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Abstract 

The nature of the developable surfaces has similarities to the industrial materials that are not amenable to stretching. Regarding 

the benefit, the developable surfaces are widely used to model plat-metal-based industry products such as automobiles, ship hulls, 

and ducts. For this reason, we introduce a new approach for designing developable surfaces limited by two space curves. The 

method consists of these steps. First, we define a generalized cone and a cylinder surface by posing restrictions: a fixed summit 

point of the cone has to be outside a plane; a static nonzero constant vector is unparallel to the plane; and two quintic Bézier 

curves are placed on the different sides of the plane. Second, computing the control points on the plane is determined by the 

intersection between the control lines of the cone/cylinder surface and the plane. Third, using these obtained control points, we 

evaluate the required boundary curves profile and the shape of the developable Bézier surfaces, that are limited by these quintic 

Bézier curves. Finally, we also apply this method to design the developable Hermite surfaces. As a result, this introduced method 

can provide the equations and procedures for modeling developable surfaces with boundary curves in space. Also, it is useable to 

design these surfaces in many arches and shapes. Moreover, this method is effective for modifying and adjusting the desired 

boundary curves profile of the surfaces. 

 

Keywords- Boundary curves, Developable surfaces, Generalized cone/cylinder surfaces, Quintic Bézier/Hermite curves. 

 

 

 

1. Introduction 
Mathematical studies addressing the developable surface construction have been introduced. Park et al. 

(2002) presented the surfaces using a set of rulings and calculations of the existence of directrix curves to 

obtain the developable surfaces. In the context of constructing the directrix curves, they determined a 

class of objective functions. Then, Zhao and Wang (2008) introduced a method to define the developable 

surface by employing the surface pencil passing a given curve. From a geodesic curve of a developable 

surface, Al-Ghefari and Abdel-Baky (2013) evaluated a method for designing a tangent lines surface, 

cylinder, and cone surface. 

 

Xu et al. (2017) studied the developable surface of IGA-suitable planar B-spline parameterizations using 

complex CAD boundaries. However, constructing the surface needs many operations. Hu et al. (2018) 

reported the formulation of generalized developable H-Bézier surfaces by employing control planes 

through generalized H-Bézier basis functions. Then, Abdel-Baky and Unluturk (2020a) constructed a 

developable tangent surface to a surface along a curve on the surface. They also examined a normal 

developable surface of a surface along a normal direction curve (Abdel-Baky and Unluturk, 2020b). 

 

Concerning the industrial application approach, Frey and Bindschadler (1993) designed the developable 

Bézier patches using the restriction that the tangent vectors of their boundary curve must be parallel. The 

technique is generally easy to use for creating developable surfaces. Unfortunately, calculating equations 

system of the Bézier control points is still not stable and deterministic. Besides that, the boundary curves 

are plane curves. Kusno (2019) developed Frey and Bindschadler’s work by utilizing the boundary curves 

of the surfaces at four, five, and six degrees in a plane, respectively, and employing a deterministic 
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calculation method. Then, using the tangent vector criteria of these boundary curves, he presented the 

construction of developable Hermite patches (Kusno, 2020b; Kusno, 2021). 

 

Fernández-Jambrina and Pérez-Arribas (2020) studied the developable patches designed through NURBS 

curves. Then, utilizing a dual method, Li and Zhu (2020) modeled C-Bézier developable surfaces with 

some parameters. Ammad et al. (2021) recently introduced a new way to construct developable cubic 

trigonometric Bézier surfaces. This method provides some shape control parameters for designing the two 

boundary curves profile of the surfaces. However, these parameters can change only one of the two 

boundary curves shape dominantly.  

 

The presented methods generally have some limitations. The introduced equations cannot be implemented 

efficiently for designing the surfaces, and the boundary curves must be laid in the planes. The control 

parameters of these equations can modify the curve shape, but it happens only in one boundary curve. In 

consequence, we need a new method for constructing the surfaces to avoid these restrictions. 

 

This article presents a new approach for designing developable surfaces limited by quintic Bézier and 

Hermite curves in space. Moreover, we numerically test and simulate the shapes of these surfaces. 

 

2. Quintic Developable Bézier Surfaces Construction 
In this section, we organize the discussion in some stages. The first stage discusses the mathematical 

theory for defining developable surfaces and the quintic Bézier curve. In the second step, we introduce the 

numerical approach for designing quintic developable Bézier surfaces of generalized cone surfaces. 

Finally, we present the quintic developable Bézier surfaces of cylinder surface. The modeling results of 

these surfaces are simulated using a mathematical tool. 

 

There are three types of surfaces locally isometric to a plane called developable surfaces, i.e., generalized 

cone, cylinder, and tangent surface. Their tangent planes are constant for all points of a generator line of 

the surfaces (Lipschutz, 1969; Julius, 2006; Yu, 2017). These surfaces can be developed (unfolded) onto 

the plane. Meanwhile, their shapes can be designed from a planar surface without tearing or stretching. 

Due to the surfaces being similar to the materials that are not amenable to stretching, they are widely used 

to model the plat-metal-based industries, i.e., automobiles, ships, clothing, shoes, and ducts. For this 

reason, we design the developable Bézier and Hermite surfaces bounded with the space curves using 

definitions of generalized cone and cylinder surfaces in the algebraic equations, respectively (Abbena et 

al., 2006; Julius, 2006; Yu, 2017). 

S(u,v) = 𝐎 + v G(u)                                                                                                                                      (1) 

S(u,v) = G(u) + v U                                                                                                                                       (2) 

 

where, 𝐎∈R3 is a fixed nonzero constant vector as the summit point of the cone surface, the curve G(u) is 

the directrix or based curve, and the fixed nonzero direction vector U∈R3 is the generatrix of the cylinder 

surface. In order to the plat-metal-based industries application, we determine the curve G(u) in Equation 

(1) in the form G(u) = [P(u) – 𝐎]. Therefore, Equation (1) can be expressed in the linear combination of 

the vector 𝐎 and the curve P(u) as follows:  

S(u,v) = 𝐎 + v [P(u) – 𝐎] = (1-v) 𝐎 + v P(u)                                                                                                (3) 

 

On the other hand, the regular Bézier curve of degree n is defined in the form,  
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𝐏(𝑢) =  ∑ 𝐏𝑖 𝐵𝑖
𝑛(𝑢).

