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Abstract  

As queueing theory and modeling deal with queue length, waiting time and busy period, that all affect costs for an in institution 

and/or a busing corporation, the optimization plays a crucial role in such models. This paper focuses on the performance modeling 

and optimal configuration of a single-server retrial queue with recurrent customers and a standby server, operating under Bernoulli 

working vacation conditions. The primary aim of the paper is to analyze the dynamics of this queueing model to achieve minimal 

operational costs while ensuring high performance. Using the supplementary variable technique (SVT), the probability generating 

functions (PGFs) and steady-state probabilities for the system's states, have been obtained enabling the development of 

comprehensive performance measures. These measures were rigorously validated through numerical examples. To complement the 

performance analysis, a cost function was formulated and optimized using advanced techniques, including the grey wolf optimizer 

(GWO), bat algorithm (BA), whale optimization algorithm (WOA), and cat swarm optimization (CSO). The results revealed that 

these algorithms successfully minimized operational costs while maintaining optimal system efficiency.  

 

Keywords- Recurrent customer, Retrial queue, Working vacation, Heuristic optimization. 

 

 

 

1. Introduction  
Queuing systems are based on queueing theory. Applications of queueing theory have changed over the 

years since it was developed for a Danish telephone company by Erlang (1909). They are areas such as 

service network, inventory systems, and reliability studies, now days that are included in operations 

research. Queueing systems also quantitatively streamlined representations of congestion that retain its 

fundamental facets. When ‘clients’ began demanding ‘service’ from a particular resource, a queueing 

system evolved organically. Firms benefit from multiple real-world applications of queuing theory. 

Considering its capacity to enhance staff, planning, and customer service, it is widely utilized as a tool in 

operations management. In this regard, many researchers have analyzed various queueing models. For 

example, one of the pioneers of queueing theory Takacs (1960, 1962, 1980) who studies variety of models 

in queueing theory such as M/G/1, and combinatorics, see Haghighi and Mohanty (2019). Furthermore, 

queueing system strives to create economically viable systems that give clients prompt reliable service. 

Clients that have their access declined typically depart the service area for a brief length of time before 

returning later. This transpires all the time in both technical and real-world contexts. Clients whose work 
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has been momentarily blocked will be held in orbit, a virtual waiting area, before attempting to occupy a 

server again. Retrial queues have been designed for this purpose. Because clients in an orbit are prone to 

working irrespective of one another, the retrial rate tends to be equivalent to the overall customers in the 

system. 

 

Numerous researchers, including Falin and Templeton (1997), have investigated retrial queue (RQ) 

approaches. Similarly, Artalejo and Corral (1999) gathered extensive information on retrial waiting times. 

Recent studies by Rajadurai (2018a), Revathi (2022), and Jain and Kumar (2023) have contributed to the 

understanding of RQ. The widespread effectiveness of queues with negative customers, often referred to as 

G-queues, in sectors such as manufacturing, healthcare, transportation, and cloud computing has attracted 

the attention of researchers like Chao and Pinedo (1999) and Harrison and Marin (2014). The term “G-

queue” was coined in recognition of Gelenbe (1989, 1991), who was a pioneer in this area, describing a 

queue where customers experience significant impacts. Many researchers have examined retrial G-queues 

in the context of server failures, including Peng et al. (2014), Li and Zhang (2017), Rajadurai (2018b), and 

Rajadurai et al. (2020). 

 

According to Farahmand (1996), there are two scenarios that can occur when dealing with returning clients 

in a retrial queue: the constant scenario, the situation where every client's recall rate stays constant 

irrespective of the number of clients in orbit, and the discouraged scenario, wherein the recall rate falls as 

the number of clients in orbit goes up. The recurrent retry queues with service option on arrival were created 

by Farahmand and Livingstone (2001). However, Moreno (2004) investigated an M/G/1 retrial queue with 

a set number of recurring customers, K, K > 0, who upon receiving service, promptly re-enter the orbit, and 

transit users, who, shortly after been served, ultimately depart the system. Recently, Saggou et al. (2017) 

developed the performance metrics for such queueing system by considering two types of consumers using 

a server prone to failures and delayed repairs. 

 

To implement a vacation queueing mechanism, a server must temporarily suspend all services and become 

unavailable to its primary customers. This time away from work is referred to as a vacation. However, 

during working vacation (WV) periods, the server continues to provide service to customers at a reduced 

rate. The integration of this queuing system has significant implications for various sectors, including 

networking, online services, file transfers, and postal deliveries. Rajadurai (2018b) introduced a novel 

retrial queue (RQ) model that incorporates breaks and WV. Li et al. (2019) examined an M/G/1 RQ with 

standard retry times and interruptions due to Bernoulli working vacations. Rajadurai (2019) discussed the 

steady-state analysis of a single-server priority RQ in the context of Bernoulli working vacations, where a 

typically busy server may be unavailable due to maintenance or failure. Gupta and Kumar (2021) evaluated 

different customer balking probabilities in high-traffic scenarios under the vacation interruption policy, 

recognizing both normal and Bernoulli working vacation modes. Additionally, Haghighi et al. (2025) 

studied time-dependent bulk arrivals with limited batch service, including reneging and setup times for 

service.  

 

Moreover, it is challenging to predict when the system will experience a breakdown. In this research, it has 

been assumed that in the event of a system failure, the client whose service was interrupted is returned to 

the front of the queue. Additionally, the standby server is assigned to take over immediately once it becomes 

available for service. Radha et al. (2020) explored a queueing model that included batch arrivals with 

retrials, multiple optional service phases, extended Bernoulli vacations, and a standby server. Additionally, 

Maragathasundari et al. (2020) examined the effects of service disruptions and the function of the standby 

server within queuing models. Finally, Meena and Ayyappan (2024) conducted an analysis of a single-

server preemptive priority queue that incorporated phase-type vacations, repairs, feedback, working 
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breakdowns, closures, and impatient customers. 

1.1 What is Novelty in this Article? 
This article falls into the area of operations research, optimization techniques, and the queueing theory. 

Here are novelties of this article: 

(i) Fulfilling the key gap in the cost optimization of our systems under complex scenarios like working 

vacations and server failures. While cost functions have been studied in retrial queues, there has been 

no significant work on developing advanced cost minimization techniques specifically tailored for 

retrial G-queues with recurrent customers in vacation modes. 

 

(ii)  The introduction of advanced metaheuristic algorithms such as Grey Wolf Optimizer (GWO), Bat 

Algorithm (BA), Whale Optimization (WO), and Cat Swarm Optimization (CSO) for minimizing the 

operational costs in these systems represents a novel contribution to the field. These algorithms can 

handle the complexity of nonlinear optimization problems, offering better convergence properties and 

solution quality compared to traditional methods, yet they have not been widely applied to retrial queues 

with vacation mechanisms. 

 

(iii) To evaluate the orbit size and queue length distributions to aid in the development and evaluation of 

novel metrics to gauge system behavior. 

 

(iv) Application of the supplementary variable technique (SVT) to analyze the recurrent customer vacation 

process marks a significant advancement in queueing theory. As expected, by employing SVT, the 

probability generating functions (PGFs) and steady-state probabilities for various system states have 

been successfully derived. Although SVT have been used in solving many queueing models, for our 

model, it is a novel approach not only provides a robust mathematical framework for understanding 

customer behavior but also enhances the analytical capabilities in evaluating complex queueing 

systems. The derived PGFs offer valuable insights into the expected number of customers in various 

states, facilitating better decision-making in operational management. 

 

1.2 Development of Cost Optimization Models in Queue 
“Optimization” refers to the process of identifying the best solution for a fitness function. Cost optimization 

(CO) is a business-oriented, ongoing process aimed at reducing expenses while enhancing corporate value. 

It involves securing the most favorable pricing and terms for all business transactions, as well as 

streamlining and rationalizing platforms, applications, processes, and services. In practice, operating costs 

are closely linked to revenue. To maximize financial success, system developers or administrators prioritize 

minimizing operational expenses per unit of time.  

 

Sanga and Jain (2019) recently explored the admission strategy within a single-server queueing framework 

with finite capacity, where dissatisfied customers retry and the retry times are widely variable. They 

generated a cost function to evaluate the optimal service rate and its associated expected costs. To minimize 

the system’s projected costs, they determined the optimal decision parameter for the service rate using a 

genetic algorithm (GA) and the Quasi-Newton method (QNM). Malik et al. (2021) investigated a bulk 

retrial G-queue incorporating repairman delays, Bernoulli feedback (BF), and a reliance on volunteer 

services. They also applied particle swarm optimization (PSO) to lower costs. Deora et al. (2021) assessed 

a machining system with standby provisioning, feedback, and a server vacation plan that allowed for regular 

working hours. They developed a CO function aimed at achieving optimal performance. The PSO approach 

was prominently utilized to obtain optimal operating conditions while considering commercial performance 

and minimizing projected costs. Laxmi and Jyothsna (2022) proposed a model for an unlimited buffer 

impatient client queue with a second optional service (SOS) and scheduled time off. They identified the 
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ideal server service rates using the PSO method to further reduce the system’s total expected costs. 

Certain realistic components, such as batch arrival, regular service, balking, WV, and unstable server, have 

been incorporated into queueing model Jain and Kumar (2022). A sensitivity analysis and a CO adopting 

the PSO approach have been created to further evaluate the model’s potential. Vaishnawi et al. (2022) 

explored the ANFIS computing of an unstable single server queueing model that included several stage 

service and operational vacation. A nonlinear cost function is additionally created, and its reduction using 

the quasi-Newton technique is examined. Ahuja et al. (2022) analyzed the efficiency of a discrete queueing 

system for the recurrent customers with BF and two distinct types of vacations. On top of that, they 

employed graphical representations to assess the convergence of various optimization algorithms, that 

include direct search (DS), PSO, ABC, Cuckoo search (CS), and GA, in the quest for the best (optimal) 

system cost. Kumar and Jain (2023) discovered an unstable Markovian queueing model with a two-stage 

service process and an HV policy. Besides, a cost function has been built that reflects the best possibilities 

for the service system’s decision variables. Applying PSO and ABC optimization algorithms, the optimal 

service rates at the lowest possible price are computed. 

 

1.3 Motivation and Scope 
The research gap identified in the current literature on retrial queue systems involves the lack of attention 

to the behavior of recurrent customers under vacation modes, particularly in the context of G-queues 

(queues with negative customers). While numerous studies have been conducted on retrial queues, most 

focus on standard customer behaviors and system conditions without incorporating vacation mechanisms, 

where the server may take periodic breaks or operate at reduced capacity (e.g., working vacations). These 

gaps are crucial because in many real-world applications, servers experience downtime, either planned or 

unplanned, and customers may attempt to rejoin the queue after being blocked or denied service. This 

dynamic has significant implications for system performance and cost efficiency, yet it has not been fully 

explored.  

 

Specifically, while some works, like those of Farahmand (1996) and Moreno (2004), delve into the retry 

behavior of customers in retrial queues, none have investigated how recurrent customers behave when the 

system is in vacation mode, such as during a Bernoulli working vacation. This oversight leaves a gap in 

understanding how recurrent customers interact with a system that intermittently operates at reduced 

capacity and how this affects system performance, especially in terms of congestion and customer waiting 

times.  

 

Additionally, another key gap lies in the cost optimization of such systems under complex scenarios like 

working vacations and server failures. While cost functions have been studied in retrial queues, there has 

been no significant work on developing advanced cost minimization techniques specifically tailored for 

retrial G-queues with recurrent customers in vacation modes. The introduction of advanced metaheuristic 

algorithms such as Grey Wolf Optimizer (GWO), Bat Algorithm (BA), Whale Optimization (WO), and Cat 

Swarm Optimization (CSO) for minimizing the operational costs in these systems represents a novel 

contribution to the field. These algorithms can handle the complexity of nonlinear optimization problems, 

offering better convergence properties and solution quality compared to traditional methods, yet they have 

not been widely applied to retrial queues with vacation mechanisms. Thus, the aim of this work is to 

evaluate the orbit size and queue length distributions to aid in the development and evaluation of novel 

metrics to gauge system behavior. 

 

The structure of our article is as follows: Once these conditions are met, a comprehensive description of the 

queueing paradigm in Section 2 has been provided. Detailed explanations of the system’s steady state (SS) 

behavior and the PGF of the queue size are provided in Section 3. Indicators of key system behaviors are 
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compiled in Section 4. In Section 5, the results are shown numerically and graphically. In Section 6, GWO, 

BA, WO and CSO are used to produce the final numerical results and cost analysis. Section 7 provides a 

concise overview of the paper’s main points. 

 

1.4 Methodology 
This study focuses on analyzing a single-server retrial queue with recurrent customers and a standby server, 

operating under Bernoulli working vacation conditions. The methodology followed these steps: 

 

1.4.1 Queueing System Modeling 
The system was modeled using the supplementary variable technique. The states of the system were defined 

based on customer arrivals, server status (busy, idle, or on vacation), and retrial behavior. Customer arrivals 

were assumed to follow a Poisson process, while service times were considered to follow an exponential 

distribution. The server's vacation periods were modeled using a Bernoulli process, where the server could 

either continue providing service at a reduced rate during vacations or remain idle. 

 

1.4.2 State Transition Analysis 
The system's behavior was analyzed through balance equations that represent the probabilities of transitions 

between different states. These equations were solved iteratively to obtain the steady-state probabilities for 

each system state. 

 

1.4.3 Performance Measures 
Key performance measures were derived from the steady-state probabilities. These included metrics such 

as the average number of customers in the orbit, server utilization, average waiting time in the system, and 

system throughput. These performance measures were validated through both graphical and tabular 

analyses to ensure their reliability. 

 

1.4.4 Cost Function Development 
A cost function was formulated to capture the trade-offs between operational efficiency and customer 

satisfaction. The cost function considered factors such as server maintenance costs, customer retrial delays, 

and the impact of server vacations. 

 

1.4.5 Optimization Techniques 
The cost function was minimized using multiple optimization algorithms, including the grey wolf optimizer, 

bat algorithm, whale optimization algorithm, and cat swarm optimization. Each algorithm's parameters 

were fine-tuned to ensure optimal performance, and multiple iterations were conducted to evaluate the 

effectiveness of each technique. 

 

1.4.6 Validation and Comparison 
The optimization results were validated through independent runs, and the convergence behavior of each 

algorithm was analyzed. Performance plots were generated to compare the efficiency, speed, and stability 

of the algorithms in minimizing the cost function. 

