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Abstract 

In this paper, we developed an effective computational technique for addressing third-order linear singularly perturbed problems 

having the source term discontinuous. Boundary or interior layers are frequently present in singular perturbation issues, making 

traditional numerical techniques more challenging. Here, we present a quartic B-spline method (QBSM) for the approximate 

solution of the third-order singularly perturbed boundary value problem, improving both the accuracy and efficiency of the 

solutions. In addition, the proposed method's convergence and error are investigated. The performance of the current technique is 

demonstrated through numerous numerical tests. The numerical findings are compared to other approaches reported in the literature. 

 

Keywords- Singularly perturbed problem, Reaction-diffusion type, Quartic B-spline method, Discontinuous source term, 

Truncation error. 

 

 

 

1. Introduction 
Differential equations are the foundation of mathematical modelling in science and engineering, reflecting 

physical phenomena, including fluid movement, heat transfer, wave propagation, and population dynamics. 

Singularly perturbed differential equations (SPDEs) are incredibly complex due to a small parameter that 

multiplies the highest-order derivative. This small parameter produces solutions with sharp transitions, such 

as boundary or interior layers, requiring specialized approaches for accurate solutions. These problems 

occur in chemical kinetics, reaction-diffusion processes, aerodynamics, heat conduction, fluid mechanics, 

elasticity, and other branches of applied mathematics. Reaction-diffusion equations are essential in several 

application fields, including cellular processes, drug release, ecology, disease propagation, industrial 

catalysis, environmental pollutant transport, and chemistry in interstellar media. A limitation arises when 

such problems have higher order and incorporate non-smooth data, such as discontinuous source terms 

(DST) or sudden changes in boundary conditions. Conventional numerical approaches frequently fail to 

maintain stability and accuracy under these scenarios, especially when efficiently capturing boundary layer 

behaviour and discontinuities. Scholars have explored analytical and numerical solutions to singular 

perturbation issues but have found that standard numerical methods may not provide adequate approximate 

solutions. That is why they have opted for unconventional methods. Over the past few decades, many 
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scholars have explored the numerical solutions to singular perturbation problems one can refer to (Nahfey, 

1981; O'Malley, 1991; Roos et al., 1996). 

 

Several numerical methods have been introduced into the literature throughout the last three decades to 

solve second and higher-order SPBVP with smooth data. Valarmathi and Ramanujam (2002a, 2002b) 

introduced a numerical method that combines asymptotic expansions and computational techniques to solve 

singularly perturbed third-order differential equations, with emphasis on boundary layers. Kumar and 

Tiwari (2012) developed an efficient initial value approach for solving third-order SPBVP by reducing the 

third-order differential equation into three unperturbed initial value problems, which are further solved by 

the Runge-kutta fourth-order method. Khan and Khandelwal (2019) proposed a generalized method based 

on an exponential quartic spline for solving third-order SPBVP and showed the approach to be second-

order convergent. The B-spline method is proposed by Kadalbajoo and Kumar (2007) to solve second-order 

linear perturbed problems having singular coefficients computationally. Pandya and Doctor (2012) applied 

a fourth-degree spline to solve third-order SPBVP numerically. Caglar and Caglar (2006) applied B-spline 

to solve homogeneous and non-homogeneous unique case boundary value problems. A QBSM is proposed 

by Saini and Mishra (2015) for solving self-adjoint third-order perturbed problems. Goh et al. (2012) 

presented a QBSM to solve second-order SPBVP. Lodhi and Mishra (2018) developed a septic B-spline 

technique to improve the maximum absolute error for second-order self-adjoint SPBVP. Weili (1990) 

considered a class of third-order non-linear ordinary differential equations and shows solutions' existence, 

uniqueness, and asymptotic approximations using the theory of differential inequalities. Thula and Roul 

(2018) presented a higher B-spline to solve non-linear singular two-point BVP with Neumann and Robin 

boundary conditions, and they showed that the method was fourth-order convergent. Malge and Lodhi 

(2024) found an approximate numerical solution of second-order non-linear SPBVPs with smooth data. 