𝑛

𝑖=0

 

 

where, 𝐵𝑖
𝑛(𝑢) =  𝐶𝑖

𝑛. (1 − 𝑢)𝑛−𝑖. 𝑢𝑖; 𝐶𝑖
𝑛 = 

𝑛!

𝑖! (𝑛−𝑖)!
 and 0 ≤ u ≤1. When n = 5, it becomes a quintic Bézier 

as given by Equation (4), 

P(u) = P0 (1-u)5+ 5P1 (1-u)4 u+ 10P2 (1-u)3 u2+ 10 P3 (1-u)2 u3+ 5P4 (1-u) u4+ P5 u5                                (4) 

 

where, P0, P1, P2, P3, P4, and P5 are the control points of the curve P(u). The term of the control point P0 

expresses a point P0 with the position vector P0 = <x0, y0, z0>. A notation with a bold letter means a vector 

value, and the italic alphabets x0, y0, and z0 express the real numbers.  

 

2.1 Quintic Developable Bézier Surfaces Defined with Generalized Cone Surface 
Consider a generalized cone surface S1(u,v) = 𝐎 + v [P(u) – 𝐎] and the curve P(u) of the regular quintic 

Bézier curve of Equation (4). We restrict that the curve P(u) is laid between the fixed point 𝐎 and a plane 

(t,w) = n + t b + w c. In addition, the direction of the curve P(u) and the plane (t,w) are in the same 

orientation such that, for every point of position vector P(a) on the curve P(u) with the value a in the 

interval  0≤ a ≤1, the extension of a line 𝐎 + v [P(a) - 𝐎] intersects at a unique point Q(v) in the plane 

(t,w) as follows (Mortenson, 1986), 

Q(v) = 𝐎 + v [P(a) - 𝐎] = n + t b + w c                                                                                                       (5) 

 

By employing vector and scalar products, we can calculate,  

v = 
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐏(𝑎)−𝐎]
                                                                                                                                      (6) 

 

Consequently, the intersection points Q(u) in the plane  are,  

Q(u) = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐏(𝑢)−𝐎]
] [P(u) - 𝐎] = 𝐎 + α(u) [P(u) - 𝐎]                                                                  (7) 

 

where, α(u) is a real function (scalar) with α(u) > 1. 

 

In conclusion, if the control points [P0,P1,P2,P3,P4,P5] define the quintic Bézier curve P(u) in space, then, 

for i = 0, 1,…,5, prolonging lines 𝐎 + v [Pi - 𝐎] from the summit point 𝐎 to the plane  gets the 

intersection control points [Q0,Q1,Q2,Q3,Q4,Q5] in the plane . We can state,  

Qi  = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐏𝑖−𝐎]
] [Pi - 𝐎] = 𝐎 + αi [Pi - 𝐎]                                                                                         (8) 

 

where, the real scalars αi > 1.  

 

On the contrary, because for 0 ≤ u ≤ 1, the lines 𝐎 + α(u) [P(u) - 𝐎] intersect 1-1 to the plane , and the 

control points [P0,P1,P2,P3,P4,P5] determine [Q0,Q1,Q2,Q3,Q4,Q5] on the plane , using these control 

points Qi for i = 0, 1,…,5 get [P0,P1,P2,P3,P4,P5] that construct the space curve P(u) as follows: 

Pi = 𝐎 + σi [Qi - 𝐎] = (1- σi) 𝐎 + σi Qi                                                                                                         (9) 

 

for 0 < σi <1. 
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Consider the generalized cone surface S2(u,v) = 𝐎 + v [R(u) – 𝐎] where the curve R(u) is a regular quintic 

Bézier curve of Equation (4). We pose a plane (t,w) = n + t b + w c between the quintic Bézier curve 

R(u) with 0 ≤ u ≤ 1 and the point 𝐎. Furthermore, the direction of R(u) and (t,w) has the same 

orientation. By implementing the computation method of Equation (7), the intersection lines at a unique 

point in the plane  can be obtained as Equation (10), 

Q(u) = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐑(𝑢)−𝐎]
] [R(u) - 𝐎]                                                                                                    (10) 

 

Furthermore, let the control points [R0,R1,R2,R3,R4,R5] of the curve R(u). Then, the intersection of the 

lines 𝐎 + v [Ri - 𝐎] for i = 0, 1,…,5 to the plane (t,w) gives [Q0,Q1,Q2,Q3,Q4,Q5] in the forms, 

Qi = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐑𝑖−𝐎]
] [Ri - 𝐎] = 𝐎 + βi [Ri - 𝐎]                                                                                    (11) 

 

for 0 < βi < 1. Conversely, if we pose [Q0,Q1,Q2,Q3,Q4,Q5] on the plane , then, for  i = 0, 1,…,5, they 

generate the control points Ri of the curve R(u) as follows: 

Ri  = 𝐎 + δi [Qi - 𝐎] = 𝐎 + (δi.αi) [Pi - 𝐎]                                                                                                   (12) 

 

where, δi, αi > 1. 