 

1.4.7 Tools and Software 
Numerical computations and optimization simulations were performed using MATLAB. Graphical 

representations of results, such as convergence curves and performance metrics, were also created using 

MATLAB's visualization tools. 
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1.4.8 Reproducibility 
Detailed information about the parameters, initial conditions, and configurations of the optimization 

algorithms was documented to enable the study to be reproduced. Key parameter values, such as arrival 

rates, service rates, and vacation probabilities, were clearly specified in the corresponding tables. 

 

This structured methodology ensures a comprehensive analysis of the retrial queue system while providing 

a foundation for further research in this area. 

 

2. Description of the Model and its Real-world Application 
Under Bernoulli working vacation policy, a M/G/1 retrial G-queue with recurrent customers and standby 

server model will be analyzed. A comprehensive outline of our model is given below: 

 

2.1 Arrival Process 
The system receives three types of consumers: regular consumers (also known as transmit consumers), 

disasters (negative consumers), and a fixed number of recurrent consumers (permanent consumers). It is 

assumed that transit and negative consumers enter the system from external sources at rates α and β, 

respectively, following independent Poisson processes. 

 

2.2 Retrial Process 
When a positive and transmit customer arrives at the server and sees that it is empty, the customer can begin 

service immediately. If the server is already at capacity or providing slower than expected service, new 

customers will be added to a group of blocked customers known as an orbit and will have to wait in queue 

behind the client at the front of the orbit queue before being granted access to the server. The periods 

between trials follow a random distribution, denoted by H(x), which is transformed using the Laplace 

Stieltjes Transform (LST) as H∗(ϕ). 

 

2.3 Regular Service Process 
When a server is in an idle state, standard service is resumed as soon as a new positive or a recurrent 

customer arrives. The service times of the transit customers, represented by the random variable X is 

assumed to have a general distribution function denoted by F1(x), its LST as 
*

1 ( )F   and its nth moments as 

1 .n  

 

The system has a fixed number, M, of recurrent clients. Recurring clients instantly rejoin the retrial group 

after being served, in compliance with an FCFS discipline. It is presumed that access to the server is 

restricted to just the recurrent client at the top of the orbit. The group’s top repeat client calls back after a 

period of time that follows an exponential distribution with a mean of 1/γ. The service times of the recurrent 

customers represented by the random variable Y  is assumed to have a general distribution function denoted 

by 
2 ( )F y , its LST as *

2 ( )F   and its nth moments as 2 .n  

 

2.4 Working Vacation (WV, Service during the Server’s Vacation) 
The server goes on vacation if the orbit is free. Vacation time has an exponential distribution function with 

rate of .  While on vacation, the server can yet perform service but with slower rate. This duration is 

referred to as the working vacation period and is denoted briefly by WV period. Furthermore, the vacation 

will be halted and the server will get back to normal operations with its general distribution F1(x) while on 



Mathavavisakan et al.: Swarm based Heuristic Optimization of the Recurrent Customers and… 
 

 

937 | Vol. 10, No. 4, 2025 

vacation unless any orbital consumer joins the system. 

Now, when the server’s vacation ends and there is no consumer in the system, one of the following cases 

may happen according to Bernoulli distribution: 

(i) With probability q, the server stays idle until a new consumer arrives, in which case the customer will 

receive the regular service, which in this case the server has taken a single WV with general service 

distribution function F1(x) and its LST by 
*

1 ( )F  , otherwise,  

(ii) With probability p = 1- q departs for another WV, in which case the server is taking multiple WV. The 

service times during the multiple WV by V with a general distribution function denoted by ( ),VF v  and 

its LST dented by *( )vF   have been represented. 

 

2.5 Removal Rule and Breakdown Process 
The negative consumers (disasters) only arrive during the usual service periods for the positive clients. 

Negative customers will eliminate positive customers from the system while they are still in service, who 

cannot build up a wait and prevent them from receiving service. These kinds of unfavorable clients bring 

about server failure, which results in a brief outage of the service channel. The breakdown rate indicated 

by the symbol η. 

 

2.6 Repair Process 
The repair process begins right away following the breakdown and doesn’t wait any longer. The repair times 

are independent and identical distributed random variables which are general distributed with PDF G(x) 

and its LST as G∗(ϕ). 

 

2.7 Standby Server 
When the primary server is under maintenance, clients continue to receive service from a standby server. 

The standby service rates are ϑ > 0, with mean standby service times of 1/ϑ, which leads to an exponential 

distribution for the standby service times. Upon the return of the primary server after an outage, the client 

who was being served by the standby server is transferred to the primary server to restore service.  

 

The stochastic processes are regarded as completely independent from one another. Figure 1 provides a 

visual representation of the model, demonstrating that the stochastic processes within the system operate 

independently.  
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Figure 1. Pictorial representation of the model. 

3. Practical Application of the Model 
The primary domain of use for retrying queueing systems is in the realm of telecommunications. This 

research has implications for other information processing systems, including warehouse order processing 

systems. Client places an order for product (positive customer) in the production order system; other clients 

cancel purchases (negative customer) due to financial crisis or other concerns.  

 

The Poisson process is assumed to govern the ordering scheme. Instead of wasting resources verifying the 

server’s availability before allowing new customers to join the orbit, it may be more efficient to permit 

some new customers to join the orbit immediately upon arrival if the system is particularly busy. To address 

this, a policy of checking the server at intervals is implemented to prevent deadlock between commands 

examining the server. Repeat purchases can be represented as recurrent customers. In a queueing system 

where customers remain in constant contact with the server, they might reasonably expect the server to stay 

busy as long as there are people waiting in line. However, in systems where customers are not in continuous 

contact with the server, this expectation may not hold. There could be as many clients in the orbit as there 

are servers available to serve them if all clients must wait for the server to call them for assistance. If a 

breakdown occurs during service, all server operations will cease. In such cases, the server will be repaired 

as quickly as possible. Once maintenance is completed, the server will resume its normal operation, 

transitioning between busy and vacation modes as needed. 

 
To further improve manufacturing plant productivity (during vacations), the management plan includes 

establishing a supplementary employment facility. Production will cease right away as the final client is 

serviced and the system is idle, and it won't resume unless the plant is needed for discretionary work (a 

single WV) at a reduced rate (a slower service rate). Following a disaster or the completion of an optional 

project, the factory will restart regular operations, albeit more slowly, until new orders (multiple WVs) are 

received. Once the factory’s optional works are finished (vacation interruption), primary production can 

restart on a fresh order. The employment of such a tool is quite helpful for maximizing production facility 

productivity and preventing unnecessary strain. 

 

4. Steady-state Probabilities 
By factoring in the elapsed retrial times, elapsed regular service times, elapsed slower rate service are taken 

as a supplementary variable to formulates the steady-state (SS) equations for the retrial system. Next, the 

PGF for the total number of consumers in the system and orbit is calculated, as well as the orbit size 

generating functions (GFs) for each of the possible server states. 

 

Below, most of the essential notations, including the new probabilities, being using are listed with their 

definitions for the comfort of readers: 

 

Notations Explanations 

𝛼 Arrival rate of transit consumers (Poisson process) 

𝛽 Arrival rate of negative consumers (Poisson process) 

𝑀 Number of recurrent customers 

𝛾 Mean time for recurrent customer to return to orbit  

𝜃 Rate of the server's vacation time (exponential distribution) 

𝑞 Probability that the server stays idle after a vacation  

𝑝 = 1 − 𝑞 Probability that the server departs for another vacation 

𝜂 Breakdown rate of the server 
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𝜗 Service rate of the standby server 

ℎ(𝑥) Retrial completion rate function 

𝜎𝑖(𝑥) Service completion rate function during normal service for the ith server 

𝜎𝑣(𝑥) Service completion rate function during working vacation  

𝜒𝑖(𝑥) Repair completion rate function for the ith server 

Φ{𝑖,𝑛}(𝑥, 𝑡) Probability of n customers with x during retrial time t 

Ω{𝑖,𝑛}(𝑥, 𝑡) 

 

Probability of n customers with x during TCS (Transit Customer Service) and RCS 

(Recurrent Customer Service) at time 𝑡 on normal busy period 

Υ{𝑖,𝑛}(𝑥, 𝑡) Probability of n customers with x during vacation time t 

Ψ{𝑖,𝑛}(𝑥, 𝑡) Probability of n customers with x during repair in TCS and RCS at time t on repair 

period 

 

4.1 The Steady-State Equations 
By assumption, SS performs under the premise that 𝐻(0) = 0 , 𝐻(∞) = 1 , 𝐹1(0) = 0 , 𝐹1(∞) = 1 , 

𝐹2(0) = 0 , 𝐹2(∞) = 1 , 𝐹𝑣(0) = 0 , 𝐹𝑣(∞) = 1  and 𝐺𝑖(0) = 0 , 𝐺𝑖(∞) = 1 , 𝑖 = 1,2  are continuous at 𝑥 =
0. Accordingly, the completion rates for retrial, regular service, vacation, and repair are represented by the 

functions ℎ(𝑥), 𝜎𝑖(𝑥), 𝜎𝑣(𝑥) and 𝜒𝑖(𝑥), = 1,2, and 𝛽𝑟2(𝑥), respectively. 
 

ℎ(𝑥)𝑑𝑥 =
𝑑𝐻(𝑥)

1 − 𝐻(𝑥)
;    𝜎𝑖(𝑥)𝑑𝑥 =

𝑑𝐹𝑖(𝑥)

1 − 𝐹𝑖(𝑥)
, 𝑖 = 1,2; 

𝜎𝑣(𝑥)𝑑𝑥 =
𝑑𝐹𝑣(𝑥)

1 − 𝐹𝑣(𝑥)
;    𝜒𝑖(𝑥)𝑑𝑥 =

𝑑𝐺𝑖(𝑥)

1 − 𝐺𝑖(𝑥)
, 𝑖 = 1,2. 

 

Apart from it, let H0(t), Fi
0(t), Fv

0(t) and G0
i (t) be the elapsed retrial times, the elapsed times of normal 

service and the elapsed vacation times, elapsed repair time respectively at time t. Furthermore, the random 

variable generated by, 

Π(𝑡) =

{
  
 

  
 
0, the server is idle and in WV mode,
1, the server is idle and in normal service mode,
2, the server is full and transit customer service (TCS) mode,
3, the server is full and recurrent customer service (RCS)mode,
4, the server is full and in working vacation mode,
5, the server is in repair in transit mode, and
6, the server is in repair in recurrent mode.

 

 

Thus, the SV 𝐻0(𝑡) , 𝐹𝑖
0(𝑡) , 𝐹𝑣

0(𝑡)  and 𝐺𝑖
0(𝑡), 𝑖 = 1,2  a bivariate Markov method should be constructed 

{Π(𝑡), ℵ(𝑡); 𝑡 ≥ 0}, here Π(𝑡) denote the system state (0,1,2,3,4,5,6) depend on accessibility of the server 

during the idle or busy on regular service in TCS, RCS, WV and repair periods. ℵ(𝑡) denotes the number 

of customers in the orbit. If Π(𝑡) = 1 and ℵ(𝑡) > 0, then 𝐻0(𝑡) is relates to the elapsed retrial time. If 

Π(𝑡) = 2 and ℵ(𝑡) ≥ 0, then 𝐹1
0(𝑡) is relates to the elapsed time of customer being served in TCS during 

regular busy period. If Π(𝑡) = 3 and ℵ(𝑡) ≥ 0, then 𝐹2
0(𝑡) is relates to the elapsed time of customer being 

served in RCS during regular busy period. If Π(𝑡) = 4 and ℵ(𝑡) ≥ 0, then 𝐹𝑣
0(𝑡) is relates to the elapsed 

time of the customer being served in vacation rate service period. If Π(𝑡) = 5,6  and ℵ(𝑡) ≥ 0 , then 

𝐺𝑖
0(𝑡), 𝑖 = 1,2 is relates to the elapsed time of the server is in repair mode during TCS and RCS. 

 

Theorem 4.1 

The embedded Markov chain (MC) {𝐴𝑛; 𝑛𝜖𝑁} is ergodic if and only if Θ < 𝛼 + 𝛾, which guarantees that 
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the system remains stable. In other words, the system will operate without instability as long as Θ stays 

below the sum of 𝛼 and 𝛾, where, 

Θ = (𝛼 + 𝛾𝐻∗(𝛼 + 𝛾)) {
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))} − (1 − 𝐻∗(𝛼 + 𝛾)) 

. {𝛼 + 𝛾[𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))]}. 

 

Proof 

It is quite easy to verify the necessary condition of ergodicity by employing Pakes (1969) criterion, which 

asserts that the chain {𝒜𝑛; 𝑛 ∈ 𝒩} is an irreducible and aperiodic. The mean value is provided below, with 

a assumption that a non-negative measure 𝑒(𝜀), 𝜀 ∈ 𝒩 and 𝜖 > 0, and the MC is ergodic, 

𝜑𝜀 = ℰ [𝑒(𝑣𝑛+1) −
𝑒(𝑣𝑛)

𝑣𝑛
= 𝜀], 

 

with the limited exception 𝜀′ s, 𝜀 ∈ 𝑁  and 𝜑𝜀 ≤ −∈  ∀  𝜀 ∈ 𝒩 . In such scenario, 𝑒(𝜀) = 𝜀  Is taken. As a 

result, the following is obtained: 

𝜑𝜀 = {
Θ − 1, if ε = 0,
Θ − (𝛼 + 𝛾), if ε = 1,2,… .

. 

 

Yet, it is evident that Θ < (𝛼 + 𝛾) requires ergodicity. Sennott et al. (1983) states that the prerequisite is 

satisfied if MC {𝒜𝑛; 𝑛𝜖𝒩}  fits Kaplan's status, which is typically 𝜑𝜀 < ∞,  ∀  𝜀 ≥ 0  and there exists an 

𝜀0 ∈ 𝒩  s.t 𝜑𝜀 ≥ 0  for 𝜀 ≥ 𝜀0 . Here, 𝒲 = (𝑤𝑚𝜀)  denotes the unit-step transition matrix (UTM) of 

{𝒜𝑛; 𝑛 ∈ 𝒩} for 𝜀 < 𝑚 − 𝑖 and 𝑚 > 0. Thus, Θ ≥ (𝛼 + 𝛾) provides the non-ergodicity of the MC.  