Further, Du et al. (2005) and Rufia and Ramos (2022) contributed to solving non-linear type problems. Sun 

(2005) addressed the existence of positive solutions of the non-linear singular third-order SPBVPs. A class 

of self-adjoint fourth-order SPBVP is numerically solved using high-order septic B-spline by authors Lodhi 

and Sahu (2020) and attained fourth-order convergence. A review paper on SPBVP covering splines, 

turning point problems, and interior layers is addressed by Kumar and Gupta (2010) and Sharma and Patidar 

(2013). 

 

Though there is a vast literature on SPBVP with smooth data but, researchers also contributed to SPBVP 

of the non-smooth type data. A computational method is proposed by Babu and Ramanujam (2007) to 

obtain the approximate numerical solution of third and fourth-order SPBVP with DST. Recently, El- Zahar 

et al. (2024) proposed a reliable approach for calculating analytical solutions of higher-order SPBVPs 

having non-smooth data. Valanarasu and Ramanujam (2007b) have developed an asymptotic numerical 

approach for third-order SPBVPs with a DST where BVP is reduced to a weakly coupled system made up 

of a first-order ordinary differential equation with a suitable initial condition and a second-order singularly 

perturbed ODE with boundary conditions. To address this problem, a computational approach consisting 

of asymptotic expansion and finite difference method has been suggested. Valanarasu and Ramanujam 

(2007a) and Shanthi and Ramanujam (2008) also addressed the third-order convection-diffusion kind 

SPBVP with DST using an asymptotic approach. Babu and Ramanujam (2008) addressed the third-order 

SPBVP with non-smooth data using a finite element approach. Mane and Lodhi (2024) developed the 

nonpolynomial spline method to solve second-order SPBVP with discontinuity term. Recently, many 

authors have suggested numerical methods for second and higher-order delay differential equations with 

DST, to cite a few: Ayele et al. (2022), Daba and Duressa (2022), Rajendran et al. (2025), Subburayan and 

Mahendran (2020). A fourth-order SPBVP with a discontinuous source term is numerically solved by Mane 

and Lodhi (2024) using a novel quintic B-spline approach. 
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Because of excellent precision in capturing solution profiles, B-spline techniques have helped deal with 

such SPBVPs. However, research on their application to solving third-order SPBVPs is restricted, mainly 

when dealing with non-smooth data. Hence, the main objective of this research is to build a new 

computational approach for the numerical solution of the third-order SPBVP without diminishing the order 

of the differential equation. This approach discretizes the third-order SPBVP using the quartic B-spline 

collocation method. This approach can handle boundary layers, interior layers, discontinuities, and steep 

gradients, which makes it more desirable to conventional numerical approaches like finite differences and 

lower-order splines. 

 

This study emphasizes the application of the quartic B-spline method to approximate the solutions to third-

order SPBVP with non-smooth data. The key benefit of this technique over other approaches is that it is 

stable, efficient, and capable of finding the solution at any mesh point in the interval. Inspired by earlier 

research (Babu and Ramanujam, 2007; Howes, 1983; Valanarasu and Ramanujam, 2007b), we look into 

the following SPBVP of third-order reaction-diffusion differential equation with DST on the interval ℧ =
(0,1). 
 

We introduce the notations for the various intervals as: ℧− = (0, 𝑧),  ℧+ = (𝑧, 1) and   ℧ = [0,1]. 
 

