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Abstract 

The reliability of autonomous vehicles (AVs) is a research domain of high interest, covering a diverse pool of researchers, 

captains of smart auto industries, government agencies, and technology enthusiasts. The reliability of AVs is not extensively 

explored in the literature, despite the apprehension due to fatal accidents recorded in the past. Despite being in existence for over 

a decade, AVs have yet to reach a certified commercial-level deployment. Due to the complexity that comes with the self-

operation of an AV, the issue of trustworthiness, which signifies reliability, becomes inevitable. The identification, analysis, and 

categorization of functional elements using systems engineering conceptual design principles and the linkage of these to the road 

traffic rules were conducted to address this. Also, the evaluation of the reliability of AVs using various developed vehicles from 

selected industries was addressed by integrating the traffic rules. The analysis of reliability was carried out using life-to-failure 

data premised on the probability plotting approach. It was found that there is a 99.94% chance that an autonomous vehicle will 

fail at least one of the traffic rules within 20 minutes of driving. Furthermore, the hazard rate of AVs was found to be on the rise, 

meaning a high indication of accidents.  

 

Keywords- Autonomous vehicles, Functional capability, Physical embodiment, Reliability analysis, Systems engineering 

conceptual design. 

 

 

 

1. Introduction 
Autonomous vehicle (AV) performance in respect of adherence to traffic rules is still a major concern in 

the literature on self-driving robotic systems (Uzair, 2021). This is impacted by the functional capabilities 

of an AV, which mostly extend to questions related to its reliability. Grigorescu et al. (2020) and Chy et 

al. (2021) stated that the capabilities of Autonomous Vehicles (AVs) have over the years transformed and 

improved how scenarios along a driving route should be predicted, including reactions to complex, 

unknown, or unforeseen situations. Automotive industries involved with the planning, design, and 

manufacture of AVs, members of academia, researchers, and students in the fields of robotics, smart 

systems, reliability engineering, and government agencies, amongst others, are the main targets of this 

research. The concept of AVs and their development gradually advanced to some level of fame over two 

decades ago. The advancement of AVs was due to advances in artificial intelligence and its sub-organs, 

such as deep learning. The emerging technology that comes with AVs is complex and risky, spanning 

across geopolitical and socio-economic domains (Tan and Taeihagh, 2021). With this in consideration, 

any nation that chooses to introduce AVs may experience difficulties, especially among developing 

economies. This is based on the fact that most developing economies lack the Fourth Industrial 

Revolution (4IR) technology while the technology associated with AVs is getting much more advanced 

beyond the 4IR technology (Ndung’u and Signé, 2020). Hence, if there is a lack of technological 

competency, there will be issues with any AV developed in such societies. The inherent complexity of an 
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AV makes it difficult to comply with certain conditions within a certain period. This inherent complexity 

also makes it difficult for an AV to be deployed in certain societies.  

 

One of the most notable problems facing today’s AVs is the inherent operational and functional 

complexities that are orchestrated by the employed technology, which revolves around diverse-multiple 

interacting sensors, the need for real-time decision-making to avert bumpy rides, and mostly minimize or 

eliminate accidents. AVs are more involved in activities seen as complex as they try to imitate human 

dexterity in driving. These sets of actions require an AV to trigger itself and make quick, smart, and 

reliable decisions accurately and precisely.  

 

According to Grigorescu et al. (2020) and Chy et al. (2021), AV research has over the years grown, 

especially in respect of how they predict situations and how they should react to complex and unknown 

situations or unforeseen situations. The improvements recorded were possible due to the method called 

deep learning or smart deep learning and the advancements of Artificial Intelligence (AI) technology and 

its applications. Given these advancements, it can be noted that there is good progress in the field of AVs, 

however, their reliability is still a problem, and there is little research regarding the reliability on the road. 

 

Despite the recorded advances with AVs, situation prediction still poses a significant challenge in real-life 

scenarios. Decision-making by AVs depends on the method used to formulate their navigation strategies 

for various situations (Schwarting et al., 2018). By extension, the reliability of an AV’s performance with 

respect to traffic rules is largely unknown. This makes it difficult to trust the technology that these 

vehicles rely on. No substantial evidence of reliability analysis is provided in the literature on AVs with 

respect to on-road autonomous navigation. Due to the questionable reliability of this emerging knowledge 

domain, the delay in commercializing AVs has been upheld as the issue of trustworthiness has remained 

in the spotlight.  

 

The literature in the field of AVs has significantly grown over the years. In a bid to detect objects, 

Shelhamer et al. (2017) and Wu (2017) discussed the Convolutional Neural Network (CNN) approach as 

a promising real-time object detection tool. CNN can be defined as a multilayer neural network which can 

also be referred to as deep learning architecture and it makes use of Artificial Intelligence (AI) detective 

principles. The visual system of living beings inspired CNN as it is commonly used to analyze images 

(Ghosh et al., 2020). The use of a CNN-based approach was reviewed by Hnewa and Radha (2021). It 

was found that the CNN-based approach performed well in clear weather conditions in respect of object 

detection. However, rainy weather conditions yield less accurate detection of objects than clear weather 

conditions. However, this does not mean that the method does not work in rainy conditions. The problem 

that caused less accuracy in rainy conditions was the inability to detect and locate the objects as expected 

at some point. This is caused by the rain covering, which aids in obscuring the important details of the 

objects (Hnewa and Radha, 2021). The main performance metric used in the test is the Mean Average 

Precision (MAP) which is said to be the most popular performance measure since 2012. 

 

Vaicenavicius et al. (2021) highlighted one important functional requirement, i.e., the ability of an AV to 

stop in a bid to avoid harm or danger. This requirement sums up a couple of requirements. Badue et al. 

(2021) surveyed a search on self-driving vehicles that focused on vehicles with the autonomous driving 

capability of level 3 and above. The study identified two main functional requirement categories: the 

perception system and the decision-making system of an autonomous vehicle. The perception system of a 

self-driving vehicle consists of the following functional requirements, (1) the vehicle should have 

different methods of localization via Light Detection and Ranging (LIDAR) based localization, LIDAR 

plus camera-based localization, and camera-based localization; (2) the vehicle should be able to map 
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obstacles offline via regular spacing metric representation and varied spacing metric representation; (3) an 

AV should be able to conduct road mapping using metric representation and topological representation; 

(4) an AV should be able to track moving obstacles using traditional-based Ministry of Transport (MOT), 

model-based MOT, stereo vision based MOT, grid map based MOT, sensor fusion based MOT, deep 

learning based MOT and (5) an AV should be able to detect and recognize traffic signalization. These can 

be achieved by traffic light detection and recognition, traffic sign detection and recognition, and pavement 

marking detection and recognition. 

 

General decision-making by AVs is still a source of concern and can be occasionally immature. AVs can 

plan how to behave or react in normal and sometimes complex situations. However, complex situations 

are usually more difficult to handle; hence, mistakes occur. Complex situations in decision-making come 

with a dynamic environment. The dynamic environment brings uncertainty to data acquisition handling. 

Data acquisition helps in understanding an environment in real-time to plan appropriately, to avoid 

dangerous situations. Data acquisition and analysis in real-time are still challenges (González et al., 

2015). 

 

In respect of decision-making for a self-driving vehicle, Badue et al. (2021) described the following 

functional requirements that a vehicle should be enabled to meet: (1) conduct route planning – the vehicle 

can achieve this by using the following techniques goal-directed, separator-based, hierarchical, and 

bounded-hop, or combining any of the techniques; (2) select its expected behavior – the techniques that 

can be adopted for this requirement are Finite State Machines (FSM) (Jo et al., 2015), ontology (Zhao et 

al., 2015; Zhao et al., 2017), and Markov decision process; (3) plan its motion – the motion planning 

consists of graph search, sampling, an interpolating curve such as clothoid curves (González et al., 2015), 

and numerical optimization techniques; (4) control its systems – the methods used for this are direct 

hardware actuation control and path tracking. 

