜇1  and  𝑏. In particular, it is seen that 

𝐸(𝑁𝑆) decreases with an increase in 𝜇1 and increases with an increase in 𝑏. Figure 22 shows that 𝐸(𝑁𝑆) 

decreases with an increase in 𝛾 and increases with an increase in 𝛼, as displayed in the surface depicted. 

 

 
 

                    Figure 19. 𝜇2 vs. 𝑏 vs. 𝐸(𝑁𝑆).                                   Figure 20. 𝜇1 vs. 𝜃̅ vs. 𝐸(𝑁𝑆). 
 

 

 
 

                   Figure 21. 𝜇1 vs. 𝑏 vs. 𝐸(𝑁𝑆).                               Figure 22. 𝛾 vs. 𝛼 vs. 𝐸(𝑁𝑆).   

 

 

The efficiency of the system in terms of queue size has been investigated under varying rates of FES, SOS, 

retrial, breakdown, and repair. With the investigation carried out, we infer that a speedy recovery rate of 
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the impaired server and possible high FES, SOS and retrial rates enhance the system’s performance. This 

follows due to the resultant drastic fall in the balking of likely customers. Further, it also facilitates a good 

customer satisfaction level and takes care of the system’s revenue. 

 

8. Conclusion 
In this paper, we have investigated a M/M/1 retrial queueing system with an optional service, unreliable 

server, balking and feedback. By employing recursive techniques, the system in steady state was analysed 

to obtain the queue size distribution. Various performance measures for analysing the effectiveness of the 

proposed system have been evaluated. A model implementation with a detailed illustration of the working 

of an electrical vehicle charging station has been provided. The effects produced by the various system 

parameters on the performance metrics have been numerically and graphically illustrated. The investigation 

provides a means to enhance the system’s efficiency and reduce the likely balking of potential customers 

by controlling the relevant parameters accordingly. The study can be extended to a system with a working 

breakdown. Further, it can also be investigated for an unreliable multi server retrial queue. 
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