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Abstract  

Stochastic fractional differential equations are among the most significant and recent equations in physical mathematics. 

Consequently, several scholars have recently been interested in these equations to develop analytical approximations. In this study, 

we highlight the stochastic fractional space Allen-Cahn equation (SFACE) as a major application of this class. In addition, we 

utilize the simplest equation method (SEM) with a dual sense of Brownian motion to convert the presented equation into an ordinary 

differential equation (ODE) and apply an effective computational technique to obtain exact solutions. By carefully comparing the 

derived solutions with solutions from other articles, we prove the distinction of these solutions for their diversity and the discovery 

of new solutions for SFACE that appear in many scientific fields, such as mathematical biology, quantum mechanics, and plasma 

physics. The results introduced in this article were obtained by plotting several graphs and examining how noise affects exact 

solutions using Mathematica and MATLAB software packages. 

 

Keywords- Allen–Cahn equation, Exact solution, Brownian motion, Simplest equation method. 

 

 

 

1. Introduction 
In recent decades, fractional derivatives have generated substantial interest because of their possible use in 
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several domains, including telegraph transmission (Cascaval et al., 2002), atmospheric science (Korn, 

2019), chaotic oscillations (Tavazoei et al., 2008), optical fibers (Yokus and Baskonus, 2022), two-scale 

thermal science (He, 2021), ecological and economic systems (Saadeh et al., 2023), mechanics (Zhang and 

Bilige, 2019), chemistry (Yuste et al., 2004), and hydrology (Benson et al., 2000). physics (Abdoon and 

Hasan, 2022; Prakasha et al., 2023), biology (Amourah et al., 2023; Saadeh et al., 2022), and finance (Wyss, 

2000; Raberto et al., 2002). These fractional-order equations represent the memory and heirship of different 

substances using fractional-order derivatives (Podlubny, 1999) and are preferred over integer-order 

equations. 

 

However, random disturbances are introduced into physical systems by a wide variety of naturally occurring 

causes. It is impossible to deny these, and the existence of noise may contribute to the development of 

certain statistical features and significant events. As a direct consequence, stochastic differential equations 

came into existence and quickly assumed an increasingly important position in the process of modeling 

phenomena across many scientific disciplines. Recently, some related studies have been published on the 

numerical solutions of stochastic fractional equations (Kamrani, 2015; Liu and Yan, 2016; Mohammed, 

2021; Ahmad et al., 2021a; Ahmad et al., 2021b; Zou, 2018a). The SFACE that is created by multiplicative 

noise via Itoˆ sense is considered in this investigation as follows, 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑥

2𝛼𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) − 𝑢3(𝑥, 𝑡) + 𝜌𝑢(𝑥, 𝑡)𝑟′(𝑡)                                                                          (1) 

 

for 0 < 𝛼 ≤ 1, where 𝑟(𝑡) is the standard Brownian motion and 𝜎 is the fractional order of the derivative 

that it symbolizes, 𝐷𝑥
𝛼 denotes the Jumarie’s -modified Riemann-Liouville derivative (JRLD), 𝑢(𝑥, 𝑡) is the 

unknown function of two variables, and 𝜌 is the noise intensity.  SFACE Eq. (1) holds when 𝜌 = 0 and 

𝛼 = 1. It has several uses in the scientific community, ranging from mathematical biology and quantum 

mechanics to plasma physics. To date, a large number of effective approaches, such as the first integral 

method, have been presented for this topic (Tascan and Bekir 2009), the tanh-coth method (Wazwaz, 2004), 

the Haar wavelet method (Hariharan and Kannan, 2009), the double exp-function method (Bekir, 2012), 

the modified simple equation method (Younis, 2014), and the Riccati-Bernoulli sub-ODE (Mohammed et 

al. 2021). 

 

In this study, we investigate the solution of SFACE (1) derived from one-dimensional multiplicative noise 

using SEM (Kudryashov, 2005, Zhao et al., 2013). Additionally, we developed and enhanced previous 

findings. The exciting physical phenomena could be better understood with the help of the obtained 

solutions. Therefore, in this study, we focused on finding new solutions for SFACE (1). Moreover, we 

analyze how the inclusion of a stochastic factor modifies the exact solutions obtained using Mathematica 

software and illustrate these solutions with a MATLAB program by plotting graphs. 