 

The duration of transition between service intervals denoted by {𝑡𝑛; 𝑛 = 1,2, . . . }. Consequently, using a 

number of arbitrary vectors 𝐴𝑛 = {Π(𝑡𝑛+), ℵ(𝑡𝑛+)}, a Markov chain has formed and incorporated in the 

RQ system. As a result of Theorem 4.1 {𝐴𝑛; 𝑛 ∈ 𝑁} is ergodic iff Θ < 𝛼 + 𝛾, to maintain the stable system, 

where: 

Θ = (𝛼 + 𝛾𝐻∗(𝛼 + 𝛾)) {
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))} − (1 − 𝐻∗(𝛼 + 𝛾)){𝛼 + 𝛾[𝐹2
∗(𝛽) +

𝛼

𝛽
(1

+ 𝜂𝐸(𝐺2))(1 − 𝐹2
∗(𝛽))]}. 

 

For the method {ℵ(𝑡), 𝑡 ≥ 0},  the probabilities Φ0,𝑀(𝑡) = 𝑃{Π(𝑡) = 0, ℵ(𝑡) = 0}  and the probability 

density functions are specified as: 
 

Φ𝑛(𝑥, 𝑡)𝑑𝑥 = 𝑃{Π(𝑡) = 1, ℵ(𝑡) = 𝑛, 𝑥 ≤ 𝐻0(𝑡) < 𝑥 + 𝑑𝑥}, 
                                                                                                  for 𝑡 ≥ 0, 𝑥 ≥ 0 and 𝑛 ≥ 1.  

 

Ω𝑖,𝑛(𝑥, 𝑡)𝑑𝑥 = 𝑃{Π(𝑡) = 2,3, ℵ(𝑡) = 𝑛, 𝑥 ≤ 𝐹𝑖
0(𝑡) < 𝑥 + 𝑑𝑥}, 

                                                                                                  for 𝑡 ≥ 0, 𝑥 ≥ 0, 𝑖 = 1,2 and 𝑛 ≥ 0.  

 

Υ𝑣,𝑛(𝑥, 𝑡)𝑑𝑥 = 𝑃{Π(𝑡) = 4, ℵ(𝑡) = 𝑛, 𝑥 ≤ 𝐹𝑣
0(𝑡) < 𝑥 + 𝑑𝑥}, 

                                                                                                  for 𝑡 ≥ 0, 𝑥 ≥ 0 and 𝑛 ≥ 0.  

 

Ψ𝑖,𝑛(𝑥, 𝑡)𝑑𝑥 = 𝑃{Π(𝑡) = 5,6, ℵ(𝑡) = 𝑛, 𝑥 ≤ 𝐺𝑖
0(𝑡) < 𝑥 + 𝑑𝑥}, 

                                                                            for 𝑡 ≥ 0, 𝑥 ≥ 0, 𝑖 = 1,2 and 𝑛 ≥ 0. 
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The resources may be alloted, if the sequel meets the stability requirement Φ0,𝑀 = 𝑙𝑖𝑚𝑡→∞Φ0,𝑀(𝑡) and the 

density functions that limit are: 

Φ𝑛(𝑥) = 𝑙𝑖𝑚𝑡→∞Φ𝑛(𝑥, 𝑡);     Ω𝑖,𝑛(𝑥) = 𝑙𝑖𝑚𝑡→∞Ω𝑖,𝑛(𝑥, 𝑡), 𝑖 = 1,2; 

Υ𝑣,𝑛(𝑥) = 𝑙𝑖𝑚𝑡→∞Υ𝑣,𝑛(𝑥, 𝑡);     Ψ𝑖,𝑛(𝑥) = 𝑙𝑖𝑚𝑡→∞Ψ𝑖,𝑛(𝑥, 𝑡), 𝑖 = 1,2. 

 

By employing SVT, the following system of equations will be generated: 

(𝛼 + 𝛾)Φ0,𝑀 = 𝜅̅ ∫
∞

0
Ω1,𝑀(𝑥)𝜎1(𝑥)𝑑𝑥 + 𝜅̅ ∫

∞

0
Ω2,𝑀−1(𝑥)𝜎2(𝑥)𝑑𝑥 + ∫

∞

0
Υ𝑣,0(𝑥)𝜎𝑣(𝑥)𝑑𝑥                         (1) 

𝑑

𝑑𝑥
Φ𝑛(𝑥) + (𝛼 + 𝛾 + ℎ(𝑥))Φ𝑛(𝑥) = 0, 𝑛 ≥ 𝑀 + 1                                                                                       (2) 

𝑑

𝑑𝑥
Ω1,𝑛(𝑥) + (𝛼 + 𝛽 + 𝜂 + 𝜎1(𝑥))Ω1,𝑛(𝑥) = 𝛼(1 − 𝛿𝑛,𝑀)Ω1,𝑛−1(𝑥) + ∫

∞

0
Ψ1,𝑛(𝑥)𝜒1(𝑥)𝑑𝑥, 𝑛 ≥ 𝑀     (3) 

𝑑

𝑑𝑥
Ω2,𝑛(𝑥) + (𝛼 + 𝛽 + 𝜂 + 𝜎2(𝑥))Ω2,𝑛(𝑥) = 𝛼(1 − 𝛿𝑛,𝑀−1)Ω2,𝑛−1(𝑥) + ∫

∞

0
Ψ2,𝑛(𝑥)𝜒2(𝑥)𝑑𝑥, 𝑛 ≥ 𝑀 − 1 (4) 

𝑑

𝑑𝑥
Υ𝑣,𝑛(𝑥) + (𝛼 + 𝜔 + 𝜎𝑣(𝑥))Υ𝑣,𝑛(𝑥) = 𝛼(1 − 𝛿𝑛,𝑀)Υ𝑣,𝑛−1(𝑥), 𝑛 ≥ 𝑀                                                     (5) 

𝑑

𝑑𝑥
Ψ1,𝑛(𝑥) + (𝛼 + 𝜗 + 𝜒1(𝑥))Ψ1,𝑛(𝑥) = 𝜗Ψ1,𝑛(𝑥) + 𝛼(1 − 𝛿𝑛,𝑀)Ψ1,𝑛−1(𝑥), 𝑛 ≥ 𝑀                               (6) 

𝑑

𝑑𝑥
Ψ2,𝑛(𝑥) + (𝛼 + 𝜗 + 𝜒2(𝑥))Ψ2,𝑛(𝑥) = 𝜗Ψ2,𝑛(𝑥) + 𝛼(1 − 𝛿𝑛,𝑀)Ψ2,𝑛−1(𝑥), 𝑛 ≥ 𝑀 − 1                            (7) 

 

Then, at 𝑥 = 0, the SS boundary conditions are as follows: 

Φ𝑛(0) = ∫
∞

0
Ω1,𝑛(𝑥)𝜎1(𝑥)𝑑𝑥 + ∫

∞

0
Ω2,𝑛−1(𝑥)𝜎2(𝑥)𝑑𝑥 + ∫

∞

0
Υ𝑣,𝑛(𝑥)𝜎𝑣(𝑥)𝑑𝑥, 𝑛 ≥ 𝑀 + 1                  (8) 

 Ω1,𝑛(0) = ∫
∞

0
Φ𝑛+1(𝑥)ℎ(𝑥)𝑑𝑥 + 𝛼(1 − 𝛿𝑛,𝑀)∫

∞

0
Φ𝑛(𝑥)𝑑𝑥 +  𝜔 ∫

∞

0
Υ𝑣,𝑛(𝑥)𝑑𝑥 + 𝛼𝛿𝑛,𝑀Φ0,𝑀, 𝑛 ≥ 𝑀     (9) 

 Ω2,𝑛(0) = (1 − 𝛿𝑛,𝑀−1)𝛾 ∫
∞

0
Φ𝑛+1(𝑥)𝑑𝑥 + 𝛾𝛿𝑛,𝑀−1Φ0,𝑀, 𝑛 = 0                                                          (10) 

 Υ𝑣,𝑛(0) = {
𝛼Φ0, 𝑛 = 0,
0, 𝑛 ≥ 1,

                                                                                                                         (11) 

 Ψ1,𝑛(0) = 𝜂Ω1,𝑛(𝑥), 𝑛 ≥ 𝑀                                                                                                                      (12) 

 Ψ2,𝑛(0) = 𝜂Ω2,𝑛(𝑥), 𝑛 ≥ 𝑀 − 1                                                                                                               (13) 

where, ,i j  denotes the Kroneker’s delta function. 

 

The normalizing condition is: 

Φ0,𝑀 + ∑

∞

𝑛>𝑀

∫
∞

0

Φ𝑛(𝑥)𝑑𝑥 + ∑

∞

𝑛≥𝑀

(∫
∞

0

Ω1,𝑛(𝑥)𝑑𝑥 + ∫
∞

0

Υ𝑣,𝑛(𝑥)𝑑𝑥 + ∫
∞

0

Ψ1,𝑛(𝑥)𝑑𝑥) 

                                                                         + ∑

∞

𝑛≥𝑀−1

(∫
∞

0

Ω2,𝑛(𝑥)𝑑𝑥 + ∫
∞

0

Ψ2,𝑛(𝑥)𝑑𝑥) = 1. 

 

4.2 The Steady-State Solution 
The probability generating function (PGF) approach is applied to determine the SS solution to the RQ 
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model. The PGFs for |𝑧̃| ≤ 1 in the preceding equations are described accordingly as:  

Φ(𝑥, 𝑧̃) = ∑∞𝑛>𝑀 Φ𝑛(𝑥)𝑧̃
𝑛;     Φ(0, 𝑧̃) = ∑∞𝑛>𝑀 Φ𝑛(0)𝑧̃

𝑛;  

Ω1(𝑥, 𝑧̃) = ∑
∞
𝑛≥𝑀 Ω1,𝑛(𝑥)𝑧̃

𝑛;     Ω1(0, 𝑧̃) = ∑
∞
𝑛≥𝑀 Ω1,𝑛(0)𝑧̃

𝑛;  

Ω2(𝑥, 𝑧̃) = ∑
∞
𝑛≥𝑀−1 Ω1,𝑛(𝑥)𝑧̃

𝑛;     Ω2(0, 𝑧̃) = ∑
∞
𝑛≥𝑀−1 Ω1,𝑛(0)𝑧̃

𝑛;  

Υ𝑣(𝑥, 𝑧̃) = ∑
∞
𝑛≥𝑀 Υ𝑣,𝑛(𝑥)𝑧̃

𝑛;     Υ𝑣(0, 𝑧̃) = ∑
∞
𝑛≥𝑀 Υ𝑣,𝑛(0)𝑧̃

𝑛;  

Ψ1(𝑥, 𝑧̃) = ∑
∞
𝑛≥𝑀 Ψ1,𝑛(𝑥)𝑧̃

𝑛;     Ψ1(0, 𝑧̃) = ∑
∞
𝑛≥𝑀 Ψ1,𝑛(0)𝑧̃

𝑛, 𝑖 = 1,2;  

Ψ2(𝑥, 𝑧̃) = ∑
∞
𝑛≥𝑀−1 Ψ1,𝑛(𝑥)𝑧̃

𝑛;     Ψ2(0, 𝑧̃) = ∑
∞
𝑛≥𝑀−1 Ψ1,𝑛(0)𝑧̃

𝑛, 𝑖 = 1,2.  

 

Now, from (2) to (13), multiply the SS equation and SS boundary conditions by 𝑧̃𝑛  and sum over 𝑛 , 
(𝑛 = 0,1,2, . . . ), are obtain as:  
𝜕

𝜕𝑥
Φ(𝑥, 𝑧̃) + (𝛼 + 𝛾 + ℎ(𝑥))Φ(𝑥, 𝑧̃) = 0                                                                                                 (15) 

𝜕

𝜕𝑥
Ω1(𝑥, 𝑧̃) + (𝛽 + 𝜂 + 𝛼(1 − 𝑧̃) + 𝜎1(𝑥))Ω1(𝑥, 𝑧̃) − ∫

∞

0
Ψ1,𝑛(𝑥)𝜒1(𝑥)𝑑𝑥 = 0                                    (16) 

𝜕

𝜕𝑥
Ω2(𝑥, 𝑧̃) + (𝛽 + 𝜂 + 𝛼(1 − 𝑧̃) + 𝜎2(𝑥))Ω2(𝑥, 𝑧̃) − ∫

∞

0
Ψ2,𝑛(𝑥)𝜒2(𝑥)𝑑𝑥 = 0                                     (17) 

𝜕

𝜕𝑥
Υ𝑣(𝑥, 𝑧̃) + (𝜔 + 𝛼(1 − 𝑧̃) + 𝜎𝑣(𝑥))Υ𝑣(𝑥, 𝑧̃) − ∫

∞

0
Ψ2,𝑛(𝑥)𝜒2(𝑥)𝑑𝑥 = 0                                              (18) 

 
𝜕

𝜕𝑥
Ψ1(𝑥, 𝑧̃) + (𝜗(1 −

1

𝑧̃
) + 𝛼(1 − 𝑧̃) + 𝜒1(𝑥))Ψ1(𝑥, 𝑧̃) = 0                                                                     (19) 

 
𝜕

𝜕𝑥
Ψ2(𝑥, 𝑧̃) + (𝜗(1 −

1

𝑧̃
) + 𝛼(1 − 𝑧̃) + 𝜒2(𝑥))Ψ2(𝑥, 𝑧̃) = 0                                                                  (20) 

Φ(0, 𝑧̃) = ∫
∞

0
Ω1(𝑥, 𝑧̃)𝜎1(𝑥)𝑑𝑥 + 𝑧̃ ∫

∞

0
Ω2(𝑥, 𝑧̃)𝜎2(𝑥)𝑑𝑥 − 𝛽{∫

∞

0
Ω1(𝑥, 𝑧̃)𝑑𝑥 + 𝑧̃ ∫

∞

0
Ω2(𝑥, 𝑧̃)𝑑𝑥} +

𝑧̃ ∫
∞

0
Υ𝑣(𝑥, 𝑧̃)𝜎𝑣(𝑥)𝑑𝑥 − (𝛼 + 𝛾)Φ0,𝑀𝑧̃

𝑀                                                                                               (21) 

Ω1(0, 𝑧̃) =
1

𝑧̃
∫
∞

0
Φ(𝑥, 𝑧̃)ℎ(𝑥)𝑑𝑥 + 𝛼 ∫

∞

0
Φ(𝑥, 𝑧̃)𝑑𝑥 + 𝜔∫

∞

0
Υ𝑣(𝑥, 𝑧̃)𝑑𝑥 + 𝛼Φ0,𝑀𝑧̃

𝑀                           (22) 

Ω2(0, 𝑧̃) =
𝛾

𝑧̃
∫
∞

0
Φ(𝑥, 𝑧̃)𝑑𝑥 + 𝛾Φ0,𝑀𝑧̃

𝑀−1                                                                                               (23) 

Υ𝑣(0, 𝑧̃) = 𝛼Φ0,𝑀𝑧̃
𝑀                                                                                                                                 (24) 

