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Abstract 

We extend the Kannan contraction principle and obtain a result that holds for both contractive and non-expansive mappings. Such 

mappings admit multiple fixed-points and the fixed-point sets and domains of these mappings display interesting algebraic, 

geometric and dynamical features. Since contraction mappings admit only one fixed-point, almost all the existing results on 

contractive mappings can be generalized in the light of our theorem. As an application of our main theorem, we obtain the integral 

solutions of a nonlinear Diophantine equation; the solutions are Pythagorean triples, which represent right angled triangles, and 

each integer of the triple belongs to a Fibonacci type sequence. These results can be generalised to obtain integral solutions of 

Diophantine equations of the type (n+k)2 – n2 = p2, k > 1, and to check whether the related sequences are Fibonacci sequences.  

 

Keywords- Contraction mappings, Eventual fixed points, Fibonacci sequence, Fixed points, Pythagorean triple. 

 

 

 

1. Introduction  
Banach (1922) proved that if a self-mapping T of a complete metric space (X, d) satisfies: 

d(Tx, Ty) ≤ λ d(x, y), 0 ≤ λ < 1                                                                                                                       (1) 

 

then T has a unique fixed point. Various useful applications and generalizations of this theorem have been 

obtained e.g. Boyd and Wong (1969), Chatterjea (1972), Ciric (1971, 1974), Meir-Keeler (1969), Reich 

(1971a, 1971b, 1972), Suzuki (2008) and Wardowski (2012, 2018). Kannan (1968, 1969) proved that if a 

self-mapping T of a complete metric space (X, d) satisfies: 

d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)], 0 ≤ a < ½                                                                                                    (2) 

 

then T has a unique fixed point. The Kannan theorem is an important result since it characterizes metric 

completeness (see Subrahmanyam, 1975) and is the genesis of the Rhoades problem (Rhoades, 1988) on 

continuity of contractive mappings at the fixed point. Pant (1999) resolved the Rhoades problem and 

proved: 

 

Theorem 1.1 Let f be a self-mapping of a complete metric space (X, d) such that for any x, y in X 

(i) d(fx, fy) ≤ ϕ(max{d(x, fx), d(y, fy)}), ϕ: R+ → R+ is such that ϕ(t) < t for each t >0. 

(ii) Given ε > 0 there exists δ > 0 such that ε < max{d(x, fx), d(y, fy)} < ε + δ ⟹ d(fx, fy) ≤ ε. 

 

Then f has a unique fixed point, say z. Moreover, f is continuous at z if and only if  

limx→z max{d(x, fx), d(z, fz)} = 0. 

 

Pant and Pant (2017, Theorem 2.9) have shown that the (ε, δ) condition (ii) applies to non-expansive type 

mappings as well and named such mappings as (ε - δ) non-expansive mappings. Condition (ii) or its variants 

have been employed by researchers to find new solutions of Rhoades’ problem (1988) on continuity of 

contractive mappings at the fixed point, e.g. Bisht and Pant (2017), Bisht and Rakocevic (2018, 2020), 

Celik and Ozgur (2020), Pant (2001), Pant et al. (2020), Tas and Ozgur (2019), Zheng and Wang (2017). 

https://www.ijmems.in/
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In this paper, we extend the Kannan contraction condition (2) and obtain a result that holds for both 

contraction and non-expansive mappings. Our result is more general than every known theorem for 

contractive mappings since contractive mappings possess a unique fixed point while our theorem admits a 

unique fixed point as well as multiple fixed points. All the known fixed-point theorems for contraction 

mappings can be generalized along the lines of our theorem e.g. Banach (1922), Boyd and Wong (1969), 

Meir and Keeler (1969), Chatterjea (1972), Ciric (1971, 1972), Hardy and Rogers (1973), Pant (2002), 

Pasicki (2016), Petrov (2023), Reich (1971a, 1971b, 1972), Savaliya et al. (2024), Suzuki (2008). Besides 

metric spaces these theorems can be generalized in Fuzzy metric space, Menger PM-space, b-metric space, 

ordered metric space, cone metric space, etc. by using our approach. Therefore, our result provides a vast 

scope of obtaining new and significant results. The examples of our main theorem include a mapping on a 

Fibonacci sequence. Each element of this sequence yields a Pythagorean triple which provides an integral 

solution of the Diophantine equation X2 + (X+1)2 = Y2. Since Pythagorean triples are right angled triangles, 

our solutions of the Diophantine equation provide a nice combination of fixed-point results, Fibonacci 

sequences, right angled triangles, Diophantine equation etc. This also opens up scope for studying 

Diophantine equations of the type X2 + (X + k)2 = Y2, k = 2, 3, 4,… 

 

We now give some relevant definitions. 