 

The identification of functional capabilities for AVs was discussed by Matthaei and Maurer (2015), 

Vaicenavicius et al. (2021) and Badue et al. (2021). The functional requirements are needed to make sure 

that the capabilities are met. These requirements speak to the AVs’ intelligence; therefore, they are 

categorized into two main systems. The perception system—the vehicle should always know how to 

identify its environment, and the cognition system for decision-making, such as what the AV should do 

and how it should do it. Sviatov et al. (2021) described a structural and functional model of an 

autonomous vehicle control system, intending to generate several mathematical problems. Their study 

identified the control system of an autonomous vehicle as a functional requirement. This requirement 

refers to the vehicle being able to control itself. Other functional design structures include those 

developed by Badue et al. (2021), Guanetti et al. (2018) and Sell et al. (2018). 

 

The study conducted by Guanetti et al. (2018) highlighted that decision-making and motion planning of 

Connected and Automated Vehicles (CAV) generated a reference trajectory for longitudinal and lateral 

motion. Therefore, the trajectory is expected to follow traffic rules, be feasible for lower-level controllers, 

and be comfortable for the passengers. Furthermore, it should be capable of accurately following high-

level directions (Paden et al., 2016; Guanetti et al., 2018). The ultimate goal in decision-making is for the 

autonomous vehicle to move from a given point A to another point B without accidents. However, this 

has been an issue to achieve without the occurrence of accidents. Consequently, problem formulation 

related to decision-making had to be conducted to minimize the number of hazardous situations and 

ultimately reduce the number of accidents. (Paden et al., 2016; Guanetti et al., 2018). 

 

Sensors play one of the most important roles in the performance of an AV. They provide data for the 
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preceptory system to make the vehicle act or react as expected. Therefore, sensors’ performance must be 

very accurate to avoid mistakes that would injure passengers, pedestrians, and the environment (Yan et 

al., 2016; Vargas et al., 2021; Yeong et al., 2021). Furthermore, the type and placement of sensors that 

allow an autonomous vehicle to perceive its surroundings are crucial to the performance of an AV. With 

these sensor placements, the vehicle is expected to provide its best performance (Vargas et al., 2021). 

 

An AV’s performance depends on several aspects embedded in the vehicle. In terms of sensor 

functionality issues, it poses a significant risk if there is a functional error such that the vehicle's decision 

is incorrect due to incorrect sensor(s) readings. Such an error could cause a fatal accident, for example, if 

the autonomous vehicle detects a pedestrian as not moving. While moving, the vehicle was supposed to 

stop at that moment but did not. Therefore, the sensors (especially the quality of data based on sensor 

fusion) have played a very important role in any AV performance. However, there are other very 

important aspects, such as the functional design structure, that analyze the collected data with the aid of 

sensors. Therefore, the performance of AVs proves to be a complex aspect to be measured—that is why it 

is crucial to measure how they are capable of obeying traffic rules. 

 

According to Yeong et al. (2021), sensors are tools that translate environmental events or changes into 

quantitative measurements that can be processed further. Typically, sensors are divided into two kinds 

based on their core principles of operation. Firstly, the proprioceptive sensors, also known as internal state 

sensors, record a dynamic system’s state and internal values. These sensors relate to encoders, inertia 

measurement units, inertial sensors (magnetometers and gyroscopes), location sensors (Global Navigation 

Satellite System), and receivers, such as the Global Positioning System. Secondly, the exteroceptive 

sensors, also known as external state sensors, sense and gather data such as distance measurements or 

light intensity from the system’s surroundings. These sensors relate to cameras, ultrasonic sensors, Radio 

Detection and Ranging (RADAR), and LIDAR onboard the AV. The sensing of the environment, 

tracking, and localization of the AVs for trajectory planning and decision-making is a prerequisite for 

directing the navigation of the vehicle.  

 

Six different driving automation levels were presented by Singh and Saini (2021). The six different levels 

of driving automation are grouped into two main categories: human drivers and automated driving 

systems. The descriptions of the different levels are further described as follows: 

• Level 0: There is no automation of any sort, the driver performs all the tasks. 

• Level 1: There are at least stand-alone vehicle components, such as automated braking; here, the driver 

assists in many operations. 

• Level 2: There is partial automation such that the vehicle is capable of steering and accelerating by 

itself to keep the vehicle accurately in the lane(s) and adaptively moving around other vehicles. 

However, the human driver should always be there to monitor the operation. 

• Level 3: There is conditional automation such that the human driver can take total control in certain 

complex situations; that is, the vehicle can drive itself in less complex situations until there is a need for 

human intervention. 

• Level 4: There is high automation control in the vehicle, such that it can perform all needed driving 

functions by itself. Such vehicles might provide options for human intervention or might not provide it. 

• Level 5: There is full automation such that the vehicle can perform all driving functionalities in any 

given situation (complex or easy) and condition. 

 

According to Denoël (2007), the reliability index of an AV is calculated as the difference between the 

mean failure condition and its standard deviation. Numerous analyses used to assess and enhance the 

quality of goods, services, and systems are together referred to as reliability analysis. Although the term 
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reliability can refer to a products or a system’s overall performance in a generic sense, reliability is a 

particular measure that can be quantitatively evaluated in engineering disciplines.  

 

According to Uzair (2021), early accidents have been recorded for AVs. There have been more than 30 

accidents recorded since 2014, and about five AV passengers and pedestrians were killed by the AVs. 

This raised concerns among the public as an outstanding reliability challenge associated with AVs. 

However, these fatal accidents buttress the need for AV reliability studies for the ultimate reduction in 

accidents. All the decisions made by a full AV are directly based on the data gathered by the sensors and 

analyzed. Therefore, the sensors must function as expected to avoid obvious disasters (accidents). Now, if 

any of the sensors in an AV fail or provide unclean and unclear data, then that will be a big problem. 

Unfortunately, the sensors gather dirty data when there is a bad or abnormal weather condition (such as 

snow, heavy rain, etc.); this can occur in any sensor category (self-sensing, localization, and surrounding 

sensing). Human drivers also experience similar problems when bad or abnormal weather conditions 

occur (Ma et al., 2020). In their assessment (AVs) of the tenacious behavior of onboard sensors, Yan et al. 

(2016) examined some of the sensors by analyzing jamming and spoofing attacks in their physical 

channels. In the jamming attack, the sensors are made to withstand the environmental noise that occurs 

during typical working circumstances. In the spoofing attack, when sensors are positioned incorrectly, it 

is possible to get real physical signals from the incorrect source. Consequently, the discussion provided 

hardware and software countermeasures that may strengthen sensor resilience against attacks. 

 

Even though AVs seek to be accident-free in their navigation ploy, this mission is still unrealistic. Hence, 

accountability for accidents has remained a big issue in AVs. Hence, the legal framework and regulations 

are integrated; this is one of the most important requirements for autonomous vehicle deployment (Singh 

and Saini, 2021). The main question in this situation is who should be held liable for either fatal or 

nonfatal accidents. This question does not have a straightforward answer; according to Borenstein et al. 

(2019), if there was an accident that involved AV, it does not make sense that the technology itself can be 

held responsible, but the designers, car dealer(s), manufacturers, and other people that could be identified 

as guilty. This claim supports what Mackie (2018) stated, that human drivers should remain liable for the 

accident depending on the automation (and the degree to which the human has control over the event(s) 

that led to the accident) installed in the vehicle. Suppose the automation is at level 4 or 5 (highly or fully 

automated). In that case, the plaintiffs are responsible for identifying who should be held accountable, 

which could be the manufacturers, maintainers, or others who contributed to the AV’s development. 

 

Despite having six different levels of automation for AVs according to Casado-Herráez (2020) and Singh 

and Saini (2021), this paper has focused on the top two levels, i.e., levels 4 and 5, of the automation 

hierarchical order of intelligence. Levels 4 and 5 possess the latest technological capabilities (i.e., the 

ability to self-drive from point A to B), including the technologies found in the lower levels (i.e., the 

ability to self-park). Therefore, the need to analyze the sensors that bring about the automation of the 

vehicles was conducted. Considering levels 4 and 5, it is crucial to look at how such systems (in terms of 

the functional capabilities that speak to intelligence) are designed. With a focus on how levels 4 and 5 

AVs are designed, the needs analysis theory of systems engineering, was adapted to explore the 

conceptual design of systems with a specific focus on functional capabilities. In a nutshell, this study aims 

to objectively address the reliability of the intelligence of the AV with respect to traffic rules during 

navigation. Given the research aim, the outlined objectives include the delineation of the functional 

capabilities of AVs with respect to the intelligence of an AV, the modeling and analysis of the reliability 

of the intelligence of autonomous vehicles with respect to identified traffic rules, and the identification 

and analysis of the inherent complexity drivers that cause unreliability in AVs. Consequently, the 

reliability of the intelligence of AVs was conducted with a focus on some of the available vehicle brands 
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in the AV industry. The analysis of these brands is provided in subsequent sections. Even though two 

types of K53 traffic rules were described by Hoole (2013), there are three types of traffic rules. The third 

rule focuses on knowing the controls of a vehicle, and an AV is assumed to know what controls it has and 

how to use them. 