Ψ1(0, 𝑧̃) = 𝜂Ω1(𝑥, 𝑧̃)                                                                                                                                (25) 

Ψ2(0, 𝑧̃) = 𝜂Ω2(𝑥, 𝑧̃)                                                                                                                                (26) 

 

Solving the partial differential Equations (15) to (20), the following are obtained:  

Φ(𝑥, 𝑧̃) = Φ(0, 𝑧̃)[1 − 𝐻(𝑥)]𝑒−(𝛼+𝛾)𝑥                                                                                                     (27) 

Ω1(𝑥, 𝑧̃) = Ω1(0, 𝑧̃)[1 − 𝐹1(𝑥)]𝑒
−𝐿1(𝑧̃)𝑥                                                                                                   (28) 

Ω2(𝑥, 𝑧̃) = Ω2(0, 𝑧̃)[1 − 𝐹2(𝑥)]𝑒
−𝐿2(𝑧̃)𝑥                                                                                                   (29) 

Υ𝑣(𝑥, 𝑧̃) = Υ𝑣(0, 𝑧̃)[1 − 𝐹𝑣(𝑥)]𝑒
−𝐿𝑣(𝑧̃)𝑥                                                                                                          (30) 

Ψ1(𝑥, 𝑧̃) = Ψ1(0, 𝑧̃)[1 − 𝐺1(𝑥)]𝑒
−𝐿𝑟(𝑧̃)𝑥                                                                                                    (31) 
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Ψ2(𝑥, 𝑧̃) = Ψ2(0, 𝑧̃)[1 − 𝐺2(𝑥)]𝑒
−𝐿𝑟(𝑧̃)𝑥                                                                                                        (32) 

where, 

𝐿(𝑧̃) = 𝛼(1 − 𝑧̃), 𝐿𝑣(𝑧̃) = 𝜔 + 𝐿(𝑧̃), 𝐿𝑟(𝑧̃) = 𝐿(𝑧̃) + 𝜗(1 −
1

𝑧̃
), 

and 

𝐿1(𝑧̃) = 𝛽 + 𝐿(𝑧̃) + 𝜂 − 𝜂𝐺1
∗(𝐿(𝑧̃)), 𝐿2(𝑧̃) = 𝛽 + 𝐿(𝑧̃) + 𝜂 − 𝜂𝐺2

∗(𝐿(𝑧̃)). 
 

Inserting the Equations (27) to (29) in (22) and making some calculations, finally, the following is obtained: 

Ω1(0, 𝑧̃) =
Φ(0,𝑧̃)

𝑧̃
{𝐻∗(𝛼 + 𝛾) +

𝛼𝑧̃

𝛼+𝛾
[1 − 𝐻∗(𝛾)]} + 𝑉(𝑧̃)Υ𝑣(0, 𝑧̃) + 𝛼Φ0,𝑀𝑧̃

𝑀                                              (33) 

 

From Equation (29), the following is attained:  

 Ω2(0, 𝑧̃) =
𝛾

𝑧̃(𝛼+𝛾)
[1 − 𝐻∗(𝛼 + 𝛾)]Φ(0, 𝑧̃) +

𝛾

𝑧̃
Φ0,𝑀𝑧̃

𝑀                                                                              (34) 

 

Equation (20) implies that:  

Φ(0, 𝑧̃) = [𝐹1(𝐿1
∗ (𝑧̃)) +𝑊1(𝑧̃)]Ω1(0, 𝑧̃) + [𝐹2(𝐿2

∗ (𝑧̃)) +
𝑊2(𝑧̃)

𝑧̃
]𝑧̃Ω2(0, 𝑧̃) − (𝛼 + 𝛾)Φ0,𝑀𝑧̃

𝑀               (35) 

where 

𝑊1(𝑧̃) =
𝛽

𝐿1(𝑧̃)
(1 − 𝐹1

∗(𝐿1(𝑧̃))), 𝑊2(𝑧̃) =
𝛽

𝐿2(𝑧̃)
(1 − 𝐹2

∗(𝐿2(𝑧̃))), 

𝑉(𝑧̃) =
𝜔

𝜔 + 𝛼(1 − 𝑧̃)
(1 − 𝐹𝑣

∗(𝐿𝑣(𝑧̃))). 

 

Combining (33) and (34) in (35), leads to the following: 

Φ(0, 𝑧̃){𝑧̃(𝛼 + 𝛾) − [𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)]{(𝛼 + 𝛾)𝐻

∗(𝛼 + 𝛾) + 𝛼𝑧̃(1 − 𝐻∗(𝛼 + 𝛾))} − 𝛾(1 − 𝐻∗(𝛼 +
𝛾))[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃) = (𝛼 + 𝛾)Φ0,𝑀𝑧̃
𝑀+1{[𝛼(𝑉(𝑧̃) + 1)][𝐹1

∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)] + 𝛾[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +

𝑊2(𝑧̃)]}                                                                                                                                                        (36) 

 

Next, the marginal orbit size distributions formed by the server’s current state in a subsequent theorem is 

examinned. 

 

Theorem 4.2 
According to the stability condition, Θ < 𝛼 + 𝛾, the stationary distribution of the number of clients in orbit 

is computed for the server’s inactive, occupied, slow service, and repair periods, along with the probability 

of the server being inactive are computed below: 

Φ(𝑧̃) =
𝑁𝑒(𝑧̃)

𝐷𝑒(𝑧̃)
                                                                                                                                                   (37) 

 

where, 

𝑁𝑒(𝑧̃) = (𝛼 + 𝛾)Φ0,𝑀𝑧̃
𝑀+1{[𝛼(𝑉(𝑧̃) + 1)][𝐹1

∗(𝐿1(𝑧̃))  +𝑊1(𝑧̃)] + 𝛾[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]},  

 

𝐷𝑒(𝑧̃) = 𝑧̃(𝛼 + 𝛾) − [𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)]{(𝛼 + 𝛾)𝐻

∗(𝛼 + 𝛾) +𝛼𝑧̃(1 −  𝐻∗(𝛼 + 𝛾))}  − 𝛾(1 − 𝐻∗(𝛼
+ 𝛾))[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]. 
 

Ω1(𝑧̃) =
Φ0,𝑀𝑧̃

𝑀(1−𝐹1
∗(𝐿1(𝑧̃)))

𝐿1(𝑧̃)𝐷𝑒(𝑧̃)
{𝑧̃(𝛼 + 𝛾)[𝛼(𝑉(𝑧̃) + 1)] + 𝛾[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]{(𝛼 + 𝛾)𝐻
∗(𝛼 + 𝛾) +

𝛼(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃ − 𝑉(𝑧̃) + 1]}}                                                                                                             (38) 
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Ω2(𝑧̃) =
𝛾Φ0,𝑀𝑧̃

𝑀−1(1−𝐹2
∗(𝐿2(𝑧̃)))

(𝛼+𝛾)𝐿2(𝑧̃)𝐷𝑒(𝑧̃)
{(1 − 𝐻∗(𝛼 + 𝛾)) + (𝛼 + 𝛾){𝑧̃(𝛼 + 𝛾) − [𝐹1

∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)]((𝛼 +

𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼𝑧̃(1 − 𝐻∗(𝛼 + 𝛾))) − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}}                               (39) 

 

Υ𝑣(𝑧̃) =
𝛼Φ0,𝑀𝑧̃

𝑀(1−𝐹𝑣
∗(𝐿𝑣(𝑧̃)))

𝐿𝑣(𝑧̃)
                                                                                                                           (40) 

 

Ψ1(𝑧̃) =
𝜂Φ0,𝑀𝑧̃

𝑀(1−𝐹1
∗(𝐿1(𝑧̃)))(1−𝐺1

∗(𝐿𝑟(𝑧̃)))

𝐿1(𝑧̃)𝐿𝑟(𝑧̃)𝐷𝑒(𝑧̃)
{𝑧̃(𝛼 + 𝛾)[𝛼(𝑉(𝑧̃) + 1)] + 𝛾 [𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]{(𝛼 +

𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃ − 𝑉(𝑧̃) + 1]}}                                                                               (41) 

 

Ψ2(𝑧̃) =
𝜂Φ0,𝑀𝑧̃

𝑀−1(1−𝐹2
∗(𝐿2(𝑧̃)))(1−𝐺2

∗(𝐿𝑟(𝑧̃)))

(𝛼+𝛾)𝐿2(𝑧̃)𝐿𝑟(𝑧̃)𝐷𝑒(𝑧̃)
{(1 − 𝐻∗(𝛼 + 𝛾))  + (𝛼 + 𝛾){𝑧̃(𝛼 + 𝛾) − [𝐹1

∗(𝐿1(𝑧̃)) +

𝑊1(𝑧̃)]((𝛼 + 𝛾)𝐻
∗(𝛼 + 𝛾) + 𝛼𝑧̃  (1 − 𝐻∗(𝛼 + 𝛾))) − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}}    (42) 

 

where, 

Φ0,𝑀 =
𝑁𝑟(Φ0,𝑀)

𝐷𝑟(Φ0,𝑀)
                                                                                                                                                (43) 

 

𝑁𝑟(Φ0,𝑀) = (𝛼 + 𝛾) − Θ, and 

𝐷𝑟(Φ0,𝑀) = (𝜔 + 𝛼(1 − 𝐹𝑣
∗(𝜔)))(

(𝛼 + 𝛾) − Θ

𝜔
) + (1 − 𝐻∗(𝛼 + 𝛾)) 

{(𝑀 + 1){1 + 𝛼(2 − 𝐹𝑣
∗(𝜔))} + [𝛼(2 − 𝐹𝑣

∗(𝜔))][
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] 

+
𝛼𝛾

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽)) + 𝛼[𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))] + 𝛾} 

+(𝐸(𝐹1)(𝜂𝐸(𝐺1) − 1)){[𝛼𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))](𝛼𝛾(1 − 𝐻∗(𝛼 + 𝛾)) 

−(𝛼 + 𝛾)) − (𝛼 + 𝛾)(𝑀 + 1)[𝛼(2 − 𝐹𝑣
∗(𝜔))] − 𝛼𝛾(1 − 𝐻∗((𝛼 + 𝛾))) 

−𝛾[(𝛼 + 𝛾)𝐻∗((𝛼 + 𝛾)) − 𝛼(𝐹𝑣
∗(𝜔) − 1)(1 − 𝐻∗(𝛼 + 𝛾))]{𝑀 + 𝐹2

∗(𝛽) 

+
𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))}} + (𝛾𝐸(𝐹2)(𝜂𝐸(𝐺2) − 1)) 

{[(𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾))][
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] 

−(1 − 𝐻∗(𝛼 + 𝛾)){
𝑀 − 1

𝛼 + 𝛾
+ 2𝛼(𝑀 − 1) − 𝛼 − 𝛾[𝐹2

∗(𝛽) +
𝛼

𝛽
(1 + 𝜂𝐸(𝐺2)) 

(1 − 𝐹2
∗(𝛽))]} − (𝛼 + 𝛾)}. 

 

Proof 
By integrating Equations (27)-(32) with respect to 𝑥  and defining the partial probability generating 

functions as follows, 

Φ(𝑧̃) = ∫
∞

0
Φ(𝑥, 𝑧̃)𝑑𝑥,   Ω1(𝑧̃) = ∫

∞

0
Ω1(𝑥, 𝑧̃)𝑑𝑥,   Ω2(𝑧̃) = ∫

∞

0
Ω2(𝑥, 𝑧̃)𝑑𝑥, 

 

Υ𝑣(𝑧̃) = ∫
∞

0
Υ𝑣(𝑥, 𝑧̃)𝑑𝑥,   Ψ1(𝑧̃) = ∫

∞

0
Ψ1(𝑥, 𝑧̃)𝑑𝑥, and   Ψ2(𝑧̃) = ∫

∞

0
Ψ2(𝑥, 𝑧̃)𝑑𝑥. 

 

Considering the idle unknown (Φ0), the probability that the server is inactive as long as there is no client 

in orbit, it could potentially be determined by employing the normalizing condition. Therefore, by placing 

𝑧̃ = 1 in (37)-(42) and adhering to the L-hospitals rule when required, the following is obtained: 
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Φ0,𝑀 +Φ(1) + Ω1(1) + Ω2(1) + Υ𝑣(1) + Ψ1(1) + Ψ2(1) = 1. 
 

Theorem 4.3 
The probability generating function of the number of clients in the system and the orbit length at a stationary 

instant, based on the stability criterion Θ<𝛼+𝛾, is derived as follows:  

𝐾𝑠(𝑧̃) = Φ0,𝑀{
𝑁𝑒𝑠(𝑧̃)

𝐷𝑒𝑠(𝑧̃)
}                                                                                                                                   (44) 

 

𝑁𝑒𝑠(𝑧̃) = 𝐿1(𝑧̃)𝐿2(𝑧̃)𝐿𝑟(𝑧̃){𝐷𝑒(𝑧̃)[1 +
𝛼𝑧̃𝑀 (1 − 𝐹𝑣

∗(𝐿𝑣(𝑧̃)))

𝐿𝑣(𝑧̃)
 

+𝑧̃𝑀+1[1 − 𝐻∗(𝛼 +  𝛾)]{[𝛼(𝑉(𝑧̃) + 1)][𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)] + 𝛾[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) 

+ 𝑊2(𝑧̃)]}} + 𝐿2(𝑧̃) [𝐿𝑟(𝑧̃) + 𝜂 (1 − 𝐺1
∗(𝐿𝑟(𝑧̃)))] [1 − 𝐹1

∗(𝐿1(𝑧̃))] 

𝑧̃𝑀+1{𝑧̃(𝛼 + 𝛾)[𝛼(𝑉(𝑧̃) + 1)] 
+𝛾[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]{(𝛼 + 𝛾)𝐻
∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾)) 

[𝑧̃ − 𝑉(𝑧̃) + 1]}} + 𝐿1(𝑧̃) [𝐿𝑟(𝑧̃) + 𝜂 (1 − 𝐺2
∗(𝐿𝑟(𝑧̃)))] 

[1 − 𝐹2
∗(𝐿2(𝑧̃))]

𝛾𝑧̃𝑀

(𝛼 + 𝛾)
{(1 − 𝐻∗(𝛼 + 𝛾)) 

+(𝛼 + 𝛾){𝑧̃(𝛼 + 𝛾) − [𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)]((𝛼 + 𝛾)𝐻

∗(𝛼 + 𝛾) + 𝛼𝑧̃ 

(1 − 𝐻∗(𝛼 + 𝛾))) − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}}, 

 

𝐷𝑒𝑠(𝑧̃) = 𝐿1(𝑧̃)𝐿2(𝑧̃)𝐿𝑟(𝑧̃){𝑧̃(𝛼 + 𝛾) − [𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)] 

{(𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼𝑧̃(1 − 𝐻∗(𝛼 + 𝛾))} 
−𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}. 
 