 

In regard to Equations (9) and (12), we can state that the points [𝐎,Pi,Qi,Ri] are consecutively collinear 

for i = 0,1,…,5. Then, for every value u in the interval 0 ≤ u ≤ 1, the generatrix lines 𝐎+[P(u)-𝐎], 𝐎 

+[Q(u)-𝐎], and 𝐎 +[R(u)-𝐎] of the cone surface S1(u,v) and S2(u,v) are coincide with each other. In 

conclusion, using control points [Q0,Q1,Q2,Q3,Q4,Q5] on the plane  and the point 𝐎 outside the plane  

can define the colinear points [𝐎,Pi,Qi,Ri] for i = 0,1,…,5, such that the cone surface S1(u,v) coincide with 

the cone surface S2(u,v). Consequently, when the quintic Bézier curves [P(u),R(u)] are placed on different 

sides of the plane , through these control points [Q0,Q1,Q2,Q3,Q4,Q5] and the point 𝐎  can be 

constructed the quintic developable Bézier surface using the boundary curves [P(u),R(u)] in this way, 

D(u,v) = (1-v) P(u) + v R(u) 

           = (1-v) ∑ [(1 − 𝜎𝑖)𝐎 + 𝜎𝑖𝐐𝑖]𝐵𝑖
5(𝑢)5

𝑖=0 + v ∑ (𝐎 + 𝛿𝑖[𝐐𝑖 − 𝐎]) 𝐵𝑖
5(𝑢)5

𝑖=0                                       (13) 

 

where, 0 < σi <1,  δi > 1, and 0 ≤ u,v ≤1. 

 

Based on Equations (9) and (12), we can apply the following numerical procedure to model the quintic 

developable Bézier surfaces of Equation (13). 

(i) Arrange the control points data [Q0,Q1,Q2,Q3,Q4,Q5] of quintic Bézier curve Q(u) in plane  and the 

point 𝐎 outside this plane . 

(ii) Determine the real values σi with 0 < σi < 1 for i = 0, 1,…,5 for calculating the control points Pi = (1- 

σi) 𝐎 + σi Qi of quintic Bézier curve P(u). 

(iii) Determine δi with δi > 1 for i = 0, 1,…,5 for computing the control points Ri  = 𝐎 + δi [Qi - 𝐎] of 

quintic Bézier curve Q(u). 

(iv) Construct the curves P(u) and Q(u) by using these control points Pi and Ri for i = 0, 1,…,5, and 

formulate the quintic developable Bézier surface D(u,v) of Equation (13). 

 

Simulation 1 

In general, in constructing a cone surface shape, we need to define a boundary curve of this surface in 

plane  and determine a summit point 𝐎 outside . For this reason, consider the control points that 

define the quintic Bézier curve Q(u) in the positions Q0 = <-20,60,20>, Q1 = <-20,40,40>, Q2 = <-



Kusno: Modeling Developable Surfaces using Quintic Bézier and Hermite Curves 
 

 

931 | Vol. 8, No. 5, 2023 

20,15,5>, Q3 = <-20,-15,10>, Q4 = <-20,-40,80>, Q5 = <-20,-60,15> and the summit point of the cone 

surface  𝐎 = <100,10,45>. We choose σ0 = 2/3, σ1 = 5/7, σ2 = 2/3, σ3 = 3/4, σ4 = 2/3, and σ5 = 2/3. 

Implementing Equation (9) obtains the control points P0 = <20,130/3,85/3>, P1 = <100/7,220/7,290/7>, 

P2 = <20,40/3,55/3>, P3 = <10,-35/4,75/4>, P4 = <20,-70/3,205/3>, P5 = <20,-110/3,25>. The control 

point positions [P0,P1,P2,P3,P4,P5] are illustrated in Figure 1. Figure 2 shows the quintic developable 

Bézier surface that is modeled by two curves [P(u),Q(u)] and presents the intersection points between the 

generatrix lines 𝐎+v[P(u)-𝐎] and the plane .  When we pose the parameters σ0 = σ1 = σ2 = σ3 = σ4 = σ5 = 

2/3, Figure 3 presents that the control points [P0,P1,P2,P3,P4,P5] and the curve P(u) are laid in the same 

plane. Comparing Figure 1 with Figure 3 shows that giving different parameter values to Equation (9) 

modifies the form of the boundary curve of the surface. 

 

 
 

Figure 1. Control point positions of curves [P(u), Q(u)]. 

 

 

 
 

Figure 2. Designing developable Bézier surface through two space curves [P(u), Q(u)]. 
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Figure 3. Designing developable Bézier surface through two plane curves [P(u),Q(u)]. 

 

 

Simulation 2 

Choosing data Q0 = <-20,60,20>, Q1 = <-20,40,40>, Q2 = <-20,15,10>, Q3 = <-20,-15,15>, Q4 = <-20,-

40,80>, Q5 = <-20,-60,15>,  𝐎 = <100,10,45>, σ0 = 0.7, σ1 = 0.84, σ2 = 0.76, σ3 = 0.92, σ4 = 0.82, σ5 = 

0.72, and employing Equation (9) obtain the control points P0 = <16.4,44.8,27.6>, P1 = <-0.6,35.2,40.8>, 

P2 = <8.8,13.8,18.4>, P3 = <-10.5,-13,17.4>, P4 = <2.2,-30.7,73.5>, P5 = <13.8,-4.3,23.5>. Furthermore, 

given δ0 = 1.3, δ1 = 1.12, δ2 = 1.2, δ3 = 1.08, δ4 = 1.3, δ5 = 1.28. Applying Equation (12) results R0 = <-

56.4,75.2,12.4>, R1 = <-34.5,43.6,39.4>, R2 = <-44,16,3>, R3 = <-29.5,-17,12.6>, R4 = <-55.6,-

54.8,90.4>, R5 = <-53.8,-80,6.5>.  From these results of control points, using Equation (13) can design 

the quintic developable Bézier surfaces bounded with the space curves [P(u),R(u)] in Figure 4. 
 

 

 

Figure 4. Quintic developable Bézier surface constructed with the curves [P(u),R(u)]. 
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This computation method provides some advantages in modeling the developable surfaces. In plane , 

we can easily set the control points [Q0,Q1,Q2,Q3,Q4,Q5] for raising, lowering, or changing arches of the 

curve Q(u) to model the various shapes (fluctuations) of the developable surfaces. In general, it can be 

used to design the developable surface in three different arches of surface shape (Figure 2 and Figure 4). 

Determining σi and δi for Equation (13) with 0 < σi < 1 and δi > 1 for i = 0, 1,…,5, can effectively modify 

and adjust the desired profile of the boundary curves [P(u),R(u)] of these surfaces.  