 

The strength of this study is the importance of the proposed equation, the stochastic Allen-Cahn fractional 

differential equation, in the sense of the modified Riemann- Liouville derivative, which has been shown in 

many applications such as mathematical biology, quantum mechanics, and plasma physics. This study 

investigates the analytical and exact solutions of SFACS, which play a vital role in describing the structure 

of the dynamics for phase separation in 𝐹𝑒 − 𝐶𝑟 − 𝑋(𝑋 = 𝑀𝑜, 𝐶𝑢) ternary alloys. These solutions describe 

the dynamics of phase separation in iron alloys and are used in solidification and nucleation problems. The 

dynamics of the phase separation in iron alloys are described by the Cahn-Allen equation, which is regarded 

as an important model in plasma physics, quantum mechanics, mathematical biology, and fluid dynamics. 

Additionally, it is used for solidification and nucleation issues (Bulut et al., 2016, Khater et al., 2020). In 

this research, we discuss the algorithm for establishing a solution based on two approaches: Ricatti and 

Bernoulli equations. We used an efficient computational technique to acquire precise solutions to the 
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presented equation by converting it into an ODE with the notion of Brownian motion. Moreover, as an 

advantage of this study, we obtained 18 solutions, all of which are exact solutions; three of which are 

identical to some solutions obtained in the literature, and the other two are new exact solutions. 

 

The remainder of this paper is organized as follows. Section 2 presents the definitions of fractional 

derivatives. Section 3 explains the SEM procedure. In Section 4, we implement the SEM to obtain different 

exact solutions for SFACE (1). In Section 5, we demonstrate the effect of noise terms on the exact solutions 

of SFACE (1). Finally, the conclusion of this study is presented. 

 

2. Basic Definitions 
The order 𝛼 for 𝐷𝑥

𝛼 that denotes the JRLD of the continuous function 𝑓(𝑥) is defined in (Jumarie, 2006), 

by 

𝐷𝛼𝑓(𝑥) =

{
 
 

 
 1

𝛤(1 − 𝛼)

𝑑

𝑑𝑥
∫(𝑥 − 𝜉)−𝛼(𝑓(𝜉) − 𝑓(0))

𝑥

0

𝑑𝜉, 0 < 𝛼 < 1,

(𝑓(𝑛)(𝑥))
𝛼−𝑛

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1.

 

 

Additionally, we introduce the basic features of the modified Riemann-Liouville fractional operator (see 

He et al., 2012, Aksoy et al., 2016), 

• 𝐷𝛼𝑐 = 0.  

•  𝐷𝛼𝑥𝛾 =
Γ(1+𝛾)

Γ(1+𝛾−𝛼)
 𝑥𝛾−𝛼 , 𝛾 > 𝛼 − 1.  

• 𝐷2𝛼 = 𝐷𝛼𝐷𝛼. 
• 𝐷𝛼(𝑎𝑓(𝑥)) = 𝑎𝐷𝛼(𝑓(𝑥)). 

• 𝐷𝛼(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = 𝑎𝐷𝛼(𝑓(𝑥)) + 𝑏𝐷𝛼(𝑔(𝑥)). 

• 𝐷𝛼(𝑓(𝑥)𝑔(𝑥)) = 𝑓(𝑥)𝐷𝛼𝑔(𝑥) + 𝑔(𝑥)𝐷𝛼𝑓(𝑥).    

• 𝐷𝛼(𝑢(𝑓(𝑥))) = 𝜎𝑥𝑢′(𝑓(𝑥))𝐷
𝛼(𝑓(𝑥)), where, 𝜎𝑥 is defined by (He et al., 2012, Aksoy et al., 2016). 

 

3. Algorithm of the SEM 
In this section, we present a simple algorithm that illustrates the basic steps of SEM and considers the 

nonlinear partial differential equation: 

𝐹(𝑢, 𝑢𝑡, 𝑢𝑥 , 𝑢𝑡𝑡, 𝑢𝑥𝑡, 𝑢𝑥𝑥, … . ) = 0                                                                                                                (2) 

 

where, 𝐹 is a non-linear polynomial function. The steps of the method are as follows: 

 

Step 1. By converting the partial differential equation in (2), into an ordinary differential using substitution: 

 𝑢(𝑥, 𝑡) = 𝜑(𝜁), and 𝜁 = 𝑥 − 𝑐𝑡. Thus, Eq. (2) becomes, 

𝐹(𝑢,−𝑐𝑢′, 𝑢′, 𝑐2𝑢′′, −𝑐𝑢′′, 𝑢′′, … . ) = 0                                                                                                            (3) 