To find   𝑝 ∈ 𝐶1(℧) ∩ 𝐶2(℧) ∩ 𝐶3(℧− ∪ ℧+)   such that, 

−𝜀𝑝‴(𝑠) + 𝑏(𝑠)𝑝′(𝑠) + 𝑐(𝑠)𝑝(𝑠) = 𝑣(𝑠), 𝑠 ∈ ℧− ∪ ℧+                                                                                              (1) 

 

Subject to boundary conditions: 

𝑝(0) = 𝜇1, 𝑝
′(0) = 𝜇2, 𝑝

′(1) = 𝜇3                                                                                                                               (2) 

 

Where 𝑏(𝑠) and 𝑐(𝑠) are continuous functions on  ℧ which satisfies the following conditions: 

𝑏(𝑠) ≥ 𝜎1 > 0                                                                                                                                                                (3) 

0 ≥ 𝑐(𝑠) ≥ −𝜎2, 𝜎2 > 0                                                                                                                                                (4) 

𝜎1 − 𝜃𝜎2 ≥ 𝜎3 > 0, for some 𝜃 > 2 arbitrarily close to 2, for some 𝜎3                                                                        (5) 

 

Further, v(s) is sufficiently smooth on ℧\{𝑧}, where, 𝑧 ∈ ℧  is a point of discontinuity and 𝜀 is a small 

positive parameter called the perturbation parameter. When the source term has a sudden change, the 

solution's first derivative also experiences a sharp transition, forming a narrow region where the solution 

shifts more abruptly. Because v(s) is discontinuous at the point w, the solution p(s) of Equations (1)-(2) 

does not necessarily have a continuous third derivative at the point w; that is, p(s) does not belong to the 

class of 𝐶3(℧) functions. Here, we represent a jump in any function at the point with  jp[z] = jp(z,+) −
jp(z,−). Also, here, boundary condition (3) represents that problem (1)-(2) is a non-turning point problem, 

and boundary condition (4) represents that problem (1)-(2) is a quasi-monotone. A specific actual 

application of third-order singularly perturbed boundary value problems with DST is in robust control 

designs such as robotics, aerospace, and power systems. A robotic manipulator with articulated joints 

experiences rapid (flexible oscillations) and gradual (arm movement) dynamics. The dynamics are 

governed by a third-order differential equation with a discontinuous source term due to abrupt external 

disturbances or control input changes. The solution variable represents the displacement or velocity of the 

robotic manipulator, and a small positive parameter indicates the time scale separation. The boundary 

condition represents the physical constraints of the system. 

 



Mane & Lodhi: Quartic B-Spline Technique for Third-Order Linear Singularly Perturbed … 
 

 

1181 | Vol. 10, No. 4, 2025 

The research study is structured as follows: In Section 2, QBSM is clearly laid out as a method for finding 

an approximate numerical solution. Section 3 deals with mesh selection, which is followed by the 

computation of the truncation error at nodal points in Section 4. Section 5 provides numerical examples to 

demonstrate accuracy, whereas Section 6 explores the conclusion. 

 

2. Quartic B-Spline Methodology 
This section explains the quartic B-spline method to solve third-order SPBVPs with discontinuous source 

terms. Let 𝛬 = {0 = 𝑠0 < 𝑠1 < 𝑠2… < 𝑠𝑁−1 < 𝑠𝑁 = 1} be the partition of the interval [0,1]. Let  ℎ is 

piecewise uniform spacing described in the next section. Consider 𝑋 a linear subspace of 𝐿2 [0,1], a vector 

space of all square-integrable functions on ℧ = [0 ,1].Then, the basis functions of the quartic B-spline are 

given below: 

𝐵4,𝑖(𝑠) =
1

24ℎ
4

{
 
 
 

 
 
 
(𝑠 − 𝑠𝑖−2)

4,                                                                                                           if  𝑠 ∈ [𝑠𝑖−2, 𝑠𝑖−1]

ℎ
4
+ 4ℎ

3
(𝑠 − 𝑠𝑖−1) + 6ℎ

2
(𝑠 − 𝑠𝑖−1)

2 + 4ℎ(𝑠 − 𝑠𝑖−1)
3 − 4(𝑠 − 𝑠𝑖−1)

4,if  𝑠 ∈ [𝑠𝑖−1, 𝑠𝑖]

11ℎ
4
+ 12ℎ

3
(𝑠 − 𝑠𝑖) − 6ℎ

2
(𝑠 − 𝑠𝑖)