 

2.2 Quintic Developable Bézier Surfaces Defined with Generalized Cylinder Surface 
Suppose we have the generalized cylinder surface S1(u,v) = P(u) - v U. The curve P(u) of Equation (4) is 

placed outside a plane (t,w) = n + t b + w c. We restrict that the direction of this curve and plane  are 

in the same orientation. For every point P(a) on the curve P(u) with the real value a in the interval 0 ≤ a ≤ 

1, the prolongation of line P(a) + v U intersects at a unique point on plane . 

Q(v) = P(a) + v U = n + t b + w c                                                                                                               (14) 

 

We find the scalar v in form v = 
(𝐛∧𝐜).[𝐧−𝐏(𝑎)]

(𝐛∧𝐜).𝐔
. Thus, the intersection points Q(u) on this plane  are,  

 

Q(u) = P(u) + [
(𝐛∧𝐜).[𝐧−𝐏(𝑢)]

(𝐛∧𝐜).𝐔
] U. 

 

In conclusion, using control points data [P0,P1,P2,P3,P4,P5] of space curve P(u) sets the intersection 

control points [Q0,Q1,Q2,Q3,Q4,Q5] in plane  through the following equations for i = 0, 1,…,5. 

Qi = Pi +[
(𝐛∧𝐜).[𝐧−𝐏𝑖]

(𝐛∧𝐜).𝐔
] U = Pi + αi U                                                                                                            (15) 

 

where, αi > 0. Conversely, using the points [Q0,Q1,Q2,Q3,Q4,Q5] on plane , we determine the control 

points [P0,P1,P2,P3,P4,P5] of the curve P(u) as follows: 

Pi = Qi - αi U                                                                                                                                               (16) 

 

Consider the generalized cylinder surface S2(u,v) = R(u) - v U. The curve R(u) is a regular quintic Bézier 

curve of control points [R0,R1,R2,R3,R4,R5]. In this case, the curves R(u) and P(u) are laid on different 

sides of plane . Also, the intersection between the lines Ri - v U and the plane  for i = 0, 1,…,5 obtains 

the control points [Q0,Q1,Q2,Q3,Q4,Q5] in the form,  

 

Qi = Ri - [
(𝐛∧𝐜).[𝐧−𝐑𝑖]

(𝐛∧𝐜).𝐔
] U = Ri - βi U. 

 

where, the real scalars βi > 0. Conversely, if we arrange the control points [Q0,Q1,Q2,Q3,Q4,Q5] on plane 

, then, for i = 0, 1,…,5, we find,  

Ri = Qi + βi U = Pi + (αi + βi) U                                                                                                                  (17) 

 

where αi, βi > 0. 

 

Based on Equations (16) and (17), the points [Pi,Qi,Ri] are successively collinear for i = 0,1,…,5. In 

addition, for every value u in the interval 0 ≤ u ≤ 1, the generatrix lines [Q(u)-P(u)] and [R(u)-P(u)] of the 

cylinder surface S1(u,v) and S2(u,v) are coincide with each other and parallel to the vector U. Therefore, 

using data [Q0,Q1,Q2,Q3,Q4,Q5] on the plane  can design the cylinder surface limited by the quintic 

Bézier curves [P(u),R(u)] that are placed in the different side of the plane   in this fashion, 
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D(u,v) = (1-v) P(u) + v R(u) 

           = (1-v) ∑ (𝐐𝑖 − 𝛼𝑖𝐔)𝐵𝑖
5(𝑢)5

𝑖=0 + v ∑ (𝐐𝑖 + 𝛽𝑖𝐔) 𝐵𝑖
5(𝑢)5

𝑖=0                                                              (18) 

 

where, αi, βi > 0. 

 

In general, designing the cylinder surface limited with the quintic Bézier curves [P(u),R(u)] can be 

conducted in steps: (a) arranging the control points’ data Qi in the plane , the parameter values αi, βi> 0 

for i = 0, 1,…,5, and fixing nonzero direction vector U unparallel to this plane ; (b) Implementing the 

Equations (16), (17), and computing the control points Pi and Ri; and (c) plotting the quintic developable 

Bézier surface D(u,v) by using Equation (18). 

 

Simulation 3 

Based on the steps of the cylinder surface construction, we can design the surface through a quintic Bézier 

curve Q(u) and a fixed nonzero direction vector U with the following data. Let the control points’ data Q0 

= <-20,60,30>, Q1 = <-20,40,50>, Q2 = <-20,15,15>, Q3 = <-20,-5,20>, Q4 = <-20,-40,70>, Q5 = <-20,-

60,25>, and we determine the nonzero direction vector and parameter values U = <-2/√6, 1/√6, 1/√6>, α0 

= 20, α1 = 40, α2 = 30, α3 = 45, α4 = 15, α5 = 40. By implementing Equation (16), we get the control points 

P0 = <-3.7,51.8,21.8>, P1 = <12.7,23.7,33.7>, P2 = <4.5,2.8,2.8>, P3 = <16.7,-33.4,1.6>, P4 = <-7.8,-

46.7,63.9>, P5 = <12.7,-76.3,8.7> as shown in Figure 5. These calculated data present the quintic 

developable Bézier surface of the cylinder surface type. 

 

 
 

Figure 5. The quintic Bézier curve P(u) with the control points [P0, P1, P2, P3, P4, P5]. 