 

Step 2. Assume that 𝜑(𝜁) can be expressed by the following infinite series: 

𝜑(𝜁) = ∑ 𝑎𝑖𝜒
𝑖(𝜁)𝑛

𝑖=0                                                                                                                                       (4) 

 

where, 𝜒(𝜁) fulfills the Riccat or Bernoulli equation, 𝑛 is a natural number that may be calculated by the 

balance process, and 𝑎𝑖, 𝑖 = 0,1,2,… . . , 𝑛 are constants depending on the target problem. Here, we focus on 

the Bernoulli equation, which is 

𝜒′(𝜁) = 𝜇𝜒2(𝜁) + 𝛽𝜒(𝜁),                                                                                                                             (5) 
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where, 𝜇 and 𝛽 are constants. 

 

The solutions of Eq. (5) can be written as (Yun-Mei et al., 2013), 

𝜒(𝜁) =
−𝛽𝐶1

𝜇(𝐶1+cosh(𝛽(𝜁+𝜁0))−sinh(𝛽(𝜁+𝜁0)))
,  

𝜒(𝜁) =
−𝛽(cosh(𝛽(𝜁+𝜁0))+sinh(𝛽(𝜁+𝜁0)))

𝜇(𝐶2+cosh(𝛽(𝜁+𝜁0))+sinh(𝛽(𝜁+𝜁0)))
                                                                                                          (6) 

 

where, 𝐶1, 𝐶2 and 𝛿0 are constants. 

 

Riccati equation assume that, 

𝜒′(𝜁) = 𝜇𝜒2(𝜁) + β𝜒(𝜁) + 𝛿                                                                                                                        (7) 

where,  μ, 𝛽,  and 𝛿 are constants.  

 

The solutions of Eq. (7) can be written as (Jumarie, 2016): 

𝜒(𝜁) = −
𝛽

2μ
−

𝜃

2μ
tanh (

𝜃

2
𝜁) +

sech(
𝜃

2
𝜁)

𝐶 cosh(
𝜃

2
𝜁)−

2𝛽

𝜃
sinh(

𝜃

2
𝜁)

                                                                                    (8) 

where, 𝜃2 = 𝛽2 − 4μ𝛿. 

 

Step 3. Substitute Eq. (4) into Eq. (3), and use formula in Eq. (5) or Eq. (7), this will convert the LHS of 

Eq. (3) into a polynomial in 𝐻(𝜁). Then, equating each coefficient to zero, produces some equations for 

𝑎𝑖 , 𝑖 = 0,1,2,… . . , 𝑛, and 𝜇, 𝛽  are nonzero constants. After simple calculations, we solved a set of 

equations to determine these parameters.  

 

Step 4. From Step 3, substitute 𝑎𝑖 , 𝑖 = 0,1,2,… . . , 𝑛, into Eq. (4), lead to the precise travel wave solutions 

for Eq. (2). 

 

4. Solutions of the Allen–Cahn Equation 
In this section, we apply the SEM to solve SFACE (1). Using this technique, we create many new exact 

solutions for the desired equation. To get that, we utilize a wave transformation for a stochastic fractional, 

such as, 

𝑢(𝑥, 𝑡) = 𝜑(𝜁)𝑒𝜌𝑟(𝑡)− 
1
2
𝜌2𝑡 ,            𝜁 = 𝑐 ( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡)                                                                                 (9) 

 

where,  𝜑  is a deterministic function, 𝑐 and  𝜆  are nonzero constants, and 𝜌  is the noise intensity. By 

differentiating 𝑢 with respect to 𝑡, , and twice of fractional order 𝛼 with respect 𝑥, to get the system: 

{
 
 

 
 

𝜕𝑢

𝜕𝑡
= 𝜑(𝜁)𝑒[𝜌𝑟(𝑡)−

1
2
𝜌2𝑡](𝜌 𝑟′(𝑡) − 1

2
𝜌2) − 𝑐𝜆 𝜑′(𝜁)𝑒𝜌𝑟(𝑡)−

1
2
𝜌2𝑡 ,

                                                                                                                  

  𝐷𝑥
𝛼(𝑢(𝑥, 𝑡)) = 𝑐𝜎𝑥𝜑′(𝜁)𝑒

𝜌𝑟(𝑡)−1
2
𝜌2𝑡  .                                               