2 − 12ℎ(𝑠 − 𝑠𝑖)
3 + 6(𝑠 − 𝑠𝑖)

4,        if  𝑠 ∈ [𝑠𝑖 , 𝑠𝑖+1] 

ℎ
4
+ 4ℎ

3
(𝑠𝑖+2 − 𝑠) + 6ℎ

2
(𝑠𝑖+2 − 𝑠)

2 + 4ℎ(𝑠𝑖+2 − 𝑠)
3 − 4(𝑠𝑖+2 − 𝑠)

4,if  𝑠 ∈ [𝑠𝑖+1, 𝑠𝑖+2]

(𝑠𝑖+3 − 𝑠)
4,                                                                                                            if  𝑠 ∈ [𝑠𝑖+2, 𝑠𝑖+3]

0,                                                                                                                                otherwise

           (6) 

 

We add five more mesh points as 𝑠−3 < 𝑠−2 < 𝑠−1 < 𝑠0  and  𝑠𝑁+2 > 𝑠𝑁+1 > 𝑠𝑁. Each quartic B-spline 

covers five elements. Table 1 presents the spline value and their derivatives at the nodal points. Also, the 

basis function in Equation (6) is three times continuously differentiable functions on the whole real line.  

 

Let 𝜙 = {𝐵4,−2, 𝐵4,−1, 𝐵4,0, 𝐵4,1, … , 𝐵4,𝑁, 𝐵4,𝑁+1} and span 𝜙 = 𝛫4(℧). Also, 𝜙 is linearly independent on 

[0,1] and the dimension of  𝛫4(℧) = 𝑁 + 4. Let m(s) be the approximate solution of Equation (1)-(2), 

which is defined as: 

𝑚(𝑠) = ∑ 𝑘𝑖
𝑁+1
𝑖=−2 𝐵4,𝑖(𝑠)                                                                                                                                (7) 

 

where,  𝑘𝑖’s are unidentified constants, and B4,i’s are fourth-degree spline functions. To obtain the 

approximate solution of BVP (1)-(2), we evaluate the spline functions at mesh points s = si, (i = 0, 1, 2…, 

N) by using Table 1. 
 

Table 1. Values of 𝐵4,𝑖 ,𝐵4,𝑖
′ , 𝐵4,𝑖 

″ and  𝐵4,𝑖
‴   at nodal points. 

 

𝐵4(𝑠) 𝑠𝑖−2 𝑠𝑖−1 𝑠𝑖 𝑠𝑖+1 𝑠𝑖+2 𝑠𝑖+3 

𝐵4,𝑖(𝑠) 0 
1

24
 

11

24
 

11

24
 

1

24
 0 

𝐵4,𝑖
′ (𝑠) 0 

1

6ℎ
 

3

6ℎ
 

−3

6ℎ
 

−1

6ℎ
 0 

𝐵4,𝑖
″ (𝑠) 0 

1

2ℎ2
 

−1

2ℎ2
 

−1

2ℎ2
 

1

2ℎ2
 0 

𝐵4,𝑖
‴ (𝑠) 0 

1

ℎ3
 

−3

ℎ3
 

3

ℎ3
 

−1

ℎ3
 0 

 

Hence, we get the following relations: 

𝑚(𝑠𝑖) = ∑ 𝑘𝑖
𝑁+1
𝑖=−2 𝐵4,𝑖(𝑠𝑖) =

1

24
(𝑘𝑖−2 + 11𝑘𝑖−1 + 11𝑘𝑖 + 𝑘𝑖+1)                                                                  (8) 

𝑚′(𝑠𝑖) = ∑ 𝑘𝑖
𝑁+1
𝑖=−2 𝐵4,𝑖

′ (𝑠𝑖) =
1

6ℎ
(−𝑘𝑖−2 − 3𝑘𝑖−1 + 3𝑘𝑖 + 𝑘𝑖+1)                                                                   (9) 