 

Simulation 4 

In the same way as simulation 3, arranging the data Q0 = <-20,60,30>, Q1 = <-20,40,50>, Q2 = <-

20,15,20>, Q3 = <-20,-15,25>, Q4 = <-20,-40,70>, Q5 = <-20,-60,25>, U = <-2/√6, 1/√6, 1/√6>, α0 = 20, 

α1 = 40, α2 = 30, α3 = 45, α4 = 15, α5 = 40. By implementing Equation (18), we obtain the control points 

P0 = <-3.7,51.8,21.8>, P1 = <12.7,23.7,33.7>, P2 = <4.5,2.8,7.8>, P3 = <16.7,-33.4,6.6>, P4 = <-7.8,-

46.1,63.9>, P5 = <12.7,-76.3,8.7>. On the other hand, given β0 =20, β1 =35, β2 =15, β3 =10, β4 =30, β5 

=30. Computing Equation (17) obtains R0 = <-36.3,68.1,38.2>, R1 = <-48.6,54.3,64.3>, R2 = <-

32.2,21.1,26.1>, R3 = <-28.1,-10.9,29.1>, R4 = <-44.5,-27.6,82.2>, R5 = <-44.5,-47.8,37.2>. These 

calculation data give the quintic developable Bézier surface bounded with the space curves [P(u), R(u)] as 

given in Figure 6. Evaluating Figure 5 and Figure 6 can be stated that, by determining the parameters αi 

and βi for i = 0, 1,…,5, the developable surfaces’ boundary curves can be situated in space. 
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This computational approach offers some efficacities in designing the surfaces. The election 

[Q0,Q1,Q2,Q3,Q4,Q5] on plane  can easily change curve Q(u) arches and the developable surface shape. 

Substituting real values αi and βi for i = 0, 1,…,5 to Equation (18) can model the developable surfaces’ 

boundary curves [P(u),R(u)] laid in space. 

 

 
 

Figure 6. Designing Bézier cylinder surface of the boundary curves [P(u), R(u)]. 

 

3. Quintic Developable Hermite Surfaces Construction 
We describe the mathematical theory for presenting the equation of a quintic Hermite curve defined by 

the boundary conditions. After that, we offer a new approach to model the quintic developable Hermite 

surface. Finally, we simulate this result using the mathematics software. 

 

Suppose a quintic polynomial curve P(u) = a5 u5 + a4 u4 + a3 u3 + a2 u2 + a1 u + a0 with the restrictions at 

the points P(0) = Po, P(1) = P1, two intermediate points P(1/3) = P1/3 and P(2/3) = P2/3, and two tangent 

vectors value 𝐏𝑢(0) = 𝐏𝑜
𝑢, 𝐏𝑢(1) = 𝐏1

𝑢. Computing the equations of these six limitations and evaluating 

the unknown coefficients value a5, a4, a3, a2, a1, and a0 of the curve P(u), the definition of quintic Hermite 

curve P(u) is (Kusno, 2020a), 

P(u) = F1(u) Po + F2(u) P1/3 + F3(u) P2/3 + F4(u) P1 + F5(u) 𝐏𝑜
𝑢 + F6(u)𝐏1

𝑢                                                (19) 

 

where, the real functions (scalars), 

F1(u) = 29.25u5 – 83.25u4+ 80.75u3 – 27.75u2 +1;    F2(u) = –60.75u5 + 162u4 –141.75u3+ 40.5u2; 

F3(u) = 60.75u5 –141.75u4 + 101.25u3 –20.25u2;       F4(u) = –29.25u5 + 63u4 – 40.25u3 + 7.5u2; 

F5(u) = 4.5u5 –13.5u4 + 14.5u3 –6.5u2 +u;       F6(u) = 4.5u5 -9u4 + 5.5u3 –u2. 

 

In constructing quintic developable Hermite surfaces of cone type S1(u,v) = 𝐎 + v [P(u) – 𝐎], we give the 

restrictions that the quintic Hermite curve P(u) is positioned between the fixed point 𝐎 and a plane (t,w) 

= n + t b + w c. In addition, the direction of P(u) and (t,w) are in the same orientation. Based on this 

criteria, let a point Px be any control points [Po,P1/3,P2/3,P1] of the quintic Hermite curve P(u) in Equation 

(19). Prolonging line 𝐎 + v [Px - 𝐎] from the point O to the plane  intersects at a unique control point Qx 

on this plane  (that represents any control points [Qo,Q1/3,Q2/3,Q1]) in the calculation. 

Qx = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐏𝑥−𝐎]
] [Px - 𝐎] = 𝐎 + αx [Px - 𝐎]                                                                                       (20) 
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where, αx > 1. From the tangent vectors [𝐏𝑜
𝑢, 𝐏1

𝑢], we can compute the tangent vectors [𝐐𝑜
𝑢, 𝐐1

𝑢] in the 

plane  as follows (Figure 7). 

𝐐0
𝑢 = [

(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[(𝐏0−𝐎)+𝐏0
𝑢] 

] [(𝐏0 − 𝐎) + 𝐏0
𝑢] − (𝐐0 − 𝐎)                                                                         (21) 

 = Ω0 [(𝐏0 − 𝐎) + 𝐏0
𝑢] − (𝐐0 − 𝐎). 

 

𝐐1
𝑢 = [

(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[(𝐏1−𝐎)+𝐏1
𝑢]

] [(𝐏1 − 𝐎) + 𝐏1
𝑢] − (𝐐1 − 𝐎)                                                                          (22) 

      = Ω1 [(𝐏1 − 𝐎) + 𝐏1
𝑢] − (𝐐1 − 𝐎). 

 

where, Ω0, Ω1> 1. Thus, it can state that, 

Px = 𝐎 + σx [Qx  -  𝐎] = (1- σx) 𝐎 + σx Qx                                                                                                   (23) 

𝐏0
𝑢 = ρ0 [(𝐐0 − 𝐎) + 𝐐0

𝑢] – (𝐏0 − 𝐎) = ρ0 [(𝐐0 − 𝐎) + 𝐐0
𝑢] – σ0 [𝐐0 − 𝐎]                                              (24) 

𝐏1
𝑢 = ρ1 [(𝐐1 − 𝐎) + 𝐐1

𝑢] – (𝐏1 − 𝐎) = ρ1 [(𝐐1 − 𝐎) + 𝐐1
𝑢] – σ1 [𝐐1 − 𝐎]                                               (25) 

 

where, 0 < σx <1, and 0 < ρ0, ρ1 <1. 