 𝐷𝑥
2𝛼(𝑢(𝑥, 𝑡)) = 𝑐2𝜎𝑥

2𝜑′′(𝜁)𝑒𝜌𝑟(𝑡)−
1
2
𝜌2𝑡                                           

                                                               (10) 

 

Additional details on this definition can be seen [35-36]. 

substituting Eq. (10) in Eq. (1), we obtain the next ODE: 

( 𝜑(𝜁)(𝜌𝑟′(𝑡) − 1

2
𝜌2) − 𝑐𝜆𝜑′(𝜁)) 𝑒𝜌𝑟(𝑡)−

1
2
𝜌2𝑡 = 𝑐2𝜎𝑥

2𝜑′′(𝜁)𝑒𝜌𝑟(𝑡)−
1
2
𝜌2𝑡  + 𝑒[𝜌𝑟(𝑡)−

1
2
𝜌2𝑡](𝜑(𝜁) −

𝜑3(𝜁) + 𝜌 𝜑(𝜁)𝑟′(𝑡))                                                                                                                                       (11) 
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In view of the fact that 𝛦(𝑒𝜌𝑧) =  𝑒
1
2
𝜌2𝑡 for the real number ρ and z is a standard Gaussian process, the 

equality 𝛦(𝑒𝜌𝑟(𝑡)) =  𝑒
1
2
𝜌2𝑡 as a result of 𝜌𝑟(𝑡) is distributed like 𝜌√𝑡 𝑧. Then Eq. (11)  can be arranged as 

follows: 

𝑐2𝑙2𝜑′′(𝜁) + 𝑐𝜆𝜑′(𝜁) − 𝜑3(𝜁) + (1 + 1

2
 𝜌2) 𝜑(𝜁) = 0                                                                             (12) 

 

where, 𝑙 = 𝜎𝑥. We define the solution of 𝜑(𝜁) in a finite series as Eq. (4) where 𝑛 = 1 by calculated the 

balancing process: 

𝜑(𝜁) = 𝑎0 + 𝑎1𝜒(𝜁)                                                                                                                                   (13) 

 

According to the simplest equation method, by choosing the Bernoulli equation, we substitute Eq.(13) with 

Eq.(5) in Eq.(12). After that, by setting the coefficients of 𝜒𝑖(𝜁) to zero, we get system of equations in 

terms  𝑎0, 𝑎1, 𝜇 and 𝛽 . When determining the solution of the system using Mathematica software, we 

obtained many sets of values for the constants. We chose five sets: 

𝐵1 =

{
 
 

 
 𝑎0 = −

√2 + 𝜌2

√2
, 𝑎1 =

2√2𝑐𝑙𝜇 + √2𝑐𝑙𝜇𝜌2

2 + 𝜌2
,

𝛽 = −
√2 + 𝜌2

𝑐𝑙
, 𝜆 = 0

}
 
 

 
 

, 

𝐵2 =

{
 
 

 
 𝑎0 =

√2 + 𝜌2

√2
, 𝑎1 =

−2√2𝑐𝑙𝜇 − √2𝑐𝑙𝜇𝜌2

2 + 𝜌2
,

𝛽 = −
√2 + 𝜌2

𝑐𝑙
, 𝜆 = 0

}
 
 

 
 

, 

𝐵3 = {

𝑎0 = 0, 𝑎1 = −√2𝑐𝑙𝜇,

𝛽 = −
√2 + 𝜌2

2𝑐𝑙
, 𝜆 =

3

2
𝑙√2 + 𝜌2

}, 

𝐵4 =

{
 
 

 
 𝑎0 = −

√2 + 𝜌2

√2
, 𝑎1 =

2√2𝑐𝑙𝜇 + √2𝑐𝑙𝜇𝜌2

2 + 𝜌2
,

𝛽 = −
√2 + 𝜌2

2𝑐𝑙
, 𝜆 = −

3

2
𝑙√2 + 𝜌2

}
 
 

 
 

, 

𝐵5 =

{
 
 

 
 𝑎0 =

√2 + 𝜌2

√2
, 𝑎1 =

2√2𝑐𝑙𝜇 + √2𝑐𝑙𝜇𝜌2

2 + 𝜌2

, 𝛽 =
√2 + 𝜌2

𝑐𝑙
, 𝜆 = 0

}
 
 

 
 