𝐾0(𝑧̃) = Φ0,𝑀{
𝑁𝑒0(𝑧̃)

𝐷𝑒𝑠(𝑧̃)
}                                                                                                                               (45) 

 

𝑁𝑒0(𝑧̃) = 𝐿1(𝑧̃)𝐿2(𝑧̃)𝐿𝑟(𝑧̃){𝐷𝑒(𝑧̃)[1 +
𝛼𝑧̃𝑀 (1 − 𝐹𝑣

∗(𝐿𝑣(𝑧̃)))

𝐿𝑣(𝑧̃)
] 

+𝑧̃𝑀+1[1 − 𝐻∗(𝛼 +  𝛾)]{[𝛼(𝑉(𝑧̃) + 1)][𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)] 

+𝛾[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}} 

+𝐿2(𝑧̃) [𝐿𝑟(𝑧̃) + 𝜂 (1 − 𝐺1
∗(𝐿𝑟(𝑧̃)))] [1 − 𝐹1

∗(𝐿1(𝑧̃))] 

𝑧̃𝑀{𝑧̃(𝛼 + 𝛾)[𝛼(𝑉(𝑧̃) + 1)] + 𝛾[𝑧̃𝐹2
∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)] 

{(𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾)) [𝑧̃ − 𝑉(𝑧̃) + 1]}} 

+𝐿1(𝑧̃) [𝐿𝑟(𝑧̃) + 𝜂 (1 − 𝐺2
∗(𝐿𝑟(𝑧̃)))] [1 − 𝐹2

∗(𝐿2(𝑧̃))] 

𝛾𝑧̃𝑀−1

(𝛼 + 𝛾)
{(1 − 𝐻∗(𝛼 + 𝛾)) + (𝛼 + 𝛾){𝑧̃(𝛼 + 𝛾) 

− [𝐹1
∗(𝐿1(𝑧̃)) +𝑊1(𝑧̃)]((𝛼 + 𝛾)𝐻

∗(𝛼 + 𝛾) 
+𝛼𝑧̃(1 − 𝐻∗(𝛼 + 𝛾))) − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝑧̃𝐹2

∗(𝐿2(𝑧̃)) +𝑊2(𝑧̃)]}}, 
 

where, Φ0,𝑀 is denoted by Equation (43).  

 

Proof 
The probability genering function of the total number of clients in the system and the orbit (𝐾𝑠(𝑧̃)) and 
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(𝐾0(𝑧̃)) is calculated by utilizing 

𝐾𝑠(𝑧) = Φ0,𝑀 +Φ(𝑧̃) + Υ𝑣(𝑧̃) + 𝑧̃{Ω1(𝑧̃) + Ω2(𝑧̃) + Ψ1(𝑧̃) + Ψ2(𝑧̃)}, and 

𝐾0(𝑧) = Φ0,𝑀 +Φ(𝑧̃) + Υ𝑣(𝑧̃) + Ω1(𝑧̃) + Ω2(𝑧̃) + Ψ1(𝑧̃) + Ψ2(𝑧̃). 
 

The Equations (37)-(42) may be added to the findings from earlier to get equations (44) and (45).  

 

5. System Performance Measures 
This section contains the system estimated average full service periods for various system states, as well as 

some important system probability and system efficiency measurements.  

 

5.1 System State Probabilities 
The preceding findings are obtained by solving the previous systems of Equations (37)-(42) with 𝑧̃ → 1, 
while employing l’Hospital’s rule wherever applicable. 

 

(i)  Let Φ be the steady state probability that the server is idle during the retrial time as follows, 

 Φ = Φ(1) = Φ0,𝑀(1 − 𝐻
∗(𝛼 + 𝛾)) ×

{
 
 

 
 
(𝑀+1){1+𝛼(2−𝐹𝑣

∗(𝜔))}+[𝛼(2−𝐹𝑣
∗(𝜔))][

𝛼

𝛽
(1+𝜂𝐸(𝐺1))(1−𝐹1

∗(𝛽))]

+
𝛼𝛾

𝛽
(1+𝜂𝐸(𝐺2))(1−𝐹2

∗(𝛽))+𝛼[𝐸(𝐹𝑣)+
𝛼

𝜔
(1−𝐹𝑣

∗(𝜔))]+𝛾

(𝛼+𝛾)−Θ

}
 
 

 
 

           (46) 

(ii) Let Ω1 be the steady state probability that the server is busy with transit customer as follows, 

Ω1 = Ω1(1) =

Φ0,𝑀𝐸(𝐹1)x 

{
 
 

 
 
[𝛼𝐸(𝐹𝑣)+

𝛼

𝜔
(1−𝐹𝑣

∗(𝜔))](𝛼𝛾(1−𝐻∗(𝛼+𝛾))−(𝛼+𝛾))−(𝛼+𝛾)(𝑀+1)[𝛼(2−𝐹𝑣
∗(𝜔))]−𝛼𝛾(1−𝐻∗((𝛼+𝛾)))

−𝛾[(𝛼+𝛾)𝐻∗((𝛼+𝛾))−𝛼(𝐹𝑣
∗(𝜔)−1)(1−𝐻∗(𝛼+𝛾))]{𝑀+𝐹2

∗(𝛽)+
𝛼

𝛽
(1+𝜂𝐸(𝐺2))(1−𝐹2

∗(𝛽))}

(𝛼+𝛾)−Θ

}
 
 

 
 

        (47) 

 

(iii) Let Ω2 be the steady state probability that the server is busy with recurrent customer is given by, 

 

 Ω2 = Ω2(1) = 𝛾𝐸(𝐹2)Φ0,𝑀 ×

{
 
 

 
 
[(𝛼+𝛾)𝐻∗(𝛼+𝛾)+𝛼(1−𝐻∗(𝛼+𝛾))][

𝛼

𝛽
(1+𝜂𝐸(𝐺1))(1−𝐹1

∗(𝛽))]−(1−𝐻∗(𝛼+𝛾)){
𝑀−1

𝛼+𝛾
+2𝛼(𝑀−1)−𝛼−𝛾[𝐹2

∗(𝛽)

+
𝛼

𝛽
(1+𝜂𝐸(𝐺2))(1−𝐹2

∗(𝛽))]}−(𝛼+𝛾)

(𝛼+𝛾)−Θ

}
 
 

 
 

                       (48) 

 

(iv) Suppose Υ𝑣 is the steady state probability that the server is on Bernoulli working vacation is given by, 

Υ𝑣 = Υ𝑣(1) =
𝛼Φ0,𝑀

𝜔
[1 − 𝐹𝑣

∗(𝜔)]                                                                                                                    (49) 

 

(v)  Suppose Ψ1 is steady-state probability that the server is repair during transit customer service is given 

by, 

Ψ1 = Ψ1(1) = Φ0,𝑀𝜂𝐸(𝐹1)𝐸(𝐺1)  ×
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{
  
 

  
 
(𝛼+𝛾)(𝑀+1)[𝛼(2−𝐹𝑣

∗(𝜔))]+𝛼𝛾(1−𝐻∗((𝛼+𝛾)))−[𝛼𝐸(𝐹𝑣)+
𝛼

𝜔
(1−𝐹𝑣

∗(𝜔))](𝛼𝛾(1−𝐻∗(𝛼+𝛾))−(𝛼+𝛾))

+𝛾[(𝛼+𝛾)𝐻∗((𝛼+𝛾))−𝛼(𝐹𝑣
∗(𝜔)−1)(1−𝐻∗(𝛼+𝛾))]

{𝑀+𝐹2
∗(𝛽)+

𝛼

𝛽
(1+𝜂𝐸(𝐺2))(1−𝐹2

∗(𝛽))}

(𝛼+𝛾)−Θ

}
  
 

  
 

                             (50) 

(vi) Suppose Ψ2 is steady state probability that the server is repair with recurrent customer service is given 

by, 

Ψ2 = Ψ2(1) = Φ0,𝑀𝜂𝐸(𝐹2)𝐸(𝐺2) 

×

{
 
 

 
 
(1−𝐻∗(𝛼+𝛾)){

𝑀−1

𝛼+𝛾
+2𝛼(𝑀−1)−𝛼−𝛾[𝐹2

∗(𝛽)+
𝛼

𝛽
(1+𝜂𝐸(𝐺2))(1−𝐹2

∗(𝛽))]}−[(𝛼+𝛾)𝐻∗(𝛼+𝛾)

+𝛼(1−𝐻∗(𝛼+𝛾))][
𝛼

𝛽
(1+𝜂𝐸(𝐺1))(1−𝐹1

∗(𝛽))]+(𝛼+𝛾)]

(𝛼+𝛾)−Θ

}
 
 

 
 

                                       (51) 

 

5.2 Mean Queue Length 
When the system satisfied steady state condition, 

(i) By differentiating 𝑧̃, (45) and providing 𝑧̃ = 1 results in the average number of customers in the orbit 

(𝐿𝑞)  

𝐿𝑞 = 𝐾0
′(1) = lim

𝑧̃→1

𝑑

𝑑𝑧̃
𝐾0(𝑧̃) = Φ0,𝑀 [

𝑁𝑒𝑞
′′′(1)𝐷𝑒𝑞

′′(1)−𝐷𝑒𝑞
′′′(1)𝑁𝑒𝑞

′′(1)

3(𝐷𝑒𝑞
′′(1))2

]                                                            (52) 

 

(ii) The average number of customers in the system (𝐿𝑠) is computed by differentiating (44) with respect 

to 𝑧̃, and further by assigning 𝑧̃ = 1  

𝐿𝑠 = 𝐾𝑠
′(1) = lim

𝑧̃→1

𝑑

𝑑𝑧̃
𝐾𝑠(𝑧̃) = Φ0,𝑀 [

𝑁𝑒𝑠
′′′(1)𝐷𝑒𝑞

′′(1)−𝐷𝑒𝑞
′′′(1)𝑁𝑒𝑞

′′(1)

3(𝐷𝑒𝑞
′′(1))2

]                                                              (53) 

 

(iii) Little's law yields the mean duration of a consumer in the queue (𝑊𝑞)  and the mean duration of a 

consumer in the system (𝑊𝑠), 

(i.e.,) 𝑊𝑠 =
𝐿𝑠

𝛼
 and 𝑊𝑞 =

𝐿𝑞

𝛼
. 

 

Further, Appendix A comprises all of the values stated above.  

 

6. Numerical Application 
In this study, MATLAB has been utilized to illustrate the precise impact of various parameters on the 

tangible characteristics of the system. The analysis has been conducted for exponentially distributed retry 

times, delayed repairs, and slow service times. To ensure compliance with stability requirements, the 

numerical measurements have been selected arbitrarily. 

 

Table 1 shows that the retrial rate ℎ(𝑥) and Φ0,𝑀 increases, 𝐿𝑞 , Φ(1), Ω1(1) and Υ𝑣 are diminishes. Table 

2 shows that lower service rate (𝜔), Φ0,𝑀, 𝐿𝑞 , Ω1(1) and Ψ2(1) are escalates Υ𝑣 diminishes. Table 3 shows 

that repair rate in recurrent state 𝜒2(𝑥), and 𝐿𝑠 increases, Φ0,𝑀, 𝐿𝑠, Ω1(1) and 𝑊𝑠 decreases.  
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Table 1. Φ0,𝑀 and 𝐿𝑞 for distinct retrial rate ℎ(𝑥) in regard to the values of 𝑀 = 5, 𝛼 = 0.5, 𝛾 = 0.1, 𝜔 = 0.7, 𝜗 =

0.5, 𝜂 = 1, and 𝛽 = 2. 
 

Retrial rate ℎ(𝑥) Φ0,𝑀 𝐿𝑞 Φ(1) Ω1(1) Υ𝑣 

3.1 0.0412 3.7718 1.0769 1.5899 0.0029 

3.2 0.0421 3.5054 1.0688 1.5114 0.0030 

3.3 0.0428 3.2763 1.0614 1.4408 0.0031 

3.4 0.0434 3.0771 1.0548 1.3769 0.0032 

3.5 0.0440 2.9026 1.0487 1.3188 0.0033 

3.6 0.0446 2.7484 1.0432 1.2658 0.0034 

3.7 0.0451 2.6112 1.0382 1.2172 0.0035 

 

 

 

Table 2. Φ0,𝑀 and 𝐿𝑠 for different lower service rate (𝜔) for the values of 𝑀 = 5, 𝛼 = 0.5, 𝛾 = 0.1, 𝜗 = 0.5, 𝜂 = 1, 

and 𝛽 = 2. 
 

Lower service rate (𝜔) Φ0,𝑀 𝐿𝑞 Ω1(1) Υ𝑣 Ψ2(1) 

1.1 0.0385 0.2454 1.2900 0.0087 0.8293 

1.2 0.0386 0.2464 1.2903 0.0080 0.8322 

1.3 0.0387 0.2473 1.2910 0.0075 0.8349 

1.4 0.0388 0.2482 1.2919 0.0069 0.8375 

1.5 0.0390 0.2490 1.2931 0.0065 0.8399 

1.6 0.0391 0.2497 1.2944 0.0061 0.8423 

1.7 0.0392 0.2505 1.2958 0.0057 0.8446 

 

 

 

Table 3. Φ0,𝑀 and 𝐿𝑞 for different Repair rate in recurrent state 𝜒2(𝑥) for the ranges of 𝑀 = 5, 𝛼 = 0.5, 𝛾 = 0.1, 

𝜔 = 0.7, 𝜗 = 0.5, 𝜂 = 1, and 𝛽 = 2. 
 

Repair rate in recurrent state 𝜒2(𝑥) Φ0,𝑀 𝐿𝑠 Ω1(1) Ψ2(1) 𝑊𝑠 

2.1 0.0013 6.9925 0.4694 0.4788 13.9851 

2.2 0.0012 6.9527 0.4683 0.4560 13.9055 

2.3 0.0011 6.9163 0.4674 0.4353 13.8326 

2.4 0.0010 6.8829 0.4666 0.4165 13.7658 

2.5 0.0009 6.8521 0.4658 0.3991 13.7043 

2.6 0.0008 6.8237 0.4657 0.3832 13.6474 

2.7 0.0007 6.7974 0.4644 0.3685 13.5948 

 

As a result of the parameters 𝑀 = 5,  𝛼 = 0.5,  𝛾 = 0.1,  𝜔 = 0.7,  𝜗 = 0.5,  𝜂 = 1,  and 𝛽 = 2 , Figure 2 

shows the 2-D graph that explored the performance measures. In Figure 2(a), shows the increase the retrial 

rate ℎ(𝑥)  and Φ0,𝑀  escalates, 𝐿𝑞 ,  Φ(1),  Ω1(1)  and Υ𝑣  are diminishes. In Figure 2(b), it was found that 

lower service rate (𝜔),  Φ0,𝑀,  𝐿𝑞 ,  Ω1(1)  and Ψ2(1)  are escalates Υ𝑣  diminishes. In Figure 2(c), it was 

found that repair rate in recurrent state 𝜒2(𝑥), and 𝐿𝑠 increases, Φ0,𝑀, 𝐿𝑠, Ω1(1) and 𝑊𝑠 decreases. 