 

Consider a developable surface of cone type S2(u,v) = 𝐎 + v [R(u) – 𝐎] with the plane (t,w) laid 

between the fixed point 𝐎 and the quintic Hermite curve R(u). Moreover, for a control point Rx that 

represents any control points [Ro,R1/3,R2/3,R1] of the curve R(u), the line 𝐎 + v [Rx - 𝐎] intersects at a 

unique control point Qx on the plane  (that represents any control points [Qo,Q1/3,Q2/3,Q1]) of the 

equation (Figure 8),  

Qx = 𝐎 + [
(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).[𝐑𝑥−𝐎]
] [Rx - 𝐎] = 𝐎 + βx [Rx - 𝐎]                                                                                  (26) 

 

where, 0 < βx <1. Then, the tangent vectors [𝐑𝑜
𝑢, 𝐑1

𝑢] determine the tangent vectors [𝐐𝑜
𝑢, 𝐐1

𝑢] in plane , 

𝐐0
𝑢 = [

(𝐛∧𝐜).(𝐧−𝐎)

(𝐛∧𝐜).((𝐑0−𝐎)+𝐑0
𝑢) 

] [(𝐑0 − 𝐎) + 𝐑0
𝑢] − (𝐐0 − 𝐎)                                                                       (27) 

      = ξ0 [(𝐑0 − 𝐎) + 𝐑0
𝑢] − (𝐐0 − 𝐎). 

 

𝐐1
𝑢 = [

(𝐚−𝐎).(𝐧∧𝐝)

(𝐛∧𝐜).((𝐑1−𝐎)+𝐑1
𝑢) 

] [(𝐑1 − 𝐎) + 𝐑1
𝑢] − (𝐐1 − 𝐎)                                                                       (28) 

      = ξ1 [(𝐑1 − 𝐎) + 𝐑1
𝑢] − (𝐐1 − 𝐎). 

 

where, 0 <ξ 0, ξ 1<1. Therefore, we can state that, 

Rx = 𝐎 + δx [Qx - 𝐎] = 𝐎 + δx.αx [Px - 𝐎]                                                                                                    (29) 

𝐑0
𝑢 = τ0 [(𝐐0 − 𝐎) + 𝐐0

𝑢]  - (𝐑0 − 𝐎) = τ0 [(𝐐0 − 𝐎) + 𝐐0
𝑢] – δ0 [Q0 - 𝐎]                                               (30) 

𝐑1
𝑢 = τ1 [(𝐐1 − 𝐎) + 𝐐1

𝑢]  - (𝐑1 − 𝐎) = τ1 [(𝐐0 − 𝐎) + 𝐐1
𝑢] – δ1 [Q1 - 𝐎]                                                (31) 

 

where, δx, αx > 1, and τ0, τ1> 1.  

 

From Equations (23), (24), (25), (22), (29), (30), and (31), the points [𝐎,Px,Qx,Rx] are colinear, and the 

tangent vectors [𝐏0
𝑢,𝐐0

𝑢,𝐑0
𝑢], and [𝐏1

𝑢, 𝐐1
𝑢,𝐑1

𝑢] are respectively coplanar in the tangent planes [𝐐0
𝑢,(Q0-𝐎)] 

and [𝐐1
𝑢,(Q1-𝐎)]. Thus, the generatrix lines 𝐎+[P(u)-𝐎] and 𝐎+[R(u)-𝐎] of the cone surfaces S1(u,v) and 

S2(u,v) are respectively in a line for every value u in the interval 0 ≤ u ≤ 1. Thus, the developable surfaces 
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S1(u,v) and S2(u,v) coincide. Consequently, the generalized cone surface that is limited by the Hermite 

curves [P(u),R(u)] is, 

D(u,v) = (1-v) P(u) + v R(u) 

            = (1-v) {F1(u) (𝐎 +σ0[Q0-𝐎])+ F2(u) (𝐎 +σ1/3[Q1/3-𝐎])+ F3(u) (𝐎 +σ2/3[Q2/3-𝐎]) +  

F4(u) (𝐎 +σ1[Q1-𝐎])+ F5(u) (ρ0[(𝐐0 − 𝐎) + 𝐐0
𝑢] − 𝜎0(𝐐0 − 𝐎))+  

F6(u) (ρ1[(𝐐1 − 𝐎) +  𝐐1
𝑢] - 𝜎1(𝐐1 − 𝐎))} +  

v {F1(u) (𝐎 +δ0[Q0-𝐎])+ F2(u) (𝐎 +δ1/3[Q1/3-𝐎])+ F3(u) (𝐎 +δ2/3[Q2/3-𝐎]) + 

F4(u) (𝐎 +δ1[Q1-𝐎])+  F5(u) (τ0 [(𝐐0 − 𝐎) + 𝐐0
𝑢] – δ0 [Q0 - O]) +  

F6(u) (τ1 [(𝐐1 − 𝐎) + 𝐐1
𝑢] – δ1 [Q1 - 𝐎])}                                                                                 (32) 

 

where, 0 <σ0, σ1/3, σ2/3, σ1, ρ0, ρ1 <1; δ0, δ1/3, δ2/3, δ1, τ0, τ1> 1; and 0 ≤ u,v ≤1. 

 

Based on Equation (32), modeling quintic developable Hermite surfaces D(u,v) of generalized cone type 

in Equation (3) can employ the following numerical procedure. 

(i) Arrange the control points data [Q0,Q1/3,Q2/3,Q1] and two tangent vectors [𝐐0
𝑢,𝐐1

𝑢] of quintic Hermite 

curve Q(u) in plane  and a point 𝐎 outside plane  (Figure 7). 

(ii) Calculate the control points P0, P1/3, P2/3, P1, and the tangent vectors 𝐏0
𝑢, 𝐏1

𝑢 using Equations (23), 

(24), and (25) for the quintic Hermite curve P(u), and compute the control points R0, R1/3, R2/3, R1, 

and the tangent vectors 𝐑0
𝑢, 𝐑1

𝑢 utilizing Equations (29), (30), and (31) for the quintic Hermite curve 

R(u). 

(iii) Plote the quintic developable Hermite surface D(u,v) using Equation (32). 