, 

 

substituting these values for each set in Eq.(13) with Eq.(6), we get solutions equation for (𝐵1 − 𝐵5) 

respectively, as 

𝜑1(𝜁) =
√2+𝜌2

√2

(

 
 
−1+

2𝐶1

Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 

                                                               (14) 
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𝜑2(𝜁) =

√2+𝜌2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)−Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)−𝐶2)

√2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)−Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶2)

                                                                                  (15) 

𝜑3(𝜁) =
√2+𝜌2

√2

(

 
 
1 −

2𝐶1

Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 

                                                                  (16) 

𝜑4(𝜁)   =

√2+𝜌2(−Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶2)

√2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)−Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶2)

                                                                          (17) 

𝜑5(𝜁) = −
√2+𝜌2𝐶1

√2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+𝐶1)

                                                                                 (18) 

𝜑6(𝜁) =

√2+𝜌2(−Cosh(−
√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
))

√2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)−Sinh(

√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+𝐶2)

                                                                                    (19) 

𝜑7(𝜁) =
√2+𝜌2

√2

(

 
 
−1+

𝐶1

Cosh(−
√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+𝐶1

)

 
 

                                                             (20) 

𝜑8(𝜁) = −
√2+𝜌2𝐶2

√2(Cosh(−
√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)−Sinh(

√2+𝜌2(𝜁+𝜁0)

2𝑐𝑙
)+𝐶2)

                                                                                   (21) 

𝜑9(𝜁) =
√2+𝜌2

√2

(

 
 
1 −

2𝐶1

Cosh(−
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 

                                                                        (22) 

𝜑10(𝜁)       = −

√2+𝜌2(Cosh(
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)−𝐶2)

√2(Cosh(
√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝜁+𝜁0)

𝑐𝑙
)+𝐶2)

                                                                (23) 

 

where, 𝜁0, 𝐶1, 𝐶2 constants, now recently by substituting Eq's (14-23) in Eq.(9), we will show the exact 

solutions of Eq. (1) respectively, 
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𝑢1(𝑥, 𝑡) =
√2+𝜌2

√2
𝑒𝜌𝑟(𝑡)−

1
2𝜌

2𝑡 ∙

(

 
 
−1+

2𝐶1

Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)𝑥

𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)𝑥
𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 

             (24) 

 

𝑢2(𝑥, 𝑡) =
√2+𝜌2∙𝑒

𝜌𝑟(𝑡)−
1
2
𝜌2𝑡

√2
∙ (Cosh(−

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
) − Sinh(

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
) −

𝐶2)

(

 
 1

(Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)−Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+𝐶2)

)

 
 

                                                       (25) 

 

𝑢3(𝑥, 𝑡) =
√2+𝜌2

√2

(

 
 
1 −

2𝐶1

Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 
𝑒𝜌𝑟(𝑡)−

1
2
𝜌2𝑡    (26) 

 

𝑢4(𝑥, 𝑡) = √2 + 𝜌
2 (−Cosh(−

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
) + Sinh(

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
) + 𝐶2) ∙

(

 
 𝑒

𝜌𝑟(𝑡)−
1
2
𝜌2𝑡

√2(Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)−Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+𝐶2)

)

 
 

                                                     (27) 

 

𝑢5(𝑥, 𝑡) = −
−√2+𝜌2𝐶1𝑒

𝜌𝑟(𝑡)−
1
2
𝜌2𝑡

√2(Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)+Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)+𝐶1)

                                           (28) 

 

𝑢6(𝑥, 𝑡) = √2 + 𝜌
2 (−Cosh(−

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
) + Sinh(

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)) ∙

(

 
 𝑒

𝜌𝑟(𝑡)−
1
2
𝜌2𝑡

√2(Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)−Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)+𝐶2)

)

 
 

                                                    (29) 

 

𝑢7(𝑥, 𝑡) =
√2+𝜌2

√2
𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

(

 
 
−1+

𝐶1

Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)+Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)+𝐶1

)

 
 

      (30) 
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𝑢8(𝑥, 𝑡) =
𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

√2+𝜌2𝐶2

√2(Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)−Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

2𝑐𝑙
)𝐶2)

                                             (31) 

𝑢9(𝑥, 𝑡) =
√2+𝜌2

√2
𝑒𝜌𝑟(𝑡)−

1
2
𝜌2𝑡 ∙

(

 
 
1 −

2𝐶1

Cosh(−
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+Sinh(

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
)+𝐶1

)

 
 

  (32) 

 