 

The advancement of AVs provides good news for the smart automotive industry; however, there are some 

potential impacts on factors such as employment, privacy, equity, etc. Considering the employment 

factor, the automotive industry might need more employees that understand the development of 

autonomous vehicles; in this case, the employment rate might increase. When considering employment 

related to driving, the employment rate might drop significantly. This is because most AVs are developed 

to provide services like that of Uber’s (transporting passengers). It seems the technology will be applied 

to trucks as well; therefore, Uber drivers (or drivers with similar services) and truck drivers will be 

replaced by AVs. Though the employment predicament seems to favor the negative, there is an issue of 

privacy. Though services provided by companies such as Uber require passengers to have existing 

profiles, the AVs in addition have several cameras that will be watching the passengers, and payment may 

have to be always online (lack of flexibility). Some individuals might not prefer their credit or debit card 

details to be linked to online profiles, but that is not possible with AVs since they are void of human 

drivers to assist with cash transactions at the end of a trip. Nevertheless, the highlighted socio-centric 

factors are not considered to have any impact on the reliability of AVs based on the approach adopted in 

this paper for the computation of an AV’s reliability. However, these factors only highlight the possibility 

of new policies being introduced to the social system of human endeavor to keep a good balance in the 

economy. 

 

In light of the identified research gap, this paper has focused on addressing the reliability analysis of AVs 

by first exploring some functional attributes deemed significant for traffic rule adherence. The functional 

attributes or capabilities of an AV are the basis for the display of its intelligent behavior. The 

identification process of the functional attributes was facilitated by first creating a graphic scenario that 

depicts a typical outdoor road navigation situation, as presented in Figure 1 of the following section. 

Hence, the identification and analysis of the functional attributes of AVs were addressed prior to 

conducting a reliability analysis of AVs with respect to road traffic-rules. The motivation for this study is 

premised on the scanty literature resources in the mentioned problem domain. This study aims to 

objectively understudy the reliability of the intelligence of AVs amidst the inter- and intra-complexities 

associated with autonomous ground vehicle navigation. The associated complexities are orchestrated by 

the diversity of navigation requirements on the road, intelligent interactions (inter- and intra-interaction), 

and a need for swift decision-making.  

 

The organization of the paper going down will first discuss and analyze the functional attributes and 

physical embodiment identification of AVs in Section 2. This would be followed by the reliability 

analysis of an AV premised on traffic rules in Section 3 while the concluding remarks and future work 

will be presented in Section 4. 

 

2. Functional Attributes and Physical Embodiment Identification and Analysis  
This section is focused on discussing the research approach deployed to address the identified problem. 

This ranges from discussions revolving around the needs and requirements as the core phase in the 

systems engineering conceptual design where functions originated. This continues with discussions 

revolving around the actual identification and enumeration of functions, the corresponding physical 

embodiments, and the fusion of these embodiments. 
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2.1 Needs and Requirement Analysis Concept 
In a bid to address the reliability of AVs, the functional capabilities of AVs were first itemized and 

analyzed. This section presents an exploration of the systems engineering approach for functional element 

identification and analysis premised on the life cycle of a system. The life cycle of a system has four 

phases, and the first phase, which is the needs analysis phase, is concerned with the formulation of 

functional attributes and capabilities of a system. Kossiakoff et al. (2020) described how systems 

engineering theory and method can be applied to needs and requirements analysis. Needs and 

requirements analysis is the first phase in the origination of a new system that is either driven by 

technological opportunity or identified by new societal needs. This study is focused on addressing a 

problem driven by technological opportunities, i.e., AV born out of the emergence of Artificial 

Intelligence (AI). The needs and requirements analysis has two inputs, viz., operational deficiencies and 

technological opportunities, resulting in two corresponding outputs, viz., the system’s operational 

effectiveness and system capabilities. One of the outputs i.e., system capabilities, was explored to provide 

functional capabilities for AVs in this research. 

 

The needs and requirements analysis phase has four activities that should be considered during its 

execution (Kossiakoff et al., 2020); these activities are briefly discussed as follows. 

• Operations Analysis: This activity is also known as “requirement analysis” in the needs analysis phase. 

It involves the identification of both the operational objectives and the system’s capabilities. 

• Functional Analysis: This activity is also known as “functional definition”. Herein, the operational 

objectives are translated into functions, while the functions are categorized and allotted to subsystems. 

The results of this activity include a listing of functional requirements for the system under 

investigation. The functions allotted to subsystems are subsequently assigned to physical components. 

• Feasibility Definition: This activity is also known as “physical definition”. Herein, the physical nature 

of the subsystems is visualized to check if they can perform the required functions. Furthermore, a 

feasibility concept is defined with consideration given to the costs and capabilities of the 

system/subsystem/component. This activity’s results are a list of initial physical embodiments that can 

facilitate the actualization of the identified and listed system functions. 

• Needs Validation: This activity is also known as “design validation”. It is concerned with the setting up 

of a model or some form of a validation criterion capable of checking the validity of the suggested 

solution(s) and the relationship between the objectives and functions, functions and sub-systems, 

functions and physical elements, etc. 

 

The above-stated activity-centric steps have been utilized to create the operational objectives and system 

functional capabilities and identify the corresponding physical embodiments for an AV. Furthermore, two 

research questions were formulated herein to guide the function formation exercise and keep it within the 

desired scope. The questions include: 

 

Research question 1: What are the functional capabilities of AVs that are related to the intelligence of 

an AV? 

Research question 2: What are the physical embodiments required to facilitate the actualization of these 

functional attributes? 

Research question 3: What is the degree of success recorded by an AV while exhibiting driving 

intelligence on a busy road via its functional attributes? 

 

2.2 Autonomous Vehicle’s Functional and Physical Requirements  
Functional requirements, also known as functional capabilities, refer to attributes a system should exhibit 
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based on the tasks or activities it is expected to perform during its operations (Kossiakoff et al., 2020). 

Matthaei and Maurer (2015) conducted a study to present a functional system architecture for an 

autonomous vehicle. The study was developed in a top-down approach based on the functional 

requirements of autonomous vehicles, and these requirements are described as follows: 

• Operating: The vehicle needs instructions (these refer to the mission of the vehicle), and usually, 

human beings write out these instructions. 

• Mission accomplishment: Now that the mission has been described, the vehicle should be able to 

accomplish the mission or the instructions, which include behavior, navigation, and control of the 

actuators. 

• Map data: This data is required for route planning. 

• Localization: The vehicle should know its location or position on a global scale for mapping data, such 

as navigation, and the purpose of communication in vehicle-to-vehicle or vehicle-to-infrastructure 

communication. 

• Environmental perception: The vehicle should know its environment, whether it is stationary or 

moving, and it is expected to know the dynamic of the moveable elements. 

• Cooperation: The vehicle is expected to respond as required in such a way that it reacts accordingly 

based on other traffic participants. The vehicle should also communicate its intentions to those other 

traffic participants. 

• Safety: The vehicle is expected to cause no harm or danger to its environment. 

• Self-perception: The vehicle is expected to always know its state, it should know its state in terms of its 

motion and functional capabilities. 

 

In light of the above, and based on the principles of architecture premised in the “structure of systems” as 

depicted herein, {{System=>Sub-system(1),Sub-system(2),….,Sub-system(n-1), Sub-system(n) => 

Component(1), Component(2),….,Component(n-1), Component(n)=>Sub-component(1), Sub-

component(2),…..Sub-component(n-1),Sub-component(n)=> Part(1), Part(2),….Part(n-1),Part(n)}} as 

anchored in the systems engineering approach, the physical embodiment responsible for the actualization 

of the functions would form the next item of discussion. The physical embodiments with functional 

capability are often seated at the component and/or sub-component levels, while the functions are seated 

at the sub-systemic level. 