𝑚″(𝑠𝑖) = ∑ 𝑘𝑖
𝑁+1
𝑖=−2 𝐵4,𝑖

″ (𝑠𝑖) =
1

2ℎ
2
(𝑘𝑖−2 − 𝑘𝑖−1 − 𝑘𝑖 + 𝑘𝑖+1)                                                                        (10) 
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𝑚‴(𝑠𝑖) = ∑ 𝑘𝑖
𝑁+1
𝑖=−2 𝐵4,𝑖

‴ (𝑠𝑖) =
1

ℎ
3
(−𝑘𝑖−2 + 3𝑘𝑖−1 − 3𝑘𝑖 + 𝑘𝑖+1)                                                              (11) 

 

As m(s) is the approximate solution to the boundary value problem, hence m(s) will satisfy the Equations 

(1)-(2); therefore, we have, 

−𝜀𝑚‴(𝑠) + 𝑏(𝑠)𝑚′(𝑠) + 𝑐(𝑠)𝑚(𝑠) = 𝑣(𝑠), 𝑠 ∈ [0,1],                                                                                              (12) 

 

with boundary conditions, 

𝑚(0) = 𝜇1,𝑚
′(0) = 𝜇2,𝑚

′(1) = 𝜇3                                                                                                                          
(13) 

 

Discretizing Equation (12) at the nodal points, we obtain 

−𝜀𝑚‴(𝑠𝑖) + 𝑏𝑖𝑚
′(𝑠𝑖) + 𝑐𝑖𝑚(𝑠𝑖) = 𝑣𝑖                                                                                                                   

(14) 

 

where bi = b (si), ci = c (si), and vi = v (si). 

 

Using Equations (8)-(11) in (14) and simplifying it we obtain 

  

(24𝜀 − 4𝑏𝑖ℎ
2
+ 𝑐𝑖ℎ

3
)𝑘𝑖−2 + (−72𝜀 − 12𝑏𝑖ℎ

2
+ 11𝑐𝑖ℎ

3
)𝑘𝑖−1 + (72𝜀 + 12𝑏𝑖ℎ

2
+ 11𝑐𝑖ℎ

3
)𝑘𝑖 

 + (−24𝜀 + 4𝑏𝑖ℎ
2
+ 𝑐𝑖ℎ

3
)𝑘𝑖+1= 24ℎ

3
𝑣𝑖                                                                                                 (15) 

for   {0 ≤ 𝑖 <
𝑁

2
} ∪ {

𝑁

2
+ 1 ≤ 𝑖 ≤ 𝑁} 

 

𝑘−2 + 11𝑘−1 + 11𝑘0 + 𝑘1 = 24𝜇1                                                                                                                                (16) 

−𝑘−2 − 3𝑘−1 + 3𝑘0 + 𝑘1 = 6ℎ𝜇2                                                                                                                            
(17) 

−𝑘𝑁−2 − 3𝑘𝑁−1 + 3𝑘𝑁 + 𝑘𝑁+1 = 6ℎ𝜇3                                                                                                                    
(18) 

 

Correspondingly, at the discontinuity point  𝑠𝑁
2

= 𝑧, we shall use a four-point formula for the second 

derivative approximation of the difference operator, which is given as: 

𝐿𝑁𝑚𝑁

2

≡
−𝑚𝑁

2
+3
+4𝑚𝑁

2
+2
−5𝑚𝑁

2
+1
+2𝑚𝑁

2

ℎ
2 −

−𝑚𝑁
2
−3
+4𝑚𝑁

2
−2
−5𝑚𝑁

2
−1
+2𝑚𝑁

2

ℎ
2 = 0                                                       (19) 

 

From Equation (15)-(19), we obtain an (N+4) linear equation in (N+4) unknowns whose matrix 

representation is given as follows: 

CZ = A                                                                                                                                                            (20) 