 

Simulation 5 

Setting data Q0 = <-20,70,40>, Q1/3 = <-20,10,20>, Q2/3 = <-20,-30,30>, Q1 = <-20,-90,20>, 𝐐0
𝑢 = <0,-

70,-90>, 𝐐1
𝑢 = <0,-40,-70>,  𝐎 = <120,10,45>, σ0 =0.68, σ1/3 =0.72, σ2/3 =0.80, σ1 =0.71, ρ0 =7/10, ρ1 

=7/10, and utilizing Equations (23), (24) and (25) obtain the control points P0 = <26.1,50.3,41.6>, P1/3 = 

<19.4,10,27>, P2/3 = <4,-23.2,32.6>, P1 = <20.2,-61.3,27.2>, and the tangent vectors 𝐏0
𝑢 = <24,-45.3,-

44.1>, 𝐏1
𝑢  = <1.8,-26.7,-48.7>. Employing the data and Equation (32), we can construct the quintic 

developable Hermite surface that is presented in Figure 7. Then, given δ0 =1.2, δ1/3 =1.4, δ2/3 =1.2, δ1 =1.2, 

τ0 =1.2, τ1 =1.3. Calculating Equations (29), (30), and (31) obtain R0 = <-47.6,81.8,39>, R1/3 = <-

74.2,10,10.3>, R2/3 = <-53.6,-39.6,26.4>, R1 = <-44.1,-107.2,15.7>, 𝐑0
𝑢  = <-0.4,-83.8,-108>, 𝐑1

𝑢  = <-

17.9,-64.8,-94.2>.  Using the control points [P0,P1/3,P2/3,P1], [R0,R1/3,R2/3,R1], and Equation (32) can 

design the quintic developable Hermite surfaces placed between the space curves [P(u),R(u)] as shown in 

Figure 8. Figure 9 shows the positions of the tangent vectors [𝐏0
𝑢,𝐏1

𝑢] and [𝐑0
𝑢,𝐑1

𝑢]. Figure 10 illustrates 

the boundary curves profile of the surface. 

 

In modeling the quintic developable Hermite surface of cylinder surface S1(u,v) = P(u) + v U, we use the 

same restriction of the cone surface type. From this condition, consider a point Px that expresses any 

control points [Po,P1/3,P2/3,P1] of the quintic Hermite curve P(u) in Equation (19). The extension of line Px 

+ v U to plane  intersects this plane  at a unique control point Qx (that represents any control points 

[Qo,Q1/3,Q2/3,Q1]) in the form, 

Qx = Px + αx U                                                                                                                                             (33) 

 

for αx > 0. In addition, their tangent planes are constant for all points of a generator line of this surface.  

 

Thus, the tangent vectors [𝐏𝑜
𝑢, 𝐏1

𝑢] result the tangent vectors [𝐐𝑜
𝑢, 𝐐1

𝑢] such that the vectors [𝐏𝑜
𝑢, 𝐐𝑜

𝑢] and 

[𝐏1
𝑢, 𝐐1

𝑢] are respectively in the same plane tangent [𝐏𝑜
𝑢, U] and [𝐏1

𝑢,U]. The tangent vectors [𝐐𝑜
𝑢, 𝐐1

𝑢] are, 
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𝐐0
𝑢 = 𝐏0

𝑢 + ρ0 U                                                                                                                                           (34) 

𝐐1
𝑢 = 𝐏1

𝑢 + ρ1 U                                                                                                                                           (35) 

 

where, ρ0, ρ1> 0. Thus, we can state that, 

Px = Qx  – αx U ;   𝐏0
𝑢 = 𝐐0

𝑢 – ρ0 U;   𝐏1
𝑢 = 𝐐1

𝑢 – ρ1 U                                                                                 (36) 

 

Besides, let a developable surface of cylinder type S2(u,v) = R(u) + v U, and  R(u) the quintic Hermite 

curve. For a control point Rx that represents any control points [Ro,R1/3,R2/3,R1] of the curve R(u), the line 

Rx+ v U intersects the plane  at a unique control point Qx (that represents any control points 

[Qo,Q1/3,Q2/3,Q1]) as follows: 

Qx = Rx – βx U                                                                                                                                             (37) 

 

where, βx > 0. Then, the tangent vectors [𝐑𝑜
𝑢, 𝐑1

𝑢] generate the tangent vectors [𝐐𝑜
𝑢, 𝐐1

𝑢] in the form, 

𝐐0
𝑢 = 𝐑0

𝑢 – τ0 U                                                                                                                                            (38) 

𝐐1
𝑢 = 𝐑1

𝑢 – τ1 U                                                                                                                                            (39) 

 

where, τ 0, τ 1> 0. Therefore, we can state that, 

Rx = Qx + βx U;   𝐑0
𝑢 = 𝐐0

𝑢 + τ0 U;   𝐑1
𝑢 = 𝐐1

𝑢 + τ1 U                                                                                   (40) 

 

Regarding Equations (36) and (40), the points [Px,Qx,Rx] are successively in a line, and the tangent 

vectors [𝐏0
𝑢,𝐐0

𝑢,𝐑0
𝑢], and [𝐏1

𝑢, 𝐐1
𝑢,𝐑1

𝑢] are successively in the same tangent planes [𝐐0
𝑢,U] and [𝐐1

𝑢,U]. 

Then, for every value u in the interval 0 ≤ u ≤ 1, the generatrix lines [Q(u)-P(u)] and [R(u)-P(u)] coincide 

and parallel to the vector U. Therefore, the generalized cylinder surface that is bounded by the Hermite 

curves [P(u),R(u)] is as follows: 

D(u,v)= (1-v) P(u) + v R(u) 

          = (1-v) {F1(u) (Q0 – α0U)+ F2(u) (Q1/3 – α1/3U)+ F3(u) (Q2/3 – α2/3U)+ F4(u) (Q1 – α1U)+ 

 F5(u) (𝐐0
𝑢 – ρ0 U)+ F6(u) (𝐐1

𝑢 – ρ1 U)} + 

v {F1(u) (Q0+β0U)+ F2(u) (Q1/3+β1/3U)+ F3(u) (Q2/3+β2/3U)+ F4(u) (Q1+β1U)+  

F5(u) (𝐐0
𝑢 + τ0 U)+ F6(u) (𝐐1

𝑢 + τ1 U)}                                                                                          (41) 
 

where, α 0, α1/3, α2/3, α1, ρ0, ρ1 > 0; β0, β1/3, β2/3, β1, τ0, τ1> 0; and 0 ≤ u,v ≤1.  