 

Definition 1.1 If T is a self-mapping of a set X then a point x in X is called an eventually fixed point of T 

if there exists a natural number N such that Tn+1(x) = Tn(x) for n  N. If Tx = x then x is called a fixed point 

of T. A point x in X is called a periodic point of period n if Tnx = x. The least positive integer n for which 

Tnx = x is called the prime period of x (Devaney, 1986; Holmgren, 1994). 

 

Definition 1.2 The set {x ∈ X: Tx = x} is called the fixed-point set of the mapping T: X → X. 

 

Definition 1.3 The function T: (-∞, ∞) → (-∞, ∞), such that T(x) is the least integer not less than x, is called 

the least integer function or the ceiling function and is denoted by T(x) = ⌈x⌉. 
 

Definition 1.4 A triplet (a, b, c) of natural numbers, a < b < c, is called a Pythagorean triple if a2 + b2 = c2. 

 

Definition 1.5 For a Fibonacci sequence {ui}the limiting value of the ratio ui+1/ui as i→ ∞ is called the 

golden ratio of {ui}. 

 

Properties of the golden ratio have been widely studied. Renowned architect Le Corbusier and famous artist 

Salvador Dali have used the golden ratio to design their works. 

 

In Section 2 we prove our main result and give five examples to substantiate it. In Remark 2.2 we show 

that the fixed-point sets and domains of the mappings satisfying our theorems display interesting algebraic, 

geometric and dynamical features. In Theorems 3.1 and 3.2 in Section 3, as an application of mappings 

satisfying Theorem 2.1, we obtain 2∑m = ∑n as the generating equation for the integral solutions of the 

nonlinear Diophantine equation X2+ (X+1)2 = Y2. The solutions are Pythagorean triples and the values of 

each of X, X+1, Y yield a Fibonacci type sequence. The value of the golden ratio of each Fibonacci 

sequences is 3+2√2. Section 4 summarizes the work done in Sections 2 and 3. It also outlines the vast scope 

of possible work along the lines of Theorems 2.1, 3.1, 3.2 and Remark 3.1. 

 

The main results are given in Section 2 using the Picard iteration method to obtain the fixed point as the 

limit of the sequence of iterates. Application of our results is given in Section 3 and the method consists of 

using the generating equation 2∑m = ∑n obtained by us. 
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2. Main Results 
Theorem 2.1 Let (X, d) be a complete metric space and T: X → X be such that for each x, y in X with x ≠ 

Tx or y ≠ Ty we have, 

(iii) d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)], 0 ≤ a< ½.  

 

Then T has a fixed point. T has a unique fixed point ⟺ (iii) is satisfied for each x ≠ y in X.  

 

Proof. Let y0 be any point in X and {yn} be the sequence defined by yn = Tyn-1, that is, yn = Tny0. If yn = yn+1 

for some n, then yn is a fixed point of T and the theorem holds. Therefore, assume that yn ≠ yn+1 for each n 

≥ 0. Then using (iii) we have, 

d(yn, yn+1) = d(Tyn-1, Tyn) ≤ a[d(yn-1, Tyn-1) +d(yn, Tyn)] = a[d(yn-1, yn) + d(yn, yn+1)]. 

 

This implies that, 

d(yn, yn+1) ≤ (a/(1-a))d(yn-1, yn) ≤ (a/(1-a))2d(yn-2, yn-1) ≤ …≤ (a/(1-a))nd(y0, y1). 

 

From this it follows that limn→∞ d(yn, yn+1) = 0  and limn→∞ d(yn, yn+p) = 0, that is, {yn} is a Cauchy sequence. 

Since X is complete, there exists z in X such that limn→∞ yn = z and limn→∞ Tyn = z. 