 

Figure 3 represent the 3-D graph that displays the system effectiveness. In Figure 3(a), the surface displays 

the escalation of the retrial rate ℎ(𝑥) and Φ0,𝑀, (𝐿𝑞) diminishes. In Figure 3(b), (𝐿𝑞), (𝑊𝑞) elevates as the 

lower service rate (𝜔) rises. In Figure 3(c), it can be  observed that Φ0,𝑀 and 𝐿𝑠 decreases while increasing 

the repair rate in recurrent state 𝜒2(𝑥). 
 

The aforementioned numerical data is often relied upon by researchers to determine the impacts of 

behaviours on the system’s evaluation procedures with assurance that their results are indicative of real-

world settings. 
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(a) Φ0, M, Lq, Φ (1), Ω1(1),Υ1(1),                       (b) Φ0, M, Lq, Ω1(1), Υ1(1), Ψ2(1),                               (c) Φ0, M, Ls, Ω1(1), Ψ2(1), 𝑊𝑠 verses 

          verses retrial rate h(x)                                          verses lower service rate ω                                             repair rate in recurrent 𝜒2(𝑥) 
 

Figure 2. Impact of system performance measures on h(x), ω, 𝜒2(𝑥) in a 2D visualization. 

 

 

 

 

 
 

   (a)  Φ0, M, Lq verses retrial rate h(x)        (b) Lq, Wq verses lower service rate ω       (c) Ls, Φ0, M, verses repair rate χ2(x) 
 

Figure 3. Impact of system performance measures on h(x), ω, 𝜒2(𝑥) in a 3D visualization. 
 

 

7. Cost Optimization 
“Optimization" refers to the act of selecting the combination of inputs to an objective function that yields 

the maximum or minimum result. Cost optimization (CO) is the method of constantly concentrating on a 

company’s developments in the aim of saving expenditures and charges, when enhancing the company’s 

value. It entails standardizing, streamlining, and rationalizing platforms, applications, procedures, and 

services, as well as obtaining the most competitive price and terms on all business transactions. The link 

between the system’s profit and operating expenditures is fairly close in a condition that more closely 

mimics real life. As a result, system administrators’ major task is to reduce the sum of funds required for 

operations every hour to maximize the profit. Our major goal here is to identify the factors that compute 

the good average cost per unit of time (CUT). To accomplish this aim, the section of the model that was 

constructed is made more cost-effective by adding a cost function. 

 

Now, a CO method is employed to obtain the optimal values for the elements, which are comprised the 

normal service rate and recurrent service rate (𝜁1, 𝜁2). It is assumed that the various system performance 

and the difference cost sets related to those activities have a linear connection in the predicted cost function. 
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Every variable inside the cost factor used to calculate the predicted total cost function (TC) (𝜁1, 𝜁2) for per 

unit time is defined below: 

 

𝑅ℎ => keeping the costs of every customer in the system for a predetermined amount of time. 
𝑅𝑏 => CUT for the server is busy mode. 
𝑅𝑣 = >  Cost per unit time when the server is vacation mode. 
𝑅𝑓 =>  CUT for there pair of the server after breakdown. 

𝑅1 => CUT during busy period. 

𝑅2 => CUT during recurrent mode. 
 

Cost function predictions shown as 

𝑇𝐶(𝜁1, 𝜁2) = 𝑅ℎ𝐿𝑞 + 𝑅𝑏{Ω1 + Ω2} + 𝑅𝑣Υ𝑣 + 𝑅𝑓{Ψ1 +Ψ2} + 𝑅1𝜁1 + 𝑅2𝜁2                                                (54) 

 

The substantial non-linearity of the cost function indicated in (54) makes it difficult to optimize by an 

analytical method. As a result, the heuristic procedure is used to optimise the overall cost, which is intended 

to depend on the busy and recurrent service rate 𝜁1 and 𝜁2 respectively. 

Finding the best service rate (𝜁1
∗) in busy mode and the best service rate (𝜁2

∗)  in recurrent mode while 

lowering the overall cost function is our main objective. 

𝑇𝐶(𝜁1
∗, 𝜁2

∗) = 𝑚𝑖𝑛
𝜁1
∗,𝜁2

∗
  𝑇𝐶(𝜁1, 𝜁2). 

 

Numerous optimization techniques have been evolved via extensive research and development since the 

early 1960s. Numerous algorithms have proven their ability to handle a wide range of optimization issues. 

A global optimization strategy should be applied if the objective function has local optima or if there is not 

enough knowledge to figure out its structure. Nevertheless, if our objective function has a single optima, as 

in the case of a unimodal function, or if being near the global optima is assured, a local optimization 

technique should be picked. Implementing a local search algorithm to a problem that needs a global search 

algorithm will yield insufficient results because local optima would fool the local search. In this work, three 

global search optimization algorithms are employed: Grey wolf optimizer (GWO), bat algorthim (BA), 

whale optimization (WO) and cat swarm optimization (CSO).  

 

In one of the three distinct subsections that make up this section, each of these three algorithms is covered 

in detail. These algorithms are employed because of the crucial role and requirement of CO in mind. As 

long as the algorithm’s presumptions hold true, local search techniques usually reduce the computing cost 

associated with finding the global best solution. 

 

To provide a graphical depiction of the cost function’s sensitivity analysis, the cost elements in accordance 

with Table 4 are organized as follows: 

 
Table 4. Cost sets adopted in the proposed cost analysis. 

 

Cost set 𝑅ℎ 𝑅𝑏 𝑅𝑣 𝑅𝑓 𝑅1 𝑅2 

Set 1 10 40 15 25 20 15 

Set 2 5 35 10 20 15 10 

Set 3 15 30 5 10 10 5 

 

7.1 Grey Wolf Optimizer (GWO) 
The Grey Wolf Optimizer (GWO), introduced by Mirjalili et al. (2014), is a swarm intelligence algorithm 

inspired by the social hierarchy and hunting behavior of grey wolves in the wild. GWO’s simplicity, 
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minimal parameter requirements, and effective balance between exploration and exploitation make it a 

popular choice for various optimization problems. In this study, GWO has been used to determine the 

optimal service rate pairs and minimize total costs. Its performance has been analyzed using various 

parameters, as shown in Table 5. 

 

7.2 Bat Algorithm (BA) 
The Bat Algorithm (BA), proposed by Yang (2010), is inspired by the echolocation behavior of bats. By 

employing frequency tuning and automatic zooming, BA maintains a balance between exploration and 

exploitation, enabling effective searches for optimal solutions. Its applications span diverse domains, 

including scheduling and feature selection. In this work, BA has been utilized to optimize service rates and 

costs, with results summarized in Table 6. 

 

7.3 Whale Optimization (WO) 
The Whale Optimization Algorithm (WO), developed by Mirjalili and Lewis (2016), simulates the bubble-

net hunting strategy of humpback whales. It effectively balances global and local search mechanisms, 

making it suitable for addressing constrained and unconstrained optimization problems. This study applies 

WO to optimize service rates and total costs, with findings detailed in Table 7. 

 

7.4 Cat Swarm Optimization (CSO) 
Cat Swarm Optimization (CSO), introduced by Chu and Tsai (2007), models the seeking and tracing 

behaviors of cats. This dual-phase approach ensures efficient exploration of the solution space. CSO has 

been applied in this study to optimize service rates and costs, with results presented in Table 8. 

 

By focusing on the key contributions of these algorithms, the methodology section has been streamlined 

without compromising essential details. The pseudocodes and detailed algorithmic parameters are included 

in Appendix B and Appendix C for reference. 

 

7.5 Comparison of Optimization Algorithm 
Here, it is assessed which of the fore cost-finding algorithms, GWO, BA, WO and CSO -produces the best 

results when implemented in MATLAB. Four different cost sets and three different pairings of optimal 

parameters (𝛼, 𝜔, 𝜗)  are taken into consideration in Table 4. Next, the MATLAB code for each of the 

previously stated techniques repeatedly is run. As a result, this process has been carried out once again and 

produced Tables 5 through 8. It was found that there was a remarkable degree of similarity in the outcomes 

from all four courses. Consequently, for these four strategies, the optimal solutions and related expenses 

are similar near to another one. This demonstrates that the previously discussed meta-heuristics offer 

trustworthy (local) optimum solutions. 

 

A lot iterations needed by CSO is far less than that needed by other approaches, as shown in Tables 5-8. 

Any method can help us find the optimal cost, but when different approaches are evaluateed for our model, 

CSO turns out to be the most effective one. Out of all of these tactics, it was found that the CSO strategy is 

the greatest one because it provides a lot of advantages to its consumers. It works well in global searches, 

is simple to configure, needs some elements, and is not impacted by the scale of different elements. CSO 

often results in an early and quick convergence in center optimal sites with little search capacity. On the 

other hand, in an area where the search has been improved, CSO typically results in a progressive 

convergence.  
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7.6 Convergence of Optimization Algorithm 
The elements are not in a steady circumstance at the start of the optimization process when any of the 

following techniques is used: BA, CSO, GWO and WO Determining whether the elements come back to 

its usual condition and it will keep looking for a better solution is crucial. Convergence is therefore a crucial 

element of cost analysis. The convexity and optimality of the cost function with respect to the three cost 

sets considered in the optimization study are shown in Figure 4. The optimization techniques BA, CSO, 

GWO and WO were used to create this figure. The elements are converge to the optimal cost in CSO the 

fastest, with less convergence in BA, CSO, GWO and WO as seen in Figure 5. During the same period of 

time, this happens. 

 

One may draw the following conclusions from the previously mentioned convergent nature of various 

optimization techniques:  

(i) The total cost of parameters and their optimal values determined by BA, CSO, GWO and WO is the 

same.  

(ii) The research findings indicate that the model that was provided is in line with the real-world scenarios. 

Some of their financial worries will be partially resolved by the cost optimization, which takes this 

system up to its whole cost. 

 

(iii) Under the current conditions, the generated cost-benefit analysis can be largely trusted to show the 

reasoning behind our model and help network managers and experts lessen the complex of the problem 

that stopping presents to particular communication services. 

 

 
 

(a) TC vs ζ1, ζ2 using GWO                         (b) TC vs ζ1, ζ2 using BA 

 

 
 

(c) TC vs ζ1, ζ2 using WO                               (d) TC vs ζ1, ζ2 using GA 
 

Figure 4. Optimality of the cost function. 
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(a) Convergence vs Iteration using GWO        (b) Convergence vs Iteration using BA 

 

 
 

(c) Convergence vs iteration using WO         (d) Convergence vs iteration using CSO 
 

Figure 5. Convergence of the cost function. 

 

 

7.7 Results and Discussion 
This study effectively modeled and analyzed the performance of a single-server retrial queue system 

featuring recurrent customers and a standby server under Bernoulli working vacation conditions. The 

founding highlights crucial insights into the behavior of such systems, emphasizing strategies for 

minimizing operational costs and optimizing performance.  

 

Below are the key findings derived from the analysis:  

 

7.7.1 Innovative Approach to Recurrent Customer Modeling 
The introduction of the supplementary variable technique (SVT) to analyze the recurrent customer vacation 

process marks a significant advancement in queueing theory. By employing SVT, the probability generating 

functions (PGFs) and steady-state probabilities for various system states were successfully derived. This 

novel approach not only provides a robust mathematical framework for understanding customer behavior 

but also enhances the analytical capabilities in evaluating complex queueing systems. The derived PGFs 

offer valuable insights into the expected number of customers in various states, facilitating better decision-

making in operational management.  
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7.7.2 Impact of Working Vacation on System Performance 
The analysis revealed that the Bernoulli working vacation policy substantially influences the system’s 

performance metrics. During working vacations, the server can continue providing service at a reduced rate, 

which mitigates the impact of customer arrivals during non-standard operating conditions. This dual-

functionality of the server significantly reduces waiting times and enhances customer throughput compared 

to traditional vacation models where service is entirely halted. The graphical representation of these metrics 

demonstrates how effective management of working vacations can lead to improved service levels and 

customer satisfaction.  

 

7.7.3 Optimization of Operational Costs 
A major highlight of the study is the development and optimization of a cost function, which quantitatively 

assesses operational expenses associated with the retrial queue system. By employing advanced 

optimization algorithms-namely, the Grey Wolf Optimizer (GWO), Bat Algorithm (BA), Whale 

Optimization (WO), and Cat Swarm Optimization (CSO), it was demonstrated that significant cost 

reductions could be achieved while maintaining optimal system performance. The comparative analysis of 

these algorithms illustrated their effectiveness in reaching lower cost configurations, showcasing their 

utility in real-world applications. The visualizations provided in the study clearly depict the convergence 

rates and effectiveness of each algorithm, highlighting their strengths and potential areas for further 

refinement.  

 

7.7.4 Numerical Analysis and Validation of Performance Measures 
Comprehensive numerical analyses and graphical presentations confirmed the validity of the derived 

performance measures. Key metrics such as the mean number of customers in the system, average waiting 

times, and system utilization were meticulously calculated and presented. These findings not only 

corroborate the theoretical underpinnings of the model but also serve as a basis for practical applications in 

various service environments. The results indicated that even slight adjustments to system parameters could 

lead to significant variations in performance outcomes, underscoring the necessity of continual monitoring 

and adjustment of queue management strategies.  

 

7.7.5 Trade-offs between Service Rate and Customer Satisfaction 
The results also highlighted the trade-offs between service rates during working vacations and overall 

customer satisfaction. While increasing service rates can lead to enhanced throughput, it is essential to 

consider the associated costs and potential impacts on server performance. The optimization models 

developed in this study provide a framework for balancing these factors, enabling managers to make 

informed decisions regarding service strategies that align with their operational goals.  