 

 
 

Figure 7. Calculated control points and tangent vectors of the Hermite curve P(u). 
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Figure 8. Quintic developable Hermite surface. 

 

 

 
 

Figure 9. Position of the tangent vectors [𝐏0
𝑢,𝐏1

𝑢] and [𝐑0
𝑢,𝐑1

𝑢]. 
 

 

 
 

Figure 10. Boundary curves profile of the quintic developable Hermite surface. 
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The calculation for constructing the cylinder surface laid between the quintic Hermite curves [P(u),R(u)] 

consists of some steps: (a) determine the control points’ data [Qo,Q1/3,Q2/3,Q1] and two tangent vectors 

[𝐐0
𝑢,𝐐1

𝑢] in the plane , and the fixed nonzero direction vector U unparallel to this plane  (Figure 11); 

(b) Apply Equations (36) and (40) to compute the control points respectively [Po,P1/3,P2/3,P1], 

[Ro,R1/3,R2/3,R1], and the tangent vectors [𝐏0
𝑢,𝐏1

𝑢], [𝐑0
𝑢,𝐑1

𝑢]; and (c) plot the quintic developable Hermite 

surface D(u,v) by using Equation (41). 

 

Simulation 6 

Arranging data Q0 = <-20,60,30>, Q1/3 = <-20,30,40>, Q2/3 = <-20,-25,20>, Q1 = <-20,-60,25>, 𝐐0
𝑢 = <0,-

40,60>, 𝐐1
𝑢 = <0,-40,60>, U = <-2/√6, 1/√6, 1/√6>, α0 =20, α1/3 =40, α2/3 =30, α3 =45, ρ0 =10, ρ1 =10, and 

implementing Equation (36) obtain the control points P0 = <-3.7,51.8,21.8>, P1/3 = <12.6,13.6,23.6>, P2/3 

= <4.5,-37.3,7.7>, P1 = <16.7,-78.4,6.6>, and the tangent vectors 𝐏0
𝑢  = <8.2,-44.1,55.9>, 𝐏1

𝑢  = <8.2,-

44.1,55.9> as shown in Figure 11. Furthermore, given β0 = 15, β1/3 = 30, β2/3 = 30, β1 = 25, τ0 = 10, τ1 = 10. 

Computing Equation (40), we obtain R0 = <-32.2,66.1,36.1>, R1/3 = <-44.5,42.3,52.3>, R2/3 = <-44.5,-

12.7,32.3>, R1 = <-40.4,-49.8,35.2>, and the tangent vectors 𝐑0
𝑢  = <-8.2,-35.9,64.1>, 𝐑1

𝑢  = <-8.3,-

35.9,64.1>.  From these calculation data, using Equation (41) can construct the quintic developable 

Hermite surfaces limited with the space curves [P(u),R(u)] in Figure 12. 

 

  
 

Figure 11. Calculated control points [P0, P1, P2, P3, P4, P5] of Hermite cylinder surface. 
 

 

 
 

Figure 12. Designing Hermite cylinder surface with the boundary curves [P(u), R(u)]. 
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In general, the presented method offers to design the developable surface with various arches shapes 

(Figure 8 and Figure 12). We can easily pose the control points [Qo,Q1/3,Q2/3,Q1] and the tangent vectors 

[𝐐0
𝑢 ,𝐐1

𝑢 ] for changing curve Q(u) arches to create the developable surface models of the cone and 

cylinder type. Arranging the data respectively [σ0, σ1/3, σ2/3, σ1, ρ0, ρ1], [δ0, δ1/3, δ2/3, δ1, τ0, τ1], and [α0, α1/3, 

α2/3, α1, ρ0, ρ1], [β0 , β1/3, β2/3, β1, τ0, τ1] for both Equations (32) and (41) can effectively design and modify 

the desired profile of both boundary curves [P(u),R(u)] of the developable surface types. 

 

4. Conclusion 
We have introduced the algebraic equations and the numerical procedure to design the developable 

surfaces bounded by the space curves in two following ways. First, by using control points and tangent 

vectors of quintic Bézier/Hermite curves in a plane, a fixed point outside the plane, and second, by 

utilizing the criteria equations to arrange the control points’ position in space, we can formulate two 

equations of Bézier/Hermite curves situated in the different side of this plane. Substituting these curve 

equations to the surface equations of two curves interpolation finds the developable surfaces of cone type. 

Second, by passing control points and tangents vectors of quintic Bézier/Hermite curves in a plane, a 

fixed non-zero constant vector unparallel to the plane, and employing the criteria equations to determine 

the control points’ position in space, we can formulate the two equations of Bézier/Hermite curves laid in 

the different side of the plane. Inserting these curve equations into the surface equations of two curves by 

interpolation, obtains the developable surfaces of cylinder type. 

 

Comparing the presented method of this research with previous studies shows that the proposed method 

provides some benefits for modeling developable surfaces. Arranging the control points of the 

Bézier/Hermite curve in the plane gives a chance to modify the developable surface shapes and their 

fluctuations. Also, the surface arches change to be up or down more than twice. We can effectively use 

the fixed parameters in these surface equations of two curves interpolation to change and adjust the 

desired profile of both boundary curves of the developable surfaces. In this case, giving different 

parameter values to these equations modifies the arch shapes of the boundary curves in two directions of 

the generatrix lines of the surfaces. From these benefits, the results are applicable to design the metal and 

plywood sheets installation for skinning great industrial objects. 

 

Modeling developable surfaces from the control points and the tangent vector data of a curve in the plane 

have been presented. In further studies, the interesting thing is to model the developable surfaces using 

these control points and the tangent vector data in space. 
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