 

Furthermore, it should be noted that the hardware or physical embodiments responsible for the display of 

intelligence in AVs are mostly “sensors” with diverse sensing capabilities. These often vary from 

proximity to ranging sensors. Some commonly used sensors on AVs include the LIDAR sensor, RADAR 

sensor, camera or vision sensor, and ultrasonic sensors. The need to integrate two or more of these 

sensing devices, also known as sensor fusion, will be discussed subsequently. The system capabilities (the 

capacity of a system to carry out a specific action or produce a desired result under a specific set of 

circumstances or conditions) of an AV refer to the functional capabilities. These capabilities are identified 

when systems engineering theory is applied. The identified functional capabilities are presented below. 

Functions are often represented using action phrases. 

(i) Ability to combine a range of sensors, including the Global Positioning System (GPS), Odometer, 

Radar, LIDAR, Sound Navigation Ranging (SONAR), thermographic cameras, and inertial 

measurement units, to sense their environment. This functional capability is aimed at effectively 

gathering data. 

(ii) Ability to control systems and analyze sensory data to determine the best routes to take, as well as 

barriers and essential signage, in a more advanced manner. 
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(iii) Ability to detect lanes using a camera system to read the markings on the road and keep the vehicle 

within its right (or safe) lane. 

(iv) Ability to make safe decisions based on how other vehicles surrounding the AV are behaving using a 

vehicle-to-vehicle communication technique. Whereby the AV must be aware of the position, 

velocity, and trajectory of any close vehicles. 

(v) Ability to use a decision-making system built into it (the AV) to make informed decisions, such as 

reacting when other vehicles behave abnormally, to prevent accidents. 

 

To provide more perspective on the circumstances or conditions AVs are expected to adhere to or would 

likely be exposed to while on the road, two scenarios were created using Any Logic software, as shown in 

Figure 1. These representative road scenarios present a mixed driving scenario from other road users, 

covering good and bad road usage. 

 

 
 

Figure 1. Two scenarios depicting general road signs, signals, and hazards AVs would interact with on the road. 

 

Considering Figure 1, scenario A represents a dual carriageway whereby vehicles on a particular road 

carriage only move in one direction. For example, the vehicles on the bottom road (in Scenario A) are 

expected to navigate from the right end of the sketch to the left, and the vehicles on the top road are 

expected to only navigate from the left end of the sketch towards the right direction. Furthermore, 

scenario B represents a single carriageway. A single carriageway is a road facility with one, two, or more 

lanes set up within a single road facility without any central reservation to divide traffic flow in the 

opposite direction except the road line marks. 
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In scenario A, the AV is expected to stay in its lane before notifying other road users that it intends to 

change lanes; hence, doing that intelligently is a requirement to avoid accidents. Furthermore, the AV 

should be able to read the traffic light warning signs, drive at a speed limit, not misread the pedestrian 

zebra crossing line, billboards, or even roadside trees for something they are not, and also obey the traffic 

light rules as prompted. In this scenario, the AV does not have to worry about other vehicles that move in 

the opposite direction. Regarding Scenario B, the situation could get trickier as the AV is expected to 

watch out for vehicles that move in the opposite direction. If, for example, the black vehicle close to the 

AV (the AV in red) decides to turn left for some odd reason, the AV is expected to react accordingly. 

However, the AV in Scenario B should never cross the white solid line unless it has lost control. In 

essence, AVs are expected to obey traffic rules; hence, 30 traffic rules were extracted from the created 

scenario in Figure 1 in conjunction with the information obtained (Hoole, 2013). There are two types of 

traffic rules. Firstly, there are the road signs, signals, and markings (Table 1), and secondly, there are the 

rules of the road (Table 2). 

 
Table 1. Road signs, signals, and markings rules utilized to assess the reliability of AVs. 

 

Road signs, signals, and markings—The purpose is to safely regulate traffic flow, warn drivers or motorists of the circumstances on the road 

ahead, provide the useful and necessary information, and provide guidance on routes and destinations. 

Rule 1 Regulatory signs—must obey. 

Rule 2 Traffic signals—must obey. 

Rule 3 Warning signs—must heed to avoid potential danger. 

Rule 4 Hazard marker plates—must heed to avoid potential danger. 

Rule 5 Information signs—must understand to react appropriately. 

Rule 6 Guidance signs—must be built in the AV, for instance, using a Global Positioning System (GPS). 

Rule 7 Tourism signs—not important simply because AVs must have built-in GPS which they can use to navigate to a desired 
tourist’s destination. 

Rule 8 Diagrammatic signs—must heed to select an appropriate lane. 

Rule 9 Road surface markings—must obey. 

Rule 10 Hand signals—must obey if it is a traffic officer and must heed if it is other motorists. 

 
 

Table 2. Rules of the road utilized to assess the reliability of AVs. 
 

Rules of the road—The purpose of the rules of the road is to control traffic, provide safety, and safeguard everyone’s right to use the road. 
Speed restrictions, lane discipline, parking, and lighting all have regulations that must be adhered to. The following traffic rules are required and 

doing so will significantly lower the likelihood of roadway accidents, injuries, and fatalities. 

Rule 1 The vehicle must drive on the correct side (left or right) of a two-way road. 

Rule 2 The vehicle must travel on the right or left side of a one-way road if it is safe. 

Rule 3 The vehicle must obey a traffic officer’s instructions over the rules of the road and road signs. 

Rule 4 The vehicle must keep a following distance that is appropriate and prudent, considering the speed of the vehicle being 
followed, the amount of traffic, and the state of the road. 

Rule 5 Speed limit (in km per hour) of 60, 100, and 120 for when the vehicle is in an urban area, outside an urban area, and on a 

freeway, respectively. 

Rule 6 The vehicle should not cross over the solid driving marking (yellow or white). 

Rule 7 The vehicle should drive over to the left lane and not accelerate when overtaken. 

Rule 8 The vehicle should always signal its intentions in time before it executes it, and it should execute only when it is safe to do 

so. 

Rule 9 The vehicle should not stop on the road unless an accident had to be avoided, a traffic officer or road sign(s) had instructed, 
or it was caused by an unavoidable cause (such as mechanical problems). 

Rule 10 At a roundabout or mini circle, the vehicle must give way to other vehicles that approach from the right (the other vehicle(s) 

should be already approaching from the right or stopped on the yield sign first). The vehicle should also know when to yield 

at other intersections (such as four-way, three-way, etc.). 

Rule 11 The vehicle may not enter a traffic lane or cross it if it is likely to cause a dangerous situation or disrupt traffic flow. 

Rule 12 The vehicle should not turn if it will obstruct or cause danger to other traffic. Therefore, before turning, the vehicle must 

move to the right lane, indicating its necessary intentions, and turn when it is safe to do so. 

Rule 13 The vehicle should never park on the sidewalk or the verge. Therefore, it should park within a designated parking space. 

Rule 14 The vehicle should always give way to the emergency vehicles, rescue vehicles, traffic officer’s vehicles, etc. when they 
signal with the siren. 
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Table 2 continued… 
 

Rule 15 The vehicle must stop for pedestrians on, or about to enter, a pedestrian crossing on its side of the road or if it is involved in 

an accident. 

Rule 16 The vehicle must use hookers for safety reasons only, and the hooter must be audible enough for a distance of at least 90 
meters. Furthermore, the tone of the pitch should not vary for any reason. 

Rule 17 The vehicle must have white headlights, they should be switched on between sunset and sunrise, and they should be 

switched on if visibility is not clear at greater or equal to 150 meters. 

Rule 18 The vehicle may not drive in a way that endangers the lives of other drivers or pedestrians (the vehicle will always be liable 
if it hits a pedestrian regardless of who had the right to the way in the road) or damage any property. 

Rule 19 The vehicle should ensure that the passenger(s) fasten the seatbelts before they start moving. 

Rule 20 The vehicle should stop immediately after an accident. If someone dies or gets injured, the vehicle should not move without 

a traffic officer's authorization. 

 

Given the scenarios in Figure 1, and the traffic rules created in Table 1 and Table 2, the functional 

elements of AVs, their corresponding physical embodiments, and the targeted traffic rules were identified 

and matched as shown in Table 3. As earlier mentioned, functions are capabilities that AVs must possess 

to facilitate their intelligent adherence to road traffic rules. 