 

7.7.6 Future Research Directions 
The insights gained from this study pave the way for future research avenues, particularly in extending the 

model to incorporate more complex customer behaviors, such as heterogeneous service times or varying 

arrival rates. Investigating the effects of additional operational factors, such as customer priority levels or 

alternative service configurations, could yield valuable insights into improving queue management 

practices. Furthermore, applying machine learning techniques to dynamically adjust service strategies 

based on real-time data could enhance system responsiveness and efficiency. 
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8. Conclusion 
In this study, the evaluation, oversight, and efficiency of an M/G/1 retrial G-queue with a standby server 

under Bernoulli working vacation were thoroughly analyzed. By employing the supplementary variable 

technique, the steady-state equations were developed that describe the size of both the system and the orbit, 

providing key performance indicators such as the mean system length and mean orbit length. Through 

extensive numerical analysis, the effects of various system parameters on performance, highlighting their 

influence on system behavior and identifying the optimal configurations to achieve efficient system control 

were explored.  

 

The cost minimization aspect of the study was tackled by integrating four advanced metaheuristic 

algorithms - Grey Wolf Optimizer (GWO), Bat Algorithm (BA), Whale Optimization (WO), and Cat 

Swarm Optimization (CSO). These algorithms were employed to determine the most advantageous cost 

configuration for the system. Our analysis revealed that the Grey Wolf Optimizer (GWO) consistently 

provided the most effective cost reductions compared to the other strategies, demonstrating its superiority 

in this context. Additionally, the Bat Algorithm (BA) and Whale Optimization (WO) also produced 

competitive results, showing their viability for cost optimization in queueing models. These results offer 

significant insights for decision-makers in operations management, particularly when aiming to enhance 

system performance while minimizing costs.  

 

The findings from this study can be utilized to make informed decisions for managing and improving retrial 

queue systems with vacation policies. The introduction of metaheuristic techniques for cost optimization in 

queueing theory marks a notable advancement, especially in terms of real-world applications that involve 

system downtime and service interruptions.  

 

Lastly, the authors propose that future research could extend this work by investigating bulk service 

queueing systems with recurrent customers over hybrid vacation policies. Additionally, an exploration of 

the transient solution for retrial queues with hybrid vacations using the supplementary variable technique 

could offer valuable insights into short-term system behavior, complementing the steady-state results 

presented in this study. These avenues for future research could further enhance the applicability of retrial 

queue models in practical scenarios. 
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Appendices 

 

Appendix A 

 
𝑁𝑒𝑞

′′(1) = {2𝐿2(𝛽)(𝛼(1 + 𝜂𝐸(𝐺1)))(𝛼 + 𝜗) + 2𝐿1(𝛽)(𝛼(1 + 𝜂𝐸(𝐺2)))(𝛼 +  𝛾)

+ 𝜗𝐿1(𝛽)𝐿2(𝛽)}{1 +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔)) + (1 − 𝐻∗(𝛼 + 𝛾)) 

(𝛼(2 − 𝐹𝑣
∗(𝜔)) + 𝛾)} 

−2𝐿1(𝛽)𝐿2(𝛽)(𝛼 + 𝜗){((𝛼 + 𝛾) − Θ)(1 + 𝛼(1 − 𝐹𝑣
∗(𝜔))) + 𝛼𝑀(1 − 𝐹𝑣

∗(𝜔)) 

+𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))} + (1 − 𝐻∗(𝛼 + 𝛾)){(𝑀 + 1)(1 + 𝛼(2 − 𝐹𝑣
∗(𝜔))) 

+[𝛼(2 − 𝐹𝑣
∗(𝜔))] [

𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] 

+
𝛼𝛾

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽)) 

+𝛼[𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))] + 𝛾} + 2𝜗𝐿1(𝛽)𝐿2(𝛽){1 +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔)) 

+(1 − 𝐻∗(𝛼 + 𝛾)) + ((𝛼(2 − 𝐹𝑣
∗(𝜔)) + 𝛾))} + {2𝐿2(𝛽)(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗) 

(𝜂𝐸(𝐺1
(2)
)) + 2𝛼[1 + 𝜂𝐸(𝐺2)](1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) + 2𝛼𝐿2(𝛽) 

(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1))
2𝐸(𝐹1) − 2𝑀𝐿2(𝛽)(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1))} 
{(𝛼 + 𝛾)(𝛼)(2 − 𝐹𝑣

∗(𝜔)) + 𝛾{(𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾)) 
(𝐹𝑣

∗(𝜔) − 1)}} − 2𝐿2(𝛽)(1 − 𝐹1
∗(𝛽))((𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1))){(𝛼 + 𝛾) 

[𝛼(2 − 𝐹𝑣
∗(𝜔)) + 𝛼𝐸(𝐹𝑣) −

𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))] + 𝛾[(𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐹2)) 

(1 − 𝐹2
∗(𝛽)))((𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾))(𝐹𝑣

∗(𝜔) − 1))] 

+𝛼𝛾(1 − 𝐻∗(𝛼 + 𝛾))[1 − 𝛼𝐸(𝐹𝑣) −
𝛼

𝛾
(1 − 𝐹𝑣

∗(𝜔))]} + 𝛾{−2(𝑀 − 1)𝐿1(𝛽) 

(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) + 2(𝛼(1 + 𝜂𝐸(𝐺1)))(1 − 𝐹2

∗(𝛽))((𝛼 + 𝛾) 
(1 + 𝜂𝐸(𝐺2))) + 2𝐿1(𝛽)(𝛼(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) 

+𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))((𝛼 + 𝜗)(𝜂𝐸(𝐺2

(2)
)))}{(

(1 − 𝐻∗(𝛼 + 𝛾))

𝛼 + 𝛾
)(𝛾(𝛼 + 𝛾 − 1))} 

−2𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)){(𝛼 + 𝛾) − 𝛼(1 − 𝐻

∗(𝛼 + 𝛾)) 

+(𝛼 + 𝛾𝐻∗(𝛼 + 𝛾))[
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] − 𝛾(1 − 𝐻∗(𝛼 + 𝛾)) 

[𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))]}. 

 

𝐷𝑒𝑞
′′(1) = −2𝛽2(𝛼 + 𝛾)[(𝛼 + 𝛾) − Θ]. 

𝑁𝑒𝑞
′′′(1) = {6𝛼(1 + 𝜂𝐸(𝐺1))𝐿2(𝛽)(𝛼 + 𝜗) + 6𝐿1(𝛽)𝛼(1 + 𝜂𝐸(𝐺2))(𝛼 + 𝜗) 

+2𝐿1(𝛽)𝐿2(𝛽)𝜗}{((𝛼 + 𝛾) − Θ)(1 + 𝛼(1 − 𝐹𝑣
∗(𝜔))) + 𝛼𝑀(1 − 𝐹𝑣

∗(𝜔)) 

+𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))} + (1 − 𝐻∗(𝛼 + 𝛾)){(𝑀 + 1)(1 + 𝛼(2 − 𝐹𝑣
∗(𝜔))) 

 

+[𝛼(2 − 𝐹𝑣
∗(𝜔))] [

𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] 

+
𝛼𝛾

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽)) 
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+𝛼[𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))] + 𝛾} − {3𝐿1(𝛽)Γ4(𝛼 + 𝛾) + 3𝜗𝛼(1 + 𝜂𝐸(𝐺1)) 

𝐿2(𝛽) + 3Γ3𝐿2(𝛽)(𝛼 + 𝜗) + 6𝛼
2(1 + 𝜂𝐸(𝐺1))(1 + 𝜂𝐸(𝐺2))(𝛼 + 𝜗) + 3𝜗𝐿1(𝛽)(1 + 𝜂𝐸(𝐺2))}{1

+
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔)) + (1 − 𝐻∗(𝛼 + 𝛾)) 

+((𝛼(2 − 𝐹𝑣
∗(𝜔)) 

+𝛾))} − 2𝐿1(𝛽)𝐿2(𝛽)(𝛼 + 𝜗){{(1 + 𝛼(1 − 𝐹𝑣
∗(𝜔))){−2𝛼(1 − 𝐻∗(𝛼 + 𝛾)) 

[−𝛼(1 + 𝜂𝐸(𝐺1))𝐸(𝐹1) +
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(𝛽𝐸(𝐹1) − 𝐹1

∗(𝛽) + 1)] 

−(𝛼 + 𝛾𝐻∗(𝛼 + 𝛾))(Γ1 +𝑊1
′′) − 𝛾(1 − 𝐻∗(𝛼 + 𝛾)) − 2𝛼(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2) 

+Γ2 +𝑊2
′′(1)} + 2(1 + 𝛼(1 − 𝐹𝑣

∗(𝜔)))((𝛼 + 𝛾) − Θ) + 𝛼𝑀2(1 − 𝐹𝑣
∗(𝜔)) 

+𝑀(
𝛼

𝜔
(𝜔𝐸(𝐹𝑣) − 𝐹𝑣

∗(𝜔) + 1)) + 𝑉′′(1)} + (1 − 𝐻∗(𝛼 + 𝛾)) 

{𝑀(𝑀 + 1)(1 + 𝛼(2 − 𝐹𝑣
∗(𝜔))) + 2(𝑀 + 1){(1 + 𝛼(2 − 𝐹𝑣

∗(𝜔))) 

+(𝛼(2 − 𝐹𝑣
∗(𝜔)))(

𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))) 

+
𝛾𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽)) 

+𝛼(𝐸(𝐹𝑣) +
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))) + 𝛾} + 𝛼𝑉′′(1) + 2𝛼(
𝛼

𝜔
(𝜔𝐸(𝐹𝑣) − 𝐹𝑣

∗(𝜔) + 1)) 

(
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))) + 𝛼(2 − 𝐹𝑣
∗(𝜔))(Γ1 +𝑊1

′′(1)) 

+
2𝛾𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽)) + (Γ2 +𝑊2
′′(1))}} + {6𝑀(𝛼(1 + 𝜂𝐸(𝐺2))) 

(1 − 𝐹∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) + 6𝑀𝐿2(𝛽)(𝛼(1 + 𝜂𝐸(𝐺2))) 

(𝛼 + 𝜗) ((1 + 𝜂𝐸(𝐺1))) + 6 (𝛼(1 + 𝜂𝐸(𝐺2))) (1 − 𝐹1
∗(𝛽)) 

(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) 
+3𝑀(𝑀 − 1)𝐿2(𝛽)(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) 

+3𝑀𝐿2(𝛽)(1 − 𝐹1
∗(𝛽)) 

(𝛼 + 𝜗) (𝜂𝐸 (𝐺1
(2)
)) − 3Γ4(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) 

+3𝛼(1 + 𝜂𝐸(𝐺1)) 

(1 − 𝐹1
∗(𝛽))(𝛼 + 𝜗)(𝜂𝐸(𝐺1

(2)
)) − 3𝐿2(𝛽)Γ1(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) + 3𝐿2(𝛽) 

(1 − 𝐹1
∗(𝛽))(𝛼 + 𝜗)(𝜂𝐸(𝐺1

(2)
)) − 𝐿2(𝛽)(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗)(𝜂𝐸(𝐺1
(3)
))} 

{(𝛼 + 𝛾)(𝛼)(2 − 𝐹𝑣
∗(𝜔)) + 𝛾{(𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾)) 

(𝐹𝑣
∗(𝜔) − 1)}} + {6(𝛼)(1 + 𝜂𝐸(𝐺2)) 

(1 − 𝐹1
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) − 6𝑀𝐿2(𝛽)(1 − 𝐹1

∗(𝛽))(𝛼 + 𝜗) 
+6𝐿2(𝛽)(𝛼)(1 + 𝜂𝐸(𝐺1))𝐸(𝐹1)(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) + 2𝐿2(𝛽)(1 − 𝐹1

∗(𝛽)) 

(𝛼 + 𝜗)(𝜂𝐸(𝐺1
(2)
))}{(𝛼 + 𝛾)[𝛼(2 − 𝐹𝑣

∗(𝜔)) + 𝛼𝐸(𝐹𝑣) −
𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))] 

+𝛾[(𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐹2))(1 − 𝐹2

∗(𝛽)))((𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) 

+𝛼(1 − 𝐻∗(𝛼 + 𝛾))(𝐹𝑣
∗(𝜔) − 1))] + 𝛼𝛾(1 − 𝐻∗(𝛼 + 𝛾))[1 − 𝛼𝐸(𝐹𝑣) 

−
𝛼

𝛾
(1 − 𝐹𝑣

∗(𝜔))]} − 3𝐿2(𝛽)(1 − 𝐹1
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺1)) 

{(𝛼 + 𝛾)(
2𝛼

𝜔
(𝜔𝐸(𝐹𝑣) − 𝐹𝑣

∗(𝜔) + 1) + 𝛼𝑉′′(1)) + 2𝛾(𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐺2)) 
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(1 − 𝐹2
∗(𝛽))) + 𝛼(1 − 𝐻∗(𝛼 + 𝛾))(1 − 𝛼𝐸(𝐹𝑣) −

𝛼

𝜔
(1 − 𝐹𝑣

∗(𝜔))) 

+𝛾(−2𝛼(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2) + Γ2 +𝑊2
′′(1))((𝛼 + 𝛾)𝐻∗(𝛼 + 𝛾) 

+𝛼(1 − 𝐻∗(𝛼 + 𝛾))(𝐹𝑣
∗(𝜔) − 1)) − 𝛼𝛾(1 − 𝐻∗(𝛼 + 𝛾))𝑉′′(1)} 
+𝛾{6(𝑀 − 1) 

(𝛼(1 + 𝜂𝐸(𝐺1)))(1 − 𝐹2
∗(𝛽))((𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2))) + 6(𝑀 − 1)𝐿1(𝛽) 

(𝛼(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2))((𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2))) − 6((𝛼)(1 + 𝜂𝐸(𝐺1))) 
((𝛼)(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2))((𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2))) − 3(𝑀 − 1)(𝑀 − 2)𝐿1(𝛽) 

(1 − 𝐹2
∗(𝛽))((𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2))) + 3(𝑀 − 1)𝐿1(𝛽)(1 − 𝐹2

∗(𝛽)) 

((𝛼 + 𝜗)(𝜂𝐸(𝐺2
(2)
))) − 3Γ3(1 − 𝐹2

∗(𝛽))((𝛼 + 𝜗) 

(1 + 𝜂𝐸(𝐺2))) − 3𝛼(1 + 𝜂𝐸(𝐺1))(1 − 𝐹2
∗(𝛽))((𝛼 + 𝜗)(𝜂𝐸(𝐺2

(2)
))) 

−3𝐿1(𝛽)Γ2(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) + 3𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗) 

(𝜂𝐸(𝐺2
(2)
)) − 𝐿1(𝛽)(1 − 𝐹2

∗(𝛽))(𝛼 + 𝜗)(𝜂𝐸(𝐺2
(3)
))} 

{(
(1 − 𝐻∗(𝛼 + 𝛾))

𝛼 + 𝛾
)(𝛾(𝛼 + 𝛾 − 1))} + 𝛾{6(𝛼)(1 + 𝜂𝐸(𝐺1)) 

(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) − 6(𝑀 − 1)𝐿1(𝛽)(1 − 𝐹2

∗(𝛽)) 
(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) + 6𝐿1(𝛽)(𝛼)(1 + 𝜂𝐸(𝐺1))𝐸(𝐹2)(𝛼 + 𝛾)(1 + 𝜂𝐸(𝐺2)) 

+3𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))(𝛼 + 𝛾)(𝜂𝐸(𝐺2

(2)
))}{(𝛼 + 𝛾) − 𝛼(1 − 𝐻∗(𝛼 + 𝛾)) 

+(𝛼 + 𝛾𝐻∗(𝛼 + 𝛾))[
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] 

−𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝐹2
∗(𝛽) +

𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))]} − 3𝛾𝐿1(𝛽) 

(1 − 𝐹2
∗(𝛽))(𝛼 + 𝛾)(1 + 𝜂𝐸(𝐺2)){(𝛼 + 𝛾) − [(𝛼 + 𝛾)𝐻

∗(𝛼 + 𝛾) 

+𝛼(1 − 𝐻∗(𝛼 + 𝛾))](Γ1 +𝑊1
′′(1)) − 2(1 − 𝐻∗(𝛼 + 𝛾)){

𝛼

𝛽
(1 + 𝜂𝐸(𝐺1)) 

(1 − 𝐹1
∗(𝛽))} − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[−2𝛼(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2) + Γ2 +𝑊2

′′(1)]}. 
 