 

Using (iii) we get, 

d(Tyn, Tz) ≤ a[d(yn, Tyn) + d(z, Tz)]. 

 

Taking the limit as n→∞ we get z = Tz, that is, z is a fixed point of T. It follows easily that z is the unique 

fixed point. Further, let u be any point in X. Then, Tnu = Tn+1u = z for some n or limn→∞ d(Tnu, Tz) = limn→∞ 

ad(Tn-1u, Tnu) = 0, that is, limn→∞ Tnu = z. Thus, if there exists a point y0 such that Tn+1y0 ≠ Tny0 for each n, 

then for each u in X the sequence of iterates {Tnu} converges to z and z is the unique fixed point. Therefore, 

Tn+1y0 ≠ Tny0, n ≥ 0, for some y0 implies the uniqueness of the fixed point.  

 

Now, assume that condition (iii) is satisfied for all x, y in X. Then T can have only one fixed point and we 

obtain the Kannan theorem (1968, 1969) as a particular case of Theorem 2.1. Conversely, suppose that T 

has a unique fixed point. Then for distinct x, y we have x ≠ Tx or y ≠ Ty which implies that condition (iii) 

holds for each x ≠ y. This proves the theorem. 

 

Example 2.1 Let X = [1, ∞) and d be the Euclidean metric. Let T: X → X be the signum function Tx = sgn 

x defined as, 

Tx = -1 if x < 0, T0 = 0, Tx = 1 if x > 0. 

 

Then Tx = 1 for each x, T satisfies (iii) and T has a unique fixed-point x = 1. If x ≠ 1 then T2x = Tx and x 

is an eventually fixed point. 

 

Example 2.2 Let F = {reiθ: 0 ≤ θ ≤ 2π, r = 1, 6, 62, …} be the self-similar family of concentric circles, each 

lying within larger circles having radii in a geometric progression, in the xy-plane. Let X be the set of points 

of intersection of F with the N rays beginning at the origin and respectively making angles 0, 2π/N, 2(2π/N), 

3(2π/N), …, (N-1)(2π/N) measured counter clockwise with the positive x-axis and let d be the usual metric 

on X. Define T: X→ X by, 

T(reiθ) = ⌈r/6⌉ eiθ. 

 

where, ⌈x⌉ denotes the least integer not less than x. Then T satisfies Theorem 2.1 with a = 2/5 and has N 

fixed points ei0, ei2π/N, ei2(2π/N), ei3(2π/N), …, ei(N-1)(2π/N). The mapping T does not satisfy Kannan theorem (1968, 
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1969) if N > 1. However, if N = 1 then T is a Kannan contraction mapping and has a unique fixed point ei0 

= 1 or if we take the restriction of T along one of the N rays then the restriction of T is a Kannan contraction. 

 

Example 2.3 Let X = {z = reiθ: 0 ≤ θ ≤ 2π, r = 1, 6, 62, …} be the self-similar family of concentric circles, 

each lying within larger circles having radii in a geometric progression, in the xy-plane and let d be the 

usual metric on X. Define T: X→ X by T(z) = z/|z| = z/r. 

 

Then T satisfies (iii) with a = 2/5 and each point on the unit circle z = eiθ is a fixed point while every other 

point is an eventually fixed point. In this example, the unit circle is a fixed circle. Fixed circles are presently 

an active area of study (Hussain et al., 2020; Ozgur and Tas, 2018, 2019a, 2019b; Ozgur, 2019; Tas et al., 

2018; Saleh et al., 2020).  

 

Example 2.4 Let (X, d) be a metric space and T be the identity mapping on X. Then each point is a fixed 

point and condition (iii) holds since there is no pair of points (x, y) in X that violates (iii). Therefore, T 

satisfies Theorem 2.1. However, T does not satisfy Kannan Contraction Theorem. 

 

Example 2.5 Let {mi, i ≥ 1} be the Fibonacci type sequence given by, 

m1 = 0, m2 = 2, mi = 6mi-1 – (mi-2 – 2) for i ≥ 3. 