 
Table 3. The functional elements of AVs matched with their physical embodiments and traffic rules. 

 

2.3 Sensor Fusion Analysis 
With the functional requirements outlined, the physical requirements of AVs can also be provided, which 

is a feasible functional structure. However, the sensor fusion analysis had to be conducted first to re-

design a feasible structure. When considering the nature of the AVs, more specifically what makes them 

autonomous, the primary aspect is the components that gather data, i.e., the sensors. Consequently, the 

analysis of sensors was utilized to reconfigure the raw data layer. The sensors of the vehicles are chosen 

in such a way that optimal performance is achieved. Therefore, sensors that were specified by Yeong et 

al. (2021) and Ignatious and Khan (2022) were used to select the best three for camera and LIDAR, and 

the best two for RADAR (Tables 4, 5, and 6). 

 
Table 4. The top three best-performing LIDAR sensors in terms of vertical Field-of-View (FOV), horizontal FOV, 

and range. 
 

LIDAR sensor Vertical FOV (◦) Horizontal FOV (◦) Range (m) 

Velodyne Alpha Prime 40 360 245 

Velodyne VLP-32C 40 360 200 

Velodyne RoboSense 40 360 200 

Functional elements  Physical embodiments Targeted traffic rules 

Visualization of road signs. Camera sensor. Table 1: Rule 1, Rule 3, Rule 4, Rule 5, and Rule 8. 

Object detection, such as other vehicles, 

pedestrians, etc. 

LIDAR, RADAR, and Camera sensors. Table 2: Rule 15 

Visualization of hand signals by an officer. Camera sensor. Table 1: Rule 10, Table 2: Rule 3 

Visualization of road surface markings. Camera sensor. Table 1: Rule 9, Rule 6, Table 2: Rule 7, Rule 11 

Visualization of objects in 360 degrees. LIDAR sensor. Table 2: Rule 18 

Speed detection of other vehicles. RADAR and Camera sensors. Table 2: Rule 4, Rule 11 

Distance detection between AV and other 

vehicles (s). 

RADAR, LIDAR, and Camera sensors. Table 2: Rule 11 

Distance detection between the AV and 
pedestrian(s).  

RADAR, LIDAR, and Camera sensors. Table 2: Rule 15 

Lane detection. Camera sensor. Table 2: Rule 1, Rule 2,  

Emergency stop due to dangerous or 

potentially dangerous situations. 

Ultrasonic sensor. Table 2: Rule 15 and Rule 20 

Interpretation of road signs, signals, and 

markings. 

Camera sensor. Table 1: All rules. 

Object Classification. Camera and LIDAR sensors. Table 2: Rule 11, Rule 14 
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Table 5. The top three best-performing camera sensors in terms of lens baseline–it provides optimal view range, 

range, and lens resolution. 
 

Camera sensor Baseline (mm) Range (m) Resolution (MP) 

Intel D15 55 10 3 

RealSense D435 50 10 3 

Framos D435e 55 0.2–10 2 

 
 

Table 6. The top two best-performing RADAR sensors in terms of overall frequency. 
 

RADAR sensor Overall frequency Giga-Hertz (GHz)) 

Smartmicro UMRR-96 T-153 79 (usually in 77 to 81) 

Continental ARS 408-21 76 to 77 

 

Additionally, the fusion of sensors was analyzed to identify the best fusion option for the LIDAR, camera, 

and RADAR sensors. Vargas et al. (2021) and Yeong et al. (2021) have already provided an analysis of 

these sensors. However, this study analyzed the fusion of lesser sensors (fusion of only two sensors). This 

was necessary since these sensors are expensive (especially the LIDAR). According to the Neuvition 

website, Velodyne 64-line LIDAR is $80,000 (≈R1.5 million). The Smart micro RADAR sensor is 

£2,725.00 to £2,995.00 (≈ R55,712.92 to R61,233.10) according to the Level Five Suppliers website. The 

Continental ARS 408 is between R729.06 and R13,155.87 according to the AliExpress website. Finally, 

the Intel D415 costs $317.95 (≈ R5,750.39), RealSense D435 costs $317.50 (≈ R5,742.25), and the 

Framos D435e costs €945.10 (≈ R16,861.39) according to Spark fun, B & H Photo Video Audio Mouser 

Electronics websites. 

 
Table 7. The comparison of AV sensor fusion based on the comparison provided by Yeong et al. (2021). 

 

Factors Camera LIDAR RADAR 2-Fusion 3-Fusion 

Range 0.5 0.5 1 1.5 2 

Resolution 1 0.5 0 1 1.5 

Distance Accuracy 0.5 1 1 1.5 2.5 

Velocity 0.5 0 1 1.5 1.5 

Color Perception (traffic lights etc.) 1 0 0 1 1 

Object Detection 0.5 1 1 1.5 1.5 

Object Classification 1 0.5 0 1 1.5 

Lane Detection 1 0 0 1 1 

Object Edge Detection 1 1 0 1 2 

Illumination Conditions 0 1 1 1 2 

Weather Conditions 0 0.5 1 1 1.5 

Total    13 19 

Good Fusion (greater than 11?)    Yes Yes 

 

Therefore, the analysis of two sensor fusions (camera and RADAR) and three sensor fusions (camera, 

LIDAR, and RADAR) was conducted, as seen in Tables 7 and 8. The goal was to check if the two-sensor 

fusion would meet the minimum requirement of fusing all factors or features of each sensor so that they 

produce optimal results. Furthermore, the comparison rates (0, 0.5, 1) in Table 7 were described as 

follows. 

0:      The sensor does not operate well in respect of the specified functional attribute. 

0.5:   Sensor performs reasonably well in respect of the specified functional attribute. 

1:      Sensor operates perfectly well in respect of the mentioned functional attribute. 

 

It can be noted that the last row in Table 7 assesses whether the fusion of two or three sensors is good or 

not. A criterion of ≥11 was used on the ground that 11 factors were assessed and all values in blocks 

https://www.neuvition.com/media/blog/lidar-price.html
https://www.neuvition.com/media/blog/lidar-price.html
https://levelfivesupplies.com/product/automotive-radar-sensor-umrr-96-type-153/
https://www.aliexpress.com/item/33008379536.html
https://www.sparkfun.com/products/14946
https://www.bhphotovideo.com/c/product/1432415-REG/intel_82635awgdvkprq_realsense_d435_webcam.html
https://www.bhphotovideo.com/c/product/1432415-REG/intel_82635awgdvkprq_realsense_d435_webcam.html
https://eu.mouser.com/ProductDetail/FRAMOS/Depth-Camera-D435e?qs=7MVldsJ5UazEPhzBITTYvQ%3D%3D
https://eu.mouser.com/ProductDetail/FRAMOS/Depth-Camera-D435e?qs=7MVldsJ5UazEPhzBITTYvQ%3D%3D
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representing 2-Fusion and 3-Fusion are ≥1. Furthermore, to further analyze the comparison seen in Table 

8, the comparison rates (0, 0.5, 1) are described as follows, 

Poor, Yes:                      0 

Average:                        0.25 

Good, 200m:                  0.5 

Very good, No, 250m:   1. 

 
Table 8. The comparison of AV sensor fusion based on the comparison provided by Yeong et al. (2021). 

 

Factors Camera LIDAR RADAR 2-Fusion 3-Fusion 

Range 0.5 0.5 1 1.5 2 

Resolution 1 0.5 0.25 1.25 1.75 

Affected by weather conditions 0 0 0 0 0 

Affected by lighting conditions 0 1 1 1 2 

Detects speed 0 0.5 1 1 1.5 

Detects distance 0 0.5 1 1 1.5 

Interference susceptibility 1 0.5 0 1 1.5 

Total    6.75 10.25 

Good Fusion (6)    Yes Yes 

 

The criteria used in the last row of Table 8 are the same as those used in Table 7. However, a value of ≥ 6 

was used instead of ≥ 7 since there are seven rows because the third factor tested consisted of zeros. 

Therefore, both sensor fusions will always result in a zero (sensor fusion is always poor). With the 

sensors analyzed, a feasible functional design structure is in place. 