 

 𝐷𝑒𝑞
′′′(1) = 6𝛽(𝛼 + 𝜗)[𝛼(1 + 𝜂𝐸(𝐺1))][(𝛼 + 𝛾) − Θ] + 6𝛽(𝛼 + 𝜗)[𝛼(1 +

                                                 𝜂𝐸(𝐺2))][(𝛼 + 𝛾) − Θ] + 3𝜗𝛽
2[(𝛼 + 𝛾) − Θ] + (3𝛽2(𝛼 +

                         𝜗)){(𝛼 +    𝛾𝐻∗(𝛼 + 𝛾))[Γ1 +𝑊1
′′(1)] + 2(

𝛼

𝛽
(1 + 𝜂𝐸(𝐺1)(1 − 𝐹1

∗(𝛽))) 

[𝛼(1 − 𝐻∗(𝛼 +     𝛾))] + 𝛾(1 − 𝐻∗(𝛼 + 𝛾)){2𝛼(1 + 𝜂𝐸(𝐺2)) 
𝐸(𝐹2) + Γ2 +𝑊2

′′(1)} + 1}. 
 

where, 

𝑊1
′′(1) =

1

𝛽2
{𝛽3Γ1 − 𝛽

2(1 − 𝐹1
∗(𝛽))Γ3 − 2𝛽

2(1 + 𝜂𝐸(𝐺1))𝐸(𝐹1) − 2𝛼
2(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))}, 

𝑊2
′′(1) =

1

𝛽2
{𝛽3Γ1 − 𝛽

2(1 − 𝐹2
∗(𝛽))Γ3 − 2𝛽

2(1 + 𝜂𝐸(𝐺2))𝐸(𝐹2) − 2𝛼
2(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))}, 

𝑉′′(1) =
1

𝜔2
{𝛼𝜔3𝐸(𝐹𝑣) − 2𝜔𝛼𝐸(𝐹𝑣) − 2𝛼(1 − 𝐹

∗(𝜔))}, 

Γ1 = 𝛼
2[(1 + 𝜂𝐸(𝐺1))

2𝐸(𝐹1
(2)
) + 𝜂𝐸(𝐺1

(2)
)𝐸(𝐹1)], 

Γ2 = 𝛼
2[(1 + 𝜂𝐸(𝐺2))

2𝐸(𝐹2
(2)
) + 𝜂𝐸(𝐺2

(2)
)𝐸(𝐹2)], 

Γ3 = 𝛼(1 + 𝜂𝐸(𝐺1)) + 𝛼
2𝜂𝐸(𝐺1

(2)
), 
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Γ4 = 𝛼(1 + 𝜂𝐸(𝐺2)) + 𝛼
2𝜂𝐸(𝐺2

(2)
), 

𝑁𝑒𝑠
′′′(1) = 𝑁𝑟𝑞

′′′(1) + {6(𝛼(1 + 𝜂𝐸(𝐺1)))(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) 

−6(𝑀 − 1)𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) + 6𝐿1(𝛽)(𝛼(1 + 𝜂𝐸(𝐺2)) 

𝐸(𝐹2))(𝛼 + 𝜗)(1 + 𝜂𝐸(𝐺2)) + 3𝐿1(𝛽)(1 − 𝐹2
∗(𝛽))(𝛼 + 𝜗)(𝜂𝐸(𝐺2

(2)
))} 

{(
(1 − 𝐻∗(𝛼 + 𝛾))

𝛼 + 𝛾
)(𝛾(𝛼 + 𝛾 − 1))} − [6𝐿1(𝛽)(1 − 𝐹2

∗(𝛽))(𝛼 + 𝜗) 

(1 + 𝜂𝐸(𝐺2))]{(𝛼 + 𝛾) − 𝛼(1 − 𝐻
∗(𝛼 + 𝛾)) + (𝛼 + 𝛾𝐻∗(𝛼 + 𝛾) 

)[
𝛼

𝛽
(1 + 𝜂𝐸(𝐺1))(1 − 𝐹1

∗(𝛽))] − 𝛾(1 − 𝐻∗(𝛼 + 𝛾))[𝐹2
∗(𝛽) 

+
𝛼

𝛽
(1 + 𝜂𝐸(𝐺2))(1 − 𝐹2

∗(𝛽))]} 

 

Appendix B 

 
Algorithm 1 Pseudo Code for GWO Algorithm 

 
INPUT: Objective function =TC(ζ1,ζ2),a,B,D 

OUTPUT: The cost function’s value  

Initiate the grey wolf population Yi, i = 1,2,...,n 

Initiate a, B, D 

Estimate the fitness of every search factor 

Yα = the best search factor 

Yβ = the second-best search factor Yγ = the third best search factor while t < maximum number of 

iterations do for every search factor do 

Arbitrarily initiate c1 and c2 

Update the place of the present search factor 

Update a, B and D 

Estimate the fitness of every search factors 

Update Yα, Yβ and Yγ t = t + 1 

end for 

end while return Yα 

 

 
Algorithm 2 Pseudo Code for BA Algorithm 

 
INPUT: Objective function = TC(ζ1, ζ2), number of trials, frequencies, velocities 

OUTPUT: The cost function’s value  

Set the bat group yi and vi (i = 1, 2,..., n) 

Set frequencies fi, pulse rates ri and the loudness Bi while 

 t < Max number of trials do 

Create new responses by altering frequencies 

Improve velocities and locations/responses if rand > ri then 

Choose a response among the best responses 

Create a local response around the chosen best response end if 

Create a new response by flying randomly if rand< Bi & f(yi) < f(Y ∗) then 

Accept the new response 
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Boost ri and decrease Bi end if 

Rank the bats and find the current best X∗ end while 

 

 

 
Algorithm 3 Pseudo Code for WO Algorithm 

 
INPUT: Objective function = TC(ζ1,ζ2), Number of maxiter and Population etc. 

 

OUTPUT: The cost function’s value  

Initialize a, A, C, l and p 

Determine the fitness of every searching agent X∗ = the best search agent while (it <Maxiter) do for 

every search agent do if (p < 0.5) then if (| A |< 1) then 

Adjust the current search agent’s coordinates using (1) else 

(| A |≥ 1) 

Choose an arbitrary search agent (Xrand) 

Adjust the present search agent’s coordinates using (3) end if 

(p ≥ 0.5) 

Adjust the present search agent’s coordinates using (2) end if 

end for 

Find the fitness of every search agent 

Update X∗ if a better way can be found to do this it=it+1 

Update a, A, C, l and p end while return X∗ 

 

 

 
Algorithm 4 Pseudo Code of CSO Algorithm 

 
INPUT: Objective function = TC(ζ1,ζ2), Number of maxiter and Population etc 

OUTPUT: The cost function’s value  

Create an initial population of cats Yi(i = 1,2,...,n), ν and self-position consideration (SPC) while (Failure 

to meet the termination criteria or I < Imax) do 

Sort all the cats by their calculated fitness function values Yg = cat with the best answer for i = 1: N 

do 

if (SPC = 1) then 

Switch to the search mode 

else 

Start tracing mode end if 

end for i end while Results analysis and representation 
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Appendix C 
 

Table 5. Effect of 𝛼,𝜔, 𝜗 on (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) using GWO. 
 

Parameters  (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) 
  Cost set 1 Cost set 2 Cost set 3 

𝛼 

0.7 (81.3174,1.1022,1.7952) (57.3218,1.0039,1.8769) (57.3633,1.0223,2.6693) 

00.8 (95.6608,1.2396,2.1464) (68.6276,1.0521,2.6324) (83.0626,1.7339,1.2723) 

00.9 (108.2312,1.1378,3.0516) (71.4557,1.1901,2.4962) (78.9805,1.1153,4.8485) 

𝜔 

4.1 (81.8595,1.9675,2.0721) (57.2833,1.0113,1.8459) (57.4192,1.0320,2.6441) 

4.2 (81.1499,1.0959,1.8201) (57.4122,1.2294,1.4465) (59.4770,1.2546,2.0392) 

4.3 (80.9845,1.0922,1.8287) (56.9892,1.1240,1.6043) (58.1516,1.1563,2.2758) 

𝜗 

0.1 (81.3999,1.1602,1.6745) (57.7852,1.2833,1.3722) (59.9257,1.2831,2.0013) 

0.2 (86.1982,1.0699,2.1004) (62.4646,1.5268,1.1278) (63.8065,1.5440,1.5310) 

0.3 (90.7340,1.0774,2.1609) (62.4744,1.1693,1.7665) (66.0212,1.0847,2.8799) 

 

 

Table 6. Effect of 𝛼,𝜔, 𝜗 on (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) using BA. 
 

Parameters  (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) 
  Cost set 1 Cost set 2 Cost set 3 

𝛼 

0.7 (82.9629,1.3890,1.3239) (57.1935,1.0856,1.6896) (57.3633,1.0223,2.6693) 

0.8 (99.0555,1.4104,2.6855) (64.8841,1.3306,1.6417) (73.5202,1.4242,2.3087) 

0.9 (109.0222,1.1300,3.1492) (73.1651,1.1671,2.6794) (79.7424,1.3290,3.3216) 

𝜔 

4.1 (87.6229,1.7966,2.9427) (57.3645,1.9923,1.9027) (60.1713,1.2917,1.9589) 

4.2 (93.6000,1.7523,3.5375) (63.8529,1.7341,3.1435) (59.3421,1.2523,2.0709) 

4.3 (81.1391,1.1947,1.6397) (57.1487,1.1857,1.5009) (58.8434,1.2164,2.1218) 

𝜗 

0.1 (82.8683,1.3796,1.3353) (57.4241,1.1965,1.4898) (59.1324,1.2205,2.1499) 

0.2 (86.5766,1.0039,2.2274) (60.0518,1.2348,1.5634) (63.3058,1.2106,2.3318) 

0.3 (90.8545,1.2398,1.7950) (64.8528,1.4899,1.2232) (66.4365,1.1105,2.7538) 

 

 

Table 7. Effect of 𝛼,𝜔, 𝜗 on (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) using WO. 
 

Parameters  (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) 
  Cost set 1 Cost set 2 Cost set 3 

𝛼 

0.7  (81.3410,1.0769,1.8496)  (57.2291,1.1310,1.6220) (57.1163,1.0152,2.9237)  

0.8  (94.3177,1.4026,1.6436)  (64.8996,1.4791,1.2850)  (71.1598,1.1808,3.4498) 

0.9  (100.8677,1.4042,1.8665)  (68.2073,1.4388,1.5497) (78.0862,1.2137,3.9676) 

𝜔 

4.1  (81.3216,1.0942,1.8202)  (57.2469,1.1419,1.6040) (57.4192,1.0320,2.6441)  

4.2  (82.5587,1.3662,1.3557)  (57.0634,1.0733,1.7189)  (56.9322,1.1732,2.9190) 

4.3  (80.9913,1.0806,1.8392)  (56.9892,1.1240,1.6043) (56.7504,1.2011,2.9145) 

𝜗 

0.1  (81.6981,1.2444,1.5576)  (57.1937,1.0695,1.7309) (57.1163,1.0731,2.9236)  

0.2  (86.2642,1.2479,1.6657)  (59.8157,1.1332,1.7351)  (61.0453,1.1566,3.2015) 

0.3  (90.7627,1.2221,1.8282)  (62.4431,1.1144,1.8870) (65.0118,1.1921,3.4790) 

 

 

Table 8. Effect of 𝛼,𝜔, 𝜗 on (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) using CSO. 
 

Parameters  (𝑇𝐶∗, 𝜁1
∗, 𝜁2

∗) 
  Cost set 1 Cost set 2 Cost set 3 

𝛼 

0.7  (81.3152,1.1109,1.7885)  (57.1912,1.0810,1.7086) (60.7831,1.0219,3.2291)  

0.8  (94.3125,1.4146,1.6129)  (64.7666,1.4300,1.4698)  (77.4248,1.1171,4.1272) 

0.9  (106.2876,1.5931,1.4124)  (71.1618,1.6106,1.1491) (94.1367,1.2449,4.9402) 

𝜔 

4.1  (81.3152,1.1108,1.7886)  (57.1912,1.0813,1.7084) (60.7831,1.0442,3.2288)  

4.2  (81.1444,1.1088,1.7890)  (57.0628,1.0796,1.7088)  (60.5809,1.1981,3.2241) 

4.3  (80.9753,1.1065,1.7909)  (56.9358,1.0775,1.7095) (60.3813,1.2731,3.2184) 

𝜗 

0.1  (81.3152,1.1108,1.7891)  (57.1912,1.0815,1.7076) (60.7831,1.0761,3.2292)  

0.2  (85.9144,1.130,1.8864)  (59.8066,1.1110,1.7753)  (65.4298,1.1131,3.5518) 

0.3  (90.5667,1.1421,1.9924)  (62.4379,1.1297,1.8556) (70.1241,1.5310,3.8742) 
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