 

This gives m3 = 14, m4 =84, m5 = 492, m6 = 2870, m7 = 16730, m8 = 97512, m9 = 568344, … 

 

Let X = [0, ∞) equipped with the Euclidean metric. Define T: X→ X by, 

Tmi = (mi + mi-2 -2)/6 = mi-1 if i ≥ 2,  Tx = 0 otherwise. 

 

Then T is a nonlinear mapping that satisfies the conditions of Theorem 2.1 with a = 1/3 and has a unique 

fixed point at 0. If we take x = 14 and y = 70 then T(x + y) = 14 while T(x) + T(y) = 2 showing that T is a 

nonlinear mapping. If x = 492 and y = 490 then d(Tx, Ty) = 84 and d(x, y) = 2. This shows that T does not 

satisfy the fixed-point theorems due to Banach (1922), Boyd and Wong (1969), Meir and Keeler (1969), 

Pant (2002), Pasicki (2016), Reich (1971, 1972), Suzuki (2008), Wardowski (2012, 2018). 

 

Remark 2.1 We observe that the nonlinear mapping defined in Example 2.5 satisfies Theorem 2.1 but does 

not satisfy the well-known theorems due to Banach (1922), Boyd and Wong (1969), Meir and Keeler (1969), 

Pant (2002), Pasicki (2016), Reich (1971, 1972), Suzuki (2008), Wardowski (2012, 2018) and the 

extensions and generalizations of these and various other theorems. Examples 2.2, 2.3, 2.4 admit multiple 

fixed points and, therefore, Theorem 2.1 is more general than every contraction mapping theorem. 

 

Remark 2.2 The N fixed points ei0, ei2π/N, ei2(2π/N), ei3(2π/N), …, ei(N-1)(2π/N) in Example 2.2 are: 

a) The Nth roots of unity and these lie on the unit circle and form a cyclic group under multiplication, 

b) Vertices of a regular polygon of N sides. 

 

If N = 2n-1 then the fixed-point set is identical with the set of periodic points of period n for the doubling 

map which is important in dynamics of complex functions (Devaney, 1986; Holmgren, 1994). 

 

Also, the domain of the mapping in Example 2.3 is a self-similar family of circles.  The domain in Example 

2.5 is a Fibonacci sequence which, as shown in Theorem 3.2, yields right angled triangles as integral 

solutions of the equation X2 + (X+1)2 = Y2. Thus, the domain and the fixed-point sets of the mappings 

satisfying Theorem 2.1 may possess interesting algebraic, geometric and dynamical features. If we replace 
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the self-similar family of circles by a self-similar family of spheres then the domain and the fixed-point set 

will be more intricate and interesting sets. 

 

3. Applications 
In this section, we give an application of Theorem 2.1 and Example 2.5 in obtaining the generating equation 

of: (a) the Fibonacci type sequence {mi} introduced in Example 2.5 and (b) the integral solutions of the 

nonlinear Diophantine equation X2+ (X+1)2 = Y2. 

 

Fibonacci numbers are very interesting numbers and these are of particular interest to biologists and 

physicists because they are observed in various objects and phenomena. Because of the importance and 

applications of Fibonacci sequences the journal Fibonacci Quarterly is devoted to the studies on Fibonacci 

sequences. Fibonacci numbers were introduced in 1202 by Italian mathematician Leonardo, also known as 

Fibonacci. In India Fibonacci numbers were first described as early as 200 BC in the work by Grammarian 

Pingala (see Singh, 1985) for enumerating the possible patterns of Sanskrit poetry.  

 

The Pythagorean triples are interesting triplets of natural numbers that find a number of applications. The 

integral solutions of the equation X2+ (X+1)2 = Y2 are, obviously, Pythagorean triples which represent right 

angled triangles having hypotenuse of length Y and the other sides of length X and X+1 respectively.  

 

The sum 1 + 2 + 3 + …+ n of first n natural numbers is generally denoted by ∑n and ∑n = n (n+1)/2. Let 

us define ∑0 = 0. We can treat ∑n as a function F on nonnegative integers defined as F(n) = ∑n. In the 

following, we shall treat 0, 1, 1 as a Pythagorean triple. 