 

3. Reliability Analysis of AVs and Traffic Rules (Contribution) 
This section presents the reliability analysis of the functional embodiments associated with the exhibition 

of intelligent functional capabilities in AVs. The embodiments considered in this paper are predominantly 

sensor-based. The reliability analysis and assessment were with respect to AVs obeying traffic rules and 

road signs while in transit.  

 

3.1 Data Gathering and Reliability Analysis 
The performance assessment herein focuses on the operational objectives. Therefore, if the AVs obey 

traffic rules, that means the vehicle can meet the operational objectives discussed in the operational 

objectives phase. For example, suppose an AV can transport a passenger from point A to B without any 

harm to anyone or anything (successfully protecting both its passenger(s) and its external environment) 

and does that consistently, it can be deduced that it obeyed all the traffic rules. These kinds of measures 

will allow AVs to be commercialized in cities so that they provide the required services. Further, this 

provides the opportunity for cities to have more advanced vehicles and move closer to a smart city era, 

depending on the technological state of that city. 

 

The videos in Table 9 were selected from top AV companies, while the traffic rules earlier provided in 

Tables 1 and 2 were analyzed with respect to the videos to create Tables 10 and 11 for the assessment of 

the reliability of the AVs. Furthermore, these rules can also be used for AVs that are not yet manufactured 

(i.e., assessment based on these rules can be deployed via simulation on an ongoing AV design process or 

experimental prototypes). With these rules in place, the analysis indicates which rule(s) were passed, 

failed, or not tested during the validation process of the AVs. The AV results presented and analyzed here 

came from different companies that made their vehicles available for public testing. The tests were 

recorded and made available online in video clips. The links to the videos are provided in Table 9. The 

video links can be opened with a simple click. 
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Table 9. Video links related to AVs of different companies. 
 

Vehicle brand Video link 

Tesla models 

Video Test 1 

Video Test 2 
Video Test 3 

Video Test 4 

Video Test 5 
Video Test 6 

Video Test 7 

Deeproute Video Test 1 

Cruise Video Test 1 

Waymo 

Video Test 1 

Video Test 2 

Video Test 3 

Video Test 4 

AutoX 

Video Test 1 

Video Test 2 

Video Test 3 
Video Test 4 

Pony AI 

Video Test 1 

Video Test 2 

Video Test 3 
Video Test 4 

Yandex 

Video Test 1 

Video Test 2 
Video Test 3 

 

3.1.1 Reliability Analysis 
The purpose of this section is to provide the reliability of AV with respect to obeying traffic rules by 

conducting a reliability analysis using reliability engineering and statistics theories. Therefore, the rules 

outlined in Tables 1 and 2 were used to assess the AVs seen in the videos that are provided in Table 9 to 

first obtain the time-to-failure data prior to addressing the AV’s reliability. It was necessary to record time 

stamps at which the AVs failed to adhere to the traffic rules to apply the statistical analysis to the time 

data. The first step was to assess which rule was obeyed, disobeyed, or not tested and taking into 

consideration which AV company the test relates to. Furthermore, five AV companies were identified 

(which are Tesla, AutoX, Waymo, Deeproute, Yandex, Pony AI, and Cruise) and analyzed, and the 

outcomes can be seen in Tables 10 and 11.  

 

 
Table 10. The reliability analysis of AV with respect to traffic rules—part A (road signs, signals, and markings 

rules). 
 

 

Vehicle brand 

Road signs, signals, and markings traffic rule 

Tesla Model 3 AutoX (robotaxi) Waymo (by Google) Deeproute Yandex Pony AI Cruise 

Rule 1 1 1 1 1 1 1 1 

Rule 2 1 1 1 1 1 1 1 

Rule 3 0 0 0 0 0 0 0 

Rule 4 0 0 0 0 0 0 0 

Rule 5 1 1 1 1 1 1 1 

Rule 6 1 1 1 1 1 1 1 

Rule 7 0 0 0 0 0 0 0 

Rule 8 0 1 1 1 1 1 1 

Rule 9 0 1 1 1 1 1 1 

Rule 10 0 0 0 0 0 0 0 

Passed 4 6 6 6 5 6 6 

 

Table 10 represents an analysis outcome of the AVs’ performance of all five AV companies with respect 

https://www.youtube.com/watch?v=ys8df_Nkc98&t=219s&ab_channel=MonsterGadgets
https://www.youtube.com/watch?v=JWXgSpeKz_k&ab_channel=DirtyTesla
https://www.youtube.com/watch?v=8qtfKphhKzc&ab_channel=ShelbyChurch
https://www.youtube.com/watch?v=ivLmUi43vyw&ab_channel=CopBlock
https://www.youtube.com/watch?v=RSjzWsjZQrk&t=177s&ab_channel=CanadianRider
https://www.youtube.com/watch?v=TTXCcacdqz0&ab_channel=DonutMedia
https://www.youtube.com/watch?v=Njx-EAXhCWM&ab_channel=WholeMarsCatalog
https://www.youtube.com/watch?v=6v036bBD31o&ab_channel=DeepRoute
https://www.youtube.com/watch?v=sliYTyRpRB8&t=1108s&ab_channel=Cruise
https://www.youtube.com/watch?v=zdKCQKBvH-A&t=1876s&ab_channel=JJRicksStudios
https://www.youtube.com/watch?v=__EoOvVkEMo&t=207s&ab_channel=TheVerge
https://www.youtube.com/watch?v=z5eaOo-2eJM&ab_channel=WallStreetJournal
https://www.youtube.com/watch?v=g5SeVxYAZzk&ab_channel=JJRicksStudios
https://www.youtube.com/watch?v=O69YEWpSacU&t=82s&ab_channel=AutoX
https://www.youtube.com/watch?v=TFEvkmvIjVo&ab_channel=AutoX
https://www.youtube.com/watch?v=2WQ6Guiyebg&ab_channel=AutoX
https://www.youtube.com/watch?v=swwdaKotXT8&ab_channel=BloombergQuicktake%3ANow
https://www.youtube.com/watch?v=UfP5BMI3QcM&ab_channel=Pony.ai
https://www.youtube.com/watch?v=Uux4baMCpmk&ab_channel=Pony.ai
https://www.youtube.com/watch?v=smgy34A7c9k&ab_channel=Pony.ai
https://www.youtube.com/watch?v=ZWvqanxc3nM&ab_channel=Pony.ai
https://www.youtube.com/watch?v=Bx08yRsR9ow&ab_channel=%D0%AF%D0%BD%D0%B4%D0%B5%D0%BA%D1%81Go
https://www.youtube.com/watch?v=gfWjsKsEry0&ab_channel=MarquesBrownlee
https://www.youtube.com/watch?v=Nn_i6Mxc_Pw&ab_channel=%D0%AF%D0%BD%D0%B4%D0%B5%D0%BA%D1%81Go
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to the road signs, signals, and marking rule type. Table 11 represents an analysis outcome of the AVs’ 

performance of all five AV companies with respect to the rules of the road rule type. The descriptions of 

the (red “zeros”, black “zeros” and green “ones”) in Tables 10 and 11 are described as follows. 

1: Rule tested and passed. 

0: Rule tested and failed. 

0: Rule not tested. 
 

Table 11. The reliability analysis of AV with respect to traffic rules—part B (rules of the road). 
 

Vehicle 

brand 

Rules of the road 

Tesla 

Model 3 

AutoX (robotaxi) Waymo (By Google) Deeproute Yandex Pony AI Cruise 

Rule 1 1 1 1 1 1 1 1 

Rule 2 1 1 1 1 1 1 1 

Rule 3 0 0 0 0 0 0 0 

Rule 4 1 1 1 0 1 1 1 

Rule 5 0 1 1 0 0 0 0 

Rule 6 0 1 1 1 0 1 1 

Rule 7 0 0 0 1 0 1 1 

Rule 8 1 1 1 0 1 1 1 

Rule 9 0 1 1 1 0 1 1 

Rule 10 0 1 1 1 0 1 1 

Rule 11 0 1 1 1 1 1 1 

Rule 12 0 1 1 1 1 1 1 

Rule 13 1 0 0 0 0 0 0 

Rule 14 0 0 1 0 0 0 0 

Rule 15 0 1 0 1 0 1 1 

Rule 16 0 0 0 0 0 0 0 

Rule 17 0 0 0 0 0 0 0 

Rule 18 0 1 0 1 0 1 1 

Rule 19 1 0 0 0 0 0 0 

Rule 20 0 0 0 0 0 0 0 

Passed 6 12 11 10 6 12 12 

 

 

Table 12. Total passed traffic rules by different autonomous vehicle (AV). 
 