𝑢10(𝑥, 𝑡) =
𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

√2+𝜌2

√2
(Cosh [

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
] + Sinh [

√2+𝜌2(𝑐( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
] − 𝐶2) ∙

(

 
 
−

1

(Cosh[
√2+𝜌2(𝑐(

1
Γ(1+α)

𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
]+Sinh[

√2+𝜌2(𝑐(
1

Γ(1+α)
𝑥𝛼−𝜆𝑡)+𝜁0)

𝑐𝑙
]+𝐶2)

)

 
 
                                                           (33) 

 

As stated by the simplest equation, the Riccati equation when putting Eq. (13) with Eq. (7) in Eq. (12) also 

the coefficients of the functions 𝜒𝑖(𝜁) equating tobe zero, the system of equations with terms 𝑎𝑖(𝑖 = 0, 1) 
and 𝜇, 𝛽 is solving, we obtain many sets of values for constants, we choose four sets as the ones that are,  

𝑅1 =

{
 
 

 
 𝑎0 = −

𝑐𝑙𝛽

√2
, a1 = −√2𝑐𝑙𝜇,

𝜆 = 0, 𝛿 =
−2 + 𝑐2𝑙2𝛽2 − 𝜌2

4𝑐2𝑙2𝜇 }
 
 

 
 

, 

𝑅2 =

{
 
 

 
 𝑎0 =

𝑐𝑙𝛽

√2
, 𝑎1 = √2𝑐𝑙𝜇,

𝜆 = 0, 𝛿 =
−2 + 𝑐2𝑙2𝛽2 − 𝜌2

4𝑐2𝑙2𝜇 }
 
 

 
 

, 

𝑅3 =

{
 
 

 
 𝑎0 = −

16𝑐𝑙𝛽 − 8√2 + 𝜌2

16√2
, 𝑎1 = −√2𝑐𝑙𝜇,

𝜆 =
3(−2𝑙√2 + 𝜌2 − 𝑙𝜌2√2 + 𝜌2)

2(2 + 𝜌2)
, 𝛿 =

−2 + 4𝑐2𝑙2𝛽2 − 𝜌2

16𝑐2𝑙2𝜇 }
 
 

 
 

, 

𝑅4 =

{
 
 

 
 𝑎0 =

16𝑐𝑙𝛽 − 8√2 + 𝜌2

16√2
, 𝑎1 = √2𝑐𝑙𝜇,

𝜆 =
3(−2𝑙√2 + 𝜌2 − 𝑙𝜌2√2 + 𝜌2)

2(2 + 𝜌2)
,   𝛿 =

−2 + 4𝑐2𝑙2𝛽2 − 𝜌2

16𝑐2𝑙2𝜇 }
 
 

 
 

. 

 

Substituting these values for each set in Eq.(13) with the solutions in Eq.(8), we get the solutions for all 

value sets 𝑅1 − 𝑅4, respectively as, 

𝜑1(𝜁) =
𝑐𝑙

√2
(√

2+𝜌2

𝑐2𝑙2
Tanh(

1

2
√
2+𝜌2

𝑐2𝑙2
(𝜁 + 𝜁0)))                                                                                              (34) 
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𝜑2(𝜁) =
2𝑐2𝑙2𝜇√

2+𝜌2

𝑐2𝑙2
Sinh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)(1+Tanh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
))

√2𝑐𝑙(2𝜇Sinh(
1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1)

−
(2+𝜌2)Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)Tanh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1

√2𝑐𝑙(2𝜇Sinh(
1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1)

     (35) 

 

𝜑3(𝜁) = −
𝑐𝑙

√2
(2𝛽 + √

2+𝜌2

𝑐2𝑙2
Tanh(

1

2
√
2+𝜌2

𝑐2𝑙2
(𝜁 + 𝜁0)))                                                                            (36) 

 

𝜑4(𝜁) =
−2𝑐2𝑙2𝜇√

2+𝜌2

𝑐2𝑙2
Sinh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)(1+Tanh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
))

√2𝑐𝑙(2𝜇Sinh(
1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1)

+
(2+𝜌2)Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)Tanh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝐶1

√2𝑐𝑙(2𝜇Sinh(
1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1)

    (37) 

 

𝜑5(𝜁) =
1

2√2
(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
√
2+𝜌2

𝑐2𝑙2
(𝜁 + 𝜁0)))                                                                       (38) 

 

𝜑6(𝜁) =
4𝑐𝑙𝜇 Sinh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)(√2+𝜌2+𝑐𝑙√