 

In Remark 3.1 we will discuss some simple but interesting properties of odd numbers and will see that the 

sum function ∑n is inevitably required in expressing odd powers of integers as sum of consecutive odd 

numbers and in finding the sums of odd powers of numbers. Here we discuss a property of odd numbers 

that yields the generating equation for the solutions of the nonlinear Diophantine equation X2+ (X+1)2 = 

Y2. It is easy to see that the square of every odd number is a difference of squares of two consecutive 

integers, that is, 

(2m+1)2 = (1+2m(m+1))2 – (2m(m+1))2 = (1+4∑m)2 – (4∑m)2                                                                      (3) 

 

This shows that for each odd number 2m+1 both terms on the righthand side of (3) contain 4∑m, a multiple 

of four. On the other hand, the multiples of four are the only integers that can be written as sum of two 

consecutive odd numbers: 

4 = 1+3, 8 = 3+5, 12 = 5+7, 16 = 7+9, 20 = 9+11, 24 = 11+13, 28 = 13+15,…                                                 (4) 

 

Equations (3) and (4) indicate some interesting relationship between odd numbers and the multiples of four 

and immediately draw our attention to hymns 24 and 25 of Chapter 18 of Shukla-Yajurved. In hymn 24 the 

prayer has been expressed in the form of pairs of odd numbers while in hymn 25 the prayer has been 

expressed through multiples of four. In Remark 3.1 we will discuss the relationship between odd numbers 

and multiples of four in a little more detail. 

 

Now, for each integer k ≥ 0 we have k2 + (k+1)2 = (1+k(k+1))2 – (k(k+1))2. This means that if (2m+1)2 is 

the sum of squares of two consecutive integers n, n+1 then using (3) we get n(n+1) = 4∑m, that is, ∑n = 

2∑m.  

 

In the next two theorems we show that the equation 2∑m = ∑n generates the Fibonacci sequence of Example 

2.5 and the solutions of the Diophantine equation X2 + (X+1)2 = Y2. 
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Theorem 3.1 There exist pairs (m, n) of nonnegative integers such that 2∑m = ∑n. The values of m form 

a Fibonacci type sequence and the values of n also form a Fibonacci type sequence. 

 

Proof. It is easy to verify that 2∑0 = ∑0, 2∑2 = ∑3, 2∑14 = ∑20, 2∑84 = ∑119, 2∑492 = ∑696, 2∑2870 

= ∑4059, 2∑16730 = ∑23660, 2∑97512 = ∑137903, that is, the first eight vales of m in increasing order 

are 0, 2, 14, 84, 492, 2870, 16730, 97512 and the corresponding values of n are 0, 3, 20, 119, 696, 4059, 

23660, 137903. We see that the initial eight values of m are the same as the corresponding values of 

Fibonacci type sequence {mi, i ≥ 1} of Example 2.5 above. We see that each element of the sequence {mi, 

i ≥ 1} satisfies the equation 2∑m = ∑n. Similarly, we find that the values of n form a Fibonacci type 

sequence {ni, i ≥ 1} such that 2∑mi = ∑ni and n1 = 0, n2 = 3, ni = 6ni-1 – (ni-2 – 2) for i ≥ 3. 

This proves the theorem.  

 

Using the above theorem, we now generate the integral solutions of the Diophantine equation X2 + (X+1)2 

= Y2. It is easy to see that Y is an odd number if Y2 = X2 + (X+1)2.  

 

Theorem 3.2 The equation 2∑m = ∑n generates the integral solutions of the nonlinear Diophantine 

equation X2+ (X+1)2 = Y2. 

 

Proof. Let m, n be nonnegative integers such that 2∑m = ∑n. Then  

2∑m = ∑n ⟺ m(m + 1) = n(n + 1)/2 ⟺ 4m2 +4m = 2n2 + 2n 

⟺ (2m + 1)2 = n2 + (n+1)2                                                                                                         (5) 

 

Thus, the equation 2∑m = ∑n is equivalent to the integral solution n2 + (n+1)2 = (2m + 1)2 of the 

Diophantine equation X2+ (X+1)2 = Y2 and, therefore, yields all the integral solution of X2+ (X+1)2 = Y2. 