Vehicle brand Tesla Model 3 AutoX (robotaxi) Waymo (By Google) Deeproute Yandex Pony AI Cruise 

Total passed 10 18 17 16 11 18 18 

% 0.3333 0.6000 0.5667 0.5333 0.3667 0.6000 0.6000 

 

As observed in Table 12, AutoX (robotaxi), Pony AI, and Cruise have the same traffic rule pass, and they are the 

highest, i.e., they are the top three AV companies that are currently doing well. The Tesla Model 3 was found to be 

the least-performing AV. Therefore, Tesla was eliminated in further reliability analysis as it was concluded to have 

an autonomous level of less than four. The Tesla AVs tested did not make use of LIDAR sensors, which provide a 

360-degree view. That could be one of the factors that contributed to its poor performance. Additionally, the time 

stamps were recorded every time the vehicle disobeyed any traffic rules as earlier outlined in Tables 10 and 11. The 

time-to-failure dataset gathered is presented in Table 13. As shown, Table 13 provides the sample size (n=33) of the 

time-to-failure, as one AV could fail at least one traffic rule more than once. To gather the time-to-failure in Table 

13, the following assumptions were made. 

 

• The maximum timestamp considered from the videos was 20 minutes, and there was no minimum 

timestamp considered. This assumption was created so that there is a limitation as to how long each test 

was conducted so that a hypothesis test can be formulated. Though no hypothesis test was formulated, it 

should be noted that the reliability analysis focused on disproving if the AVs would fail at least one of 

the traffic rules in 20 minutes. 
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•  The AV companies are disregarded, i.e., all AV companies’ vehicles are regarded as different AVs 

tested. This assumption was created since the reliability of AVs (not AV companies) was to be 

addressed. 

• All AVs tested have all the important sensors onboard, i.e., LIDAR, RADAR, cameras, and ultrasonic 

sensors. 
 

Table 13. Time-to-failure of AVs observed in the analyzed videos. 
 

Number of observations (n) Time-to-failure (ti, in minutes) 

1 0.19 

2 0.32 

3 0.32 

4 0.40 

5 1.04 

6 1.14 

7 1.50 

8 1.54 

9 2.08 

10 2.10 

11 2.13 

12 2.15 

13 2.21 

14 2.29 

15 2.46 

16 2.52 

17 2.56 

18 2.59 

19 3.14 

20 3.37 

21 3.47 

22 4.41 

23 5.03 

24 5.29 

25 5.47 

26 5.57 

27 6.24 

28 6.55 

29 7.22 

30 7.39 

31 11.04 

32 13.37 

33 17.07 

 

It is important to note that some of the individuals that provided the videos were biased towards their 

products (making it seem as if they did not make mistakes), such as the Deeproute company. However, 

the kind of bias found in the videos focused on how well the AVs were trying to make successful 

decisions rather than obeying traffic rules. Hence, assessing if the AVs obey traffic rules is a better way to 

assess the reliability of an AV. This assessment reflects the AVs’ overall performance and safety in the 

cities. However, since there were biases noted in the testing of other AVs, the reliability calculated later in 

the paper is not a 100% reflection of the AVs’ performance, but it is close enough as some of the biases 

were countered by the nature of the assessment conducted on the videos. 

 

Prior to conducting the reliability analysis, a couple of mathematical symbols and notations would be 

introduced, as presented in Table 14. While some of these symbols are variables, others are parameters. 

However, each of these symbols would be described as they are utilized in the modeling process. 
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Table 14. Definitions of mathematical symbols for reliability analysis. 
 

Symbol Definition 

τ t-zero, which represents the location parameter, describes the shifting of the scale parameter from the origin. 

β Beta, which represents the shape of a graph. 

α Alpha measures the reliability of the scale such that it communicates how strong is the internal consistency, i.e., it tells 
how consistently items were measured. 

η Eta, which represents the scale parameter of the Weibull, describes how the time (t) parameter ages. 

λ Lambda, which is calculated as 1/mean. 

ln Natural logarithm. 

n Sample number (or number of observations). 

t Time at which an item (AV) failed to adhere to traffic rule(s). 

i Order number of failed items. 

 

To conduct the reliability analysis of the AVs, the distribution of the time-to-failure dataset had to be 

evaluated so that a reliability analysis technique could be selected. The distribution of the time-to-failure 

dataset was found to follow a Weibull distribution with shape parameter β < 1, with a mean value of 4.066 

minutes (Figure 2). 

 

 
 

Figure 2. Time-to-failure distribution. 

 

The Weibull distribution is widely used in the reliability analysis of a wide variety of systems due to its 

shape-adaptable ability. This shape-changing ability of the Weibull distribution such that it takes the form 

of another distribution type is referred to as a special case. The Weibull distribution has been found to 

appear in five different forms, with the three-parameter and two-parameter being the two common forms 

(Hallinan Jr, 1993; Lai et al., 2006). The three-parameter has the τ, β, and α (or η) parameters. When the τ 

= 0, the Weibull distribution is two-parameter based. The three-parameter Weibull distribution was 

chosen for this study since the parameter τ was useful as the vehicle cannot fail one of the traffic rules at 

zero minutes. 

• The reliability model was created using a probability plotting approach premised on parameter 

estimation. The following are three simple ideas involved in conducting this method. 

• A visual representation of the data is produced on a specialized probability plotting paper (different for 

each statistical distribution). 

• Utilize a probability plotting paper with transformed axes to ensure that a genuine Cumulative Density 

Function (CDF) plots as a straight line (linearization). 
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• The data is deemed to suit the appropriate distribution if a straight line can fit the plotted data —this can 

be interpreted as an assumption. 

 

To implement the method, the time-to-failure dataset should be linearized by calculating the median rank 

of the data. The median rank is the cumulative percentage of a population in a given data sample with a 

50% confidence level. To calculate the median rank, Bernard’s approximation was utilized, and the ranks 

are calculated using Equation (1) (Lai et al., 2006; Firdos et al., 2020), 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑛𝑘 (𝑟𝑡𝑖) =  100 (
𝑖𝑡𝑖−0.3  

𝑛 + 0.4
)                                                                                                         (1) 

 

where, 

𝑖𝑡𝑖 =  𝑖𝑡𝑖  +  𝑁𝑡𝑖                                                                                                                                           (2) 

𝑁𝑡𝑖 =  
(𝑛 + 1) − 𝑖𝑡𝑖

1 + (𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑠)
                                                                                                     (3) 

i = order number of failed items, 0 > i ≤ n, and n = sample size. 

 

It should be noted that i = ti when conducting the calculations. The values produced by rti (see Equation 

1) are in %, which are further used to calculate the y-axis of the Weibull probability plot. The unreliability 

Equation of the three-parameter Weibull distribution is provided in Equation (4). This Equation was 

linearized to produce Equation (5) by applying a double natural logarithm. 

𝐹(𝑡) = 1 − 𝑒−𝜆(𝑡−𝜏)𝛽
, 𝑡 >  𝜏                                                                                                                      (4) 

𝑦 = 𝛽𝑙𝑛(𝜆) + 𝛽𝑙𝑛(𝑡 − 𝜏 )                                                                                                                           (5) 

 

where, 

𝜆 =
1

𝑚𝑒𝑎𝑛 
                                                                                                                                                      (6) 

 

The value of τ is the value that cuts the x-axis after plotting the calculated linearized values. The value of 

η is the x-axis value that cuts through the plotted graph when plotted with the value ln (−ln(1 − 0.6320)). 