2+𝜌2

𝑐2𝑙2
+𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
))

2√2𝑐𝑙(4𝜇 Sinh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)𝐶1)

−

Cosh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)(𝑐𝑙√2+𝜌2√

2+𝜌2

𝑐2𝑙2
+(2+𝜌2)Tanh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
))𝐶1

2√2𝑐𝑙(4𝜇 Sinh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)𝐶1)

                                                                                    (39) 

 

𝜑7(𝜁) = −
1

2√2
(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
√
2+𝜌2

𝑐2𝑙2
(𝜁 + 𝜁0)))                                                               (40) 

 

𝜑8(𝜁) =
−4𝑐𝑙𝜇Sinh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)(√2+𝜌2+𝑐𝑙√

2+𝜌2

𝑐2𝑙2
+𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
))

2√2𝑐𝑙(4𝜇Sinh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)𝐶1)

+

Cosh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)(𝑐𝑙√2+𝜌2√

2+𝜌2

𝑐2𝑙2
+(2+𝜌2)Tanh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
))𝐶1

2√2𝑐𝑙(4𝜇Sinh(
1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

1

4
𝜁√

2+𝜌2

𝑐2𝑙2
)𝐶1)

                                                                                    (41) 

 

where, 𝜁0, 𝐶1 constants, now recently by substituting Eq's (34-41) in Eq.(9), we present the exact solutions 

of Eq.(1), respectively, 

𝑢11(𝑥, 𝑡) =
𝑐𝑙

√2
(√

2+𝜌2

𝑐2𝑙2
Tanh(

1

2
√
2+𝜌2

𝑐2𝑙2
(𝑐 ( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡) + 𝜁0))) 𝑒

𝜌𝑟(𝑡)−1
2
𝜌2𝑡                                        (42) 
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𝑢12(𝑥, 𝑡) = (
2𝑐2𝑙2𝜇√

2+𝜌2

𝑐2𝑙2
Sinh(

𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)(1+Tanh(

𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
))

√2𝑐𝑙(2𝜇Sinh(
𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)𝑐1)

−

(2+𝜌2)Cosh(
𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)Tanh(

1

2
𝜁√

2+𝜌2

𝑐2𝑙2
)𝑐1

√2𝑐𝑙(2𝜇Sinh(
𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)𝑐1)

)𝑒𝜌𝑟(𝑡)−
1
2
𝜌2𝑡                                       (43) 

 

𝑢13(𝑥, 𝑡) = −
𝑐𝑙

√2
(2𝛽 + √

2+𝜌2

𝑐2𝑙2
Tanh(

1

2
√
2+𝜌2

𝑐2𝑙2
(𝑐 ( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡) + 𝜁0))) 𝑒

𝜌𝑟(𝑡)−1
2
𝜌2𝑡                         (44) 

 

𝑢14(𝑥, 𝑡) = (−2𝑐
2𝑙2𝜇√

2+𝜌2

𝑐2𝑙2
Sinh(

𝑐

2
( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)(1 + Tanh(

𝑐

2
( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)) +

(2 + 𝜌2)Cosh(
𝑐

2
( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)Tanh(

𝑐

2
( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)𝐶1) ∙

𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

√2𝑐𝑙(2𝜇Sinh(
𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

𝑐

2
( 1
Γ(1+α)

𝑥𝛼−𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)𝑐1)

                                                          (45) 

 

𝑢15(𝑥, 𝑡) =
1

2√2
(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
√
2+𝜌2

𝑐2𝑙2
(𝑐 ( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡) + 𝜁0)))𝑒

𝜌𝑟(𝑡)−1
2
𝜌2𝑡                  (46) 

 

𝑢16(𝑥, 𝑡) = (4𝑐𝑙𝜇 Sinh(
𝑐

4
( 𝑥𝛼

Γ(1+α)
− 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
+ 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−

𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)) − Cosh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
− 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)(𝑐𝑙√2 + 𝜌2√

2+𝜌2

𝑐2𝑙2
+ (2 + 𝜌2)Tanh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−

𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
))𝐶1) ∙ (

𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

2√2𝑐𝑙(4𝜇 Sinh(
𝑐

4
( 𝑥𝛼

Γ(1+α)
−𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)𝐶1)

)                              (47) 

 