Using the value of m and n from Theorem 3.1 some initial solutions of the equation X2+ (X+1)2 = Y2 are: 

 

n1
2 + (n1+1)2 = 02 + 12 = 12 = (2m1+1)2; 

n2
2 + (n2+1)2 = 32 + 42 = 52 = (2m2+1)2;  

n3
2 + (n3+1)2= 202 + 212 = 292 = (2m3+1)2; 

n4
2 + (n4+1)2 = 1192 + 1202 = 1692 = (2m4+1)2; 

n5
2 + (n5+1)2 = 6962 + 6972 = 9852 = (2m5+1)2; 

n6
2 + (n6+1)2 = 40592 + 40602 = 57412 = (2m6+1)2; 

n7
2 + (n7+1)2 = 236602 + 236612 = 334612 = (2m7+1)2;… 

 

The values obtained for (2m + 1) are 1, 5, 29, 169, 985, 5741, 33461, …, and these form a Fibonacci type 

sequence, say {ki, i ≥ 1} defined as, 

k1 = 1, k2 = 5, ki = 6ki-1 – ki-2 if i ≥ 3. 

 

The golden ratio of {ki} is limi→ ∞(6ki – ki-1)/ki. Since ki→∞ as i → ∞ and 5 ≤ (6ki – ki-1)/ki < 6, the golden 

ratio, say r, of {ki} is given by r = 6 – (1/r), that is, r = 3+2√2. Similarly, it follows that the golden ratio of 

each of {mi} and {ni} equals 3+2√2. 

 

Remark 3.1 We have seen above that if the square of an odd number (2m+1) is sum of squares of two 

consecutive numbers n, n+1 then ∑n = 2∑m. In Theorems 3.1 and 3.2 we have seen that the equation ∑n = 

2∑m yields three Fibonacci sequences and solutions of the Diophantine equation X2 + (X+1)2 = Y2.  

 

Besides yielding the solutions of X2 + (X+1)2 = Y2, the sum function ∑n is very useful in writing the odd 

powers of integers as sum of consecutive odd numbers and in finding the sum of odd powers of integers. 
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We know that the sum of first n odd numbers equals n2, that is, 1 + 3 + 5 +…+ (2n-1) = n2. This means that 

the sum of first ∑n odd numbers will be (∑n)2 = (n(n+1)/2)2. We show that cubes, 5th powers, and 7th powers 

of natural numbers can also be expressed as sum of consecutive odd numbers. Now, 

1 = 13, 

3+5 = 23, 

7+9+11 = 33, 

13+ 15+ 17+19 = 43, 

53 = 21+23+25+27+29, 

63 = 31+33+35+37+39+41, 

73 = 43+45+ …+54+55, … 

 

This implies that 

a) 13 + 23 + 33 + …+n3 = sum of first ∑n odd numbers = (n(n+1)/2)2, which is the well-known formula for 

sum of cubes of consecutive integers, 

b) n3 = sum n consecutive odd numbers after the first ∑(n-1) odd numbers. 

 

Let us now consider the sums,  

1 = 15, 

5+7+9+11 = 32 = 25, 

19+21+23+25+27+29+31+33+35 = 243 = 35, 

49+51+53+…+75 +77+79 = 1024 = 45, 

101+103+105+…+147+149 = 3125 = 55, 

181+183+187+…+249+251 = 7776 = 65, 

295+297+…+389+391 = 16807=75, … 

 

Here we leave ∑1 odd numbers after 1 and add the next 22 odd numbers to get 25; leave the next ∑2 odd 

numbers and add the following 32 odd numbers to get 35; leave the next ∑3 odd numbers and add the 

following 42 odd numbers to get 45, leave the next ∑4 odd numbers and add the following 52 odd numbers 

to get 55, … This gives a recurring pattern involving ∑n for expressing 5th powers as sum of consecutive 

odd numbers. In writing n5 as sum of odd numbers the last odd number used will be ((n3+n2)/2)th odd 

number that is, n3+n2-1. 

 

We can find the sum of odd numbers left out at each stage and also the sum of fifth powers of integers using 

∑n. The sum of the odd numbers left out is, 

3 (∑1+∑2+∑3+…+∑(n-1))2 = 3[(n-1) n(n+1)/6]2. 