The value of τ can be seen as t0. The value of β is the slope of the fitted straight line. The value of λ in a 

Weibull distribution is interpreted as the failure rate and calculated as seen in Equation (6). Since the λ 

value is also important to evaluate the reliability of the AV, and the dataset is not large, a bootstrap 

method was adopted to recalculate the λ value. A bootstrapping method is one that generates a large 

number of phantom samples known as bootstrap samples by re-sampling (with replacement) from the 

sample data at hand. The sample summaries for each bootstrap sample are then calculated (usually a few 

thousand or thousands). The main idea of using the bootstrapping method is to conduct the same 

experiment without expanding additional time and resources. Bootstrapping was carried out to calculate a 

mean value that would satisfy the time-to-failure data set which would have been observed at least 10,000 

times (similar to conducting a simulation run), i.e., resampling from the originally observed data set about 

10,000 times. The resampling should have the same number of observations (n) and duplication is 

allowed, for example, if the original data set has n=30, then the first randomly resampled data set should 

have n=30. Furthermore, with the resampled data sets, anything can be calculated or addressed. In this 

study the mean value is the target.  

 

The time-to-failure data set and the Weibull plot were analyzed and plotted in RStudio software using the 

R programming language. The median ranks and confidence interval calculations were conducted in 

Anaconda software using the Python programming language. In consideration of the analysis of the 
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linearized Weibull distribution, the RStudio software was utilized to conduct the plotting by making use 

of the wblr() and wblr.fit() functions, which required an R-Package called WeibullR (see the graph in 

Figure 3). Figure 3 shows a linearized Weibull plot using a special sheet of the time-to-failure data set. It 

is important to note that the section with the title censored dataset provides the most important details of 

the graph. The three parameters of the Weibull distribution are extracted from Figure 3 (see Table 15). 

 

 
 

Figure 3. The linearised fitted Weibull distribution plot. 

 
Table 15. The three-parameter Weibull distribution from the time-to-failure data. 

 

Parameter Value (minutes) 

Shape (β) 1.1550 

Scale (η) 4.2400 

Location (t0 = τ) 0.9675 

 

Given three parameters as shown in Table 15, one more parameter is required to calculate the reliability, 

and this parameter happens to be the mean. To calculate the mean, a bootstrap method had to be applied 

to accurately determine the mean that best describes the time-to-failure data set. Based on this, the 

bootstrap was performed using the boot() function in RStudio, premised on the R programming language. 

The boot() function, in this case, requires three arguments namely: the time-to-failure data set, the 

sampling function (of which the R sample() function was utilized), and the number of replications or 

resampling, which is 10,000 in this research. The distribution of the bootstrapped values of time-to-failure 

was plotted and matched with the one in Figure 2. The new mean value (meannew) from the bootstrap was 

calculated to be 4.058 minutes, and the 95% confidence interval of the mean is ∈ [2.87, 5.45]. This 

signifies that a mean value of 4.058 minutes can be utilized since it is within the 95% confidence interval. 

In this study, meannew = 4.058 minutes was utilized since it was calculated using a bootstrap approach, 

hence, λ = 1/4.058 resulted in a magnitude of 0.2464 per minute. Values calculated from a bootstrap 

approach are closer to the actual values, hence their adoption. With all these parameters in place, both 

Equations (4) and (5) are fully sorted, as seen in Equations (7) and (8), 

𝐹(𝑡) =  1 −  𝑒−0.2464(𝑡−0.9675)1.155
                                                                                                            (7) 

𝑦 = 1.155𝑙𝑛(0.2464) + 1.155𝑙𝑛(𝑡 − 0.9675)                                                                                         (8) 
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Let x = ln(t − τ ), Equation (9) can be rewritten as follows, 

𝑦 = 1.155𝑙𝑛(0.2464) + 1.155𝑥. 

 

therefore, 

𝑦 = 1.155𝑥 −  1.6179                                                                                                                               (9) 

 

To answer the question “What is the reliability of an AV in respect of traffic-rules?” Equation (7) is 

expected to provide the solution. The assumption that AVs are tested for 20 minutes was utilized to define 

a finite time frame to test the AVs. Therefore, the reliability of an AV at 20 minutes is calculated as 

follows, 

𝑅(𝑡) = 1 − (1 − 𝑒−0.2464(20.00−0.9675)1.155
), 

         =  𝑒−0.2464(20.00−0.9675)1.155
, 

         = 6.089 × 10−4, 
         = 0.06089 % reliable. 

 

Consequently, there is a 1 − R(t) = 99.94% chance that an AV will fail at least one of the traffic rules in 

20 minutes. This is because of the increasing hazard rate h(t). The hazard rate increases when β > 1. In 

this case, β = 1.155 which implies a high hazard rate. Hence, the goal is to decrease the hazard rate, i.e., 

make (β ≤ 1). 

 

4. Conclusion 
This research will form a useful rallying point for all AV manufacturing industries, especially those 

whose AV performance was analyzed herein, including captains of industries, researchers in the field of 

smart systems, and policymakers on autonomous systems, amongst others. The research has focused on 

providing more insight into the reliability of AVs. The reliability assessment measures addressed in this 

paper focused on adherence to traffic rules. Traffic rules have been established to protect the environment, 

pedestrians, and drivers or passengers in other vehicles. Therefore, if the AVs can adhere to traffic rules, 

they will be seen as reliable. Even though the sub-systems that make up an AV system are not 

operationally perfect, just like the humans who designed and manufactured them, the reliability of an AV 

is strongly linked to the functional and operational success of its member elements. The reliability 

analysis of AVs is a challenging task, and following that, all traffic rules must be obeyed and passed. If an 

AV adheres to a traffic rule with a success rate of less than 100%, that AV is considered to have failed 

such a rule. Hence, finding common and consistent ground in computing a feasible reliability 

measurement for an AV is crucial. 

 

In this research, some core functional capabilities of an AV were first identified and outlined by following 

the systems engineering conceptual design principle. These were in turn linked to the created and adapted 

traffic rules for further analysis, leading to the reliability analysis. Considering the findings herein, the 

literature has pointed out that functional requirement identification is a core requirement when designing 

an AV. Following that, there is a clear integration between functional requirements, the corresponding 

physical elements, and the expected performance of an AV. It is significant to proceed in this sequence 

when designing systems in general. When considering the design of an AV, the activities can vary among 

different design processes with sensor fusion creating an important variant. This research addressed the 

problem of sensor mix, through different kinds of sensor combinations. It is important to identify and 

select sensor types that yield the best performance for more efficient data gathering. As a way of 

addressing future work, the identified capabilities would require some real-life AV validation since there 

are no confirmed data available in the literature to do this. 
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Furthermore, considering the reliability analysis conducted in this research, the time-to-failure data set 

was gathered and analyzed to aid in the identification of a reliability analysis method, which in this paper, 

resulted in the linearized Weibull plotting method. The time-to-failure results were validated through 

bootstrapping, and the lambda parameter was extracted from the bootstrap results for more accuracy. The 

method was applied mostly by using the R and Python programming languages. The results showed that 

there is a 99.94% chance that an AV will fail at least one of the traffic rules. Furthermore, the hazard rate 

was found to be increasing. Considering these findings, it can be deduced that the AVs can still not be 

fully commercialized, but they are very close to getting there. One major issue of concern is that AVs 

have demonstrated a high level of uncertainty when it comes to multi-tasking with decision-making on 

the road in a bid to avert accidents.  

 

For future work in a bid to extend this research, the following would be considered: Firstly, data gathering 

would be improved. One way to do this is to access real AVs from different AV companies and test them 

while recording the data. Also, several AVs from the same company would be assessed for more accuracy 

and consistency. Even though this will be a lengthy task, it is considered significant for more effective 

reliability analysis. Secondly, recalculating the reliability using different alternate methods apart from the 

linearized Weibull plotting method premised on probability plotting can be an additional step in the right 

direction. Finally, the need to reduce the hazard rate of AVs through the improvement of their reliability 

is quite significant. To improve the reliability of AVs’, it is recommended that the developers and 

manufacturers consider developing their AVs to meet the traffic rules’ requirements. One key feature that 

was seen to be absent from the sampled AVs is the inability to warn pedestrians or human drivers using 

the hooter, which is meant to be a requirement for safety. Meeting these requirements will surely be 

challenging, as the overall performance of the AVs does depend on the integration of systems that have 

their own individual, different, and specific tasks to be executed, even though they remain linked as a 

whole system. Therefore, the decision-making system of AVs needs to be improved. It is strongly 

recommended that AVs be developed to perform satisfactorily in level 4 of automation, i.e., validated via 

testing and computation of their reliabilities with respect to traffic rules and deemed satisfactory prior to 

moving to the next level of automation, level 5. 
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