𝑢17(𝑥, 𝑡) = −
1

2√2
(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

1

4
√
2+𝜌2

𝑐2𝑙2
(𝑐 ( 1

Γ(1+α)
𝑥𝛼 − 𝜆𝑡) + 𝜁0)))𝑒

𝜌𝑟(𝑡)−1
2
𝜌2𝑡           (48) 

 

𝑢18(𝑥, 𝑡) (= −4𝑐𝑙𝜇Sinh(
𝑐

4
( 𝑥𝛼

Γ(1+α)
− 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)(√2 + 𝜌2 + 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
+ 𝑐𝑙√

2+𝜌2

𝑐2𝑙2
Tanh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−

𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
)) + Cosh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
− 𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)(𝑐𝑙√2 + 𝜌2√

2+𝜌2

𝑐2𝑙2
+ (2 + 𝜌2)Tanh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−
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𝜆𝑡)√
2+𝜌2

𝑐2𝑙2
))𝐶1) ∙ (

𝑒
𝜌𝑟(𝑡)−

1
2
𝜌2𝑡

2√2𝑐𝑙(4𝜇Sinh(
𝑐

4
( 𝑥𝛼

Γ(1+α)
−𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)−√

2+𝜌2

𝑐2𝑙2
Cosh(

𝑐

4
( 𝑥𝛼

Γ(1+α)
−𝜆𝑡)√

2+𝜌2

𝑐2𝑙2
)𝐶1)

)                                  (49) 

 

Remark 1 

We obtain identical solutions from previous studies for these three cases:  

• If we put  𝜌 = 0, in 𝑢15(𝑥, 𝑡) in ref. (Aksoy et al., 2016). 

• If we put 𝜌 = 0, 𝛼 = 1 in 𝑢17(𝑥, 𝑡) in ref. (Mohammed et al. 2021). 

• The solutions 𝑢11(𝑥, 𝑡) and 𝑢13(𝑥, 𝑡) in ref. (Albosaily et al., 2022). 

However, the other obtained solutions in this study are completely new exact solutions. 
 

5. The Impact of Noise on the New Solutions of SFACE (1) 
Here, we examine how noise affects the exact solutions of SFACE (1). The study of how noise influences 

the accuracy of exact solutions to SFACE (1) in a stochastic fractional space represents the bright spot of 

this study. Therefore, we provide several visual representations to explain the behavior of these solutions. 

 

𝜌 = 0 
 

𝜌 = 1 

 
𝜌 = 2 

 
𝜌 = 4 

 

Figure 1. Graph of the solution 𝑢6(𝑥, 𝑡) in Eq. (15) with 𝛼 = 1 and different values of 𝜌. 
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Several graphs were generated in MATLAB for various noise intensities, as shown in Figures 1 and 2. By 

simulation of the solution 𝑢6(𝑥, 𝑡) in Eq. (29) for 𝑡 ∈ [0,4] and 𝑥 ∈ [0,4] we can note in the first graphs of 

Figures 1 and 2, when 𝜌 = 0 the surface is less flat compared to other shapes. However, after some minor 

transit behaviors, the surface becomes more planar when noise is introduced and the intensity of the noise 

increases (𝜌 = 1,2,4) as shown in the rest graphs in Figure 1 and 2. This demonstrates the stability of the 

solutions under the influence of noise. 

 

 
𝜌 = 0 

 
𝜌 = 1 

𝜌 = 2 

 

𝜌 = 4 
 

Figure 2. Graph of the solution 𝑢6(𝑥, 𝑡) in Eq. (29) with 𝛼 = 0.5 and different values of 𝜌. 
 
 

6. Conclusion 
The different and new exact solutions are derived by utilizing the simplest equation method, SFACE, which 

is described in the multiplicative noise by Itô sense. This method has proven its efficiency and fluency in 

finding many new exact solutions using the Mathematica software. Additionally, we broadened our scope 
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and improved the quality of other findings, including those described in the literature (He et al., 2012; 

Aksoy et al., 2016). These results are important for gaining knowledge on a variety of physical phenomena. 

In conclusion, we demonstrated the impact of the stochastic term t on the exact solutions of SFACE, where 

we noticed that the stability of the solutions is influenced by the noise increase by plotting several graphs 

in the MATLAB package. This research was carried out in the hope that it will be a useful resource for 

future applications and explorations of exact solutions using different methods and investigating new 

methods such as those in (Salah et al., 2023, Qazza et al., 2023a, Saadeh et al., 2023, Qazza et al., 2023b). 
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