 

Therefore,  

15+25+35+ …+n5 = Sum of first (n3+n2)/2 odd numbers - sum of odd numbers left out 

= ((n3+n2)/2)2 - 3 (∑1+∑2+∑3+…+∑(n-1))2 

= ((n3+n2)/2)2 – 3 [(n-1) n(n+1)/6]2 = n2(n+1)2(2n2+2n-1)/12. 

 

Similarly, we can write the 7th powers of integers as sum of consecutive odd numbers as: 

17 = 1, 

27 = 9+11+…+21+23 = 128, 

37 = 55+57+…+105+107 = 2187, 

47 = 193+195+…+317+319 = 16384, 

57 = 501+503+…+747+749 = 78125, 

67 = 1081+1083+…+1509+1511 = 279936, … 
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Here we leave (2.1+1) ∑1 = 3 odd numbers after 1 and add the next 23 odd numbers to get 27, 

leave next (2.2+1) ∑2 = 15 odd numbers and add the next 33 odd numbers to get 37, 

leave next (2.3+1) ∑3 = 42, odd numbers and add the next 43 odd numbers to get 47, 

leave next (2.4+1) ∑4 = 90 odd numbers and add the next 53 odd numbers to get 57, 

leave next (2.5+1) ∑5 =165 odd numbers and add the next 63 odd numbers to get 67, … 

 

Again, we get a recurring pattern involving ∑n for expressing 7th powers as sum of consecutive odd 

numbers. To sum up, having obtained (k-1)5 we leave ∑(k-1) odd number and add next k2 odd numbers to 

get k5 and having obtained (k-1)7 leave (2(k-1) +1) ∑(k-1) odd numbers and add next k3 odd numbers to 

get k7. Similarly, we add k consecutive odd numbers after (∑(k-1))th odd number to get k3. Now, the sum of 

odd numbers left out, 

= 15 (∑1+∑2+∑3+…+∑(n-1)) [(∑1)2+(∑2)2+(∑3)2+…+(∑(n-1))2]. 

= (n-1)2n2(n+1)2[3n2-2]/24. 

 

Therefore, 

17+27+ … +n7 = Sum of first (n4+n3)/2 odd numbers - sum of odd numbers left out. 

 

That is, 

17+27+ … +n7 = (n6(n+1)2)/4 – (n-1)2n2(n+1)2[3n2-2]/24. 

 

In a similar manner, other odd powers of numbers can be expressed as sums of consecutive odd numbers 

and sums of 9th and 11th powers may possibly be obtained; this can be a good exercise for school and college 

students besides finding the values of sums like ∑1+∑2+∑3+…+∑(n-1) and (∑1)2+(∑2)2+(∑3)2+…+(∑(n-

1))2.  

 

The above computations for odd numbers involve the sum function ∑n at every stage. 

 

In Equation (3) we see that squares of odd numbers can be written as the difference of squares of two 

consecutive integers as (2m+1)2 = (1+2m(m+1))2 – (2m(m+1))2, that is,  

12 = 12 - 02, 

32 = 52 - 42, 

52 = 132 - 122, 

72 = 252 -242, 

92 = 412 - 402, 

112 = 612 - 602, 

132 = 852 - 842, 

152 = 1132 - 1122, 

172 = 1452 - 1442, … 

 

Here, the numbers occurring at the second place on the right-hand side are 0, 4, 12, 24, 40, 60, 84, 112, 144, 

… or equivalently, 

4∑0, 4∑1, 4∑2, 4∑3, ∑4, 4∑5, 4∑6, 4∑7, 4∑8, …                                                                                      (6) 

 

In the set of integers 0, 4, 12, 24, 40, 60, 84, 112, …, the sums of two consecutive integers are respectively 

4, 16, 36, 64, 100, 144, … (4.12, 4.22, 4.32, 4.42, 4.54, 4.62, …) while the respective differences between two 

consecutive integers are 4, 8, 12, 16, 20, 24, … These differences are multiples of four and are the only 

numbers that can be written as sum of two consecutive odd numbers and, as in (4), all the odd numbers can 

be obtained as follows, 
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4 = 1+3, 

8 = 3+5, 

12 = 5+7, 

16 = 7+9, 

20 = 9+11, 

24 = 11+13, 

28 = 13+15, … 

 

The above computations are reversible since beginning with multiples of four we can obtain all the odd 

numbers by using (4) and their squares in the form (1+ 4∑n)2 – (4∑n)2 = (2n+1)2 while multiples of four 

are obtained from odd numbers by using (4). 

 

Now, hymn 25 of Chapter 18 of Shukla-Yajurved contains multiples of four and multiples of four are the 

only numbers that can be expressed as sum of consecutive odd numbers as done in Equation (4) and the 

order of occurrence of pairs of consecutive odd numbers in Equation (4) is exactly the same as the order of 

occurrence of pairs of consecutive odd numbers in hymn 24. These two hymns are routinely recited in many 

religious ceremonies of the Hindus. It is most unlikely that the occurrence of multiples of four in hymn 25 

and the occurrence of pairs of consecutive odd numbers in hymn 24 in the same order as in Equation (4) is 

a mere coincidence because the decimal system of counting, one of the greatest contributions to 

mathematics, was already in existence in the era of Rig-Ved, the oldest Ved. In Vedic era teaching-learning 

followed the listening-memorising (Shruti-Smriti) mode in which instructions were imparted orally and, 

therefore, hymns 24 and 25 had the potential of working as a formula for orally explaining the arithmetic 

of odd numbers and the multiples of four.  

 

Remark 3.2 Theorems 3.1, 3.2 and the results on cubes, 5th and 7th powers of integers in Remark 3.1 may 

be helpful in motivating the students at school and college level to explore properties of numbers on their 

own on the lines of Remark 3.1 by using the sum function ∑n. We discuss this aspect in some detail in the 

next section. 

 

4. Conclusion 
In this paper we obtained a proper extension of the Kannan contraction theorem and the result has been 

substantiated by various types of examples. The Fibonacci sequence defined in Example 2.5 and the 

generating equation 2∑m = ∑n defined in Theorems 3.1 and 3.2 have been successfully applied to obtain 

the integral solutions of the nonlinear Diophantine equation X2+ (X+1)2 = Y2. From a geometric point of 

view, the solutions are Pythagorean triples which represent right angled triangles with hypotenuse of length 

Y and the other two sides of length X, X+1 respectively. In the proofs given in Theorems 3.1, 3.2 and 

Remark 3.1 the sum function ∑n is an important tool. In Remark 3.1 we have expressed the 5th powers and 

7th powers of integers as sums of consecutive odd numbers and have also obtained the sum of 5th powers 

and 7th powers of integers. 

 

Further, in Theorems 3.1 and 3.2 we see that the equation 2∑m = ∑n generates the Pythagorean triple n, 

n+1, (2m+1) and three Fibonacci sequences {mi}, {ni} and {ki}={2mi+1}. We also proved that the golden 

ratio of each of these sequences is 3+2√2. The equation 2∑m = ∑n also generates related Pythagorean 

triples (2mi+1), ni(ni+1), 1+ni(ni+1) and sequences {ni(ni+1)} and {1+ni(ni+1)}. This opens up a vast scope, 

for researchers interested in Fibonacci sequences and even students at school and college level, for doing 

some work along the following lines: 
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(i) Generalization of various theorems for contractive mappings along the lines of Theorem 2.1 and finding 

applications of the results obtained. Besides metric spaces such results can be attempted in fuzzy metric 

spaces, Menger PM-spaces, symmetric spaces, b-metric spaces, ordered metric spaces, cone metric 

spaces and a large number of interesting and significant results can be established. 

 

(ii) To check whether the sequences {ni(ni+1)} and {1+ni(ni+1)}, ∑ni = 2∑mi, are Fibonacci sequence and 

find the golden ratio if these are Fibonacci sequences. 

 

(iii) To find Pythagorean triples of the form n2 + (n+k)2 = p2, k > 1, and to check whether the related 

sequences are Fibonacci sequences. 

 

(iv) To find Pythagorean triples of the form (n + k)2 - n2 = p2, k > 1, and to check whether the related 

sequences are Fibonacci sequences. 

 

The author proposes to take up some of these questions in future. The equation 2∑m = ∑n has large scope 

of yielding new and interesting results on numbers in a simpler manner. This can motivate students at the 

pre-university level to explore interesting properties of numbers. 
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