 

where, Z = [k-2, k-1…., k-N, kN+1]
 T is a column matrix of unknown constants, the right-hand side matrix is 

given as 

𝐴 = [24𝑝1, 6ℎ𝑝2, 24ℎ
3
𝑣0, 24ℎ

3
𝑣1, … ,24ℎ

3
𝑣𝑁, 6ℎ𝑝3]

𝑇

 and the coefficient matrix 𝐶 is given below: 
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𝐶 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 1      11       11      1        0       0     0     0                              …                                       0
-1      -3        3        1        0       0     0      0                              …                                      0

 P0     Q0      R0      S0       0       0     0     0                               …                                      0

 0      P1       Q1       R1     S1      0     0     0                              …                                       0

 0      0         P2       Q2     R2     S2    0     0                               …                                      0

 ⋮        ⋮        ⋮       ⋮       ⋮       ⋮                                                                                         ⋮
 ⋮        ⋮        ⋮       ⋮       ⋮       ⋮                                                                                         ⋮
 ⋮        ⋮        ⋮       ⋮       ⋮       ⋮                                                                                         ⋮
 ⋮        ⋮        ⋮       ⋮       ⋮       ⋮                                                                                         ⋮
 ⋮        ⋮        ⋮       ⋮       ⋮       ⋮                                                                                         ⋮
 0        0        0        0                …                                                             P𝑁    Q𝑁    R𝑁   S𝑁

 0        0        0        0                …                                                           -1      -3       3       1 ]
 
 
 
 
 
 
 
 
 
 
 
 

          (21) 

 

where,  

𝑃𝑖 = (24𝜀 − 4𝑏𝑖ℎ
2
+ 𝑐𝑖ℎ

3
) ,    𝑄𝑖 = (−72𝜀 − 12𝑏𝑖ℎ

2
+ 11𝑐𝑖ℎ

3
) ,   𝑅𝑖 = (72𝜀 + 12𝑏𝑖ℎ

2
+

11𝑐𝑖ℎ
3
)  and  

𝑆𝑖 = (−24𝜀 + 4𝑏𝑖ℎ
2
+ 𝑐𝑖ℎ

3
). 

 

Since matrix C is invertible, we can obtain the values of spline coefficients. Hence, Equation (7) gives a 

unique numerical solution to BVP (1)-(2). 

 

3. Mesh Selection Approach 
This section contributes to the mesh selection technique to generate more points in the region of the 

boundary layer. On the interval  ℧− ∪ ℧+, the following is the construction of a piecewise uniform mesh of 

𝑁 mesh interval. 

 

The domain ℧− is divided into three subdomains 
[0, 𝜏1], [𝜏1, 𝑧 − 𝜏1] and [𝑧 − 𝜏1, 𝑧], 
 

Similarly, the domain  ℧+ is divided into three subdomains given as: 
[𝑧, 𝑧 + 𝜏2], [𝑧 + 𝜏2, 1 − 𝜏2] and [1 − 𝜏2, 1], 
 

where, 0 < 𝜏1 ≤
𝑧

4
 and 0 < 𝜏2 ≤

1−𝑧

4
   for some 𝜏1and 𝜏2. Here 𝜏1and 𝜏2  are the transition parameters 

which is chosen for a singularly perturbed problem given as follows: 

𝜏1 = 𝑚𝑖𝑛 {
𝑧

4
, 2√

𝜀

𝜎1
𝑙𝑛𝑁} and 𝜏2 = 𝑚𝑖𝑛 {

1−𝑧

4
, 2√

𝜀

𝜎1
𝑙𝑛 𝑁} .  

 

On  [0, 𝜏1], [𝑧 − 𝜏1, 𝑧], [𝑧, 𝑧 + 𝜏2] and [1 − 𝜏2, 1] we place uniform mesh with  
𝑁 

8  
  mesh intervals while on 

[𝜏1, 𝑧 − 𝜏1] and [𝑧 + 𝜏2, 1 − 𝜏2] we place a uniform mesh with 
𝑁

4
  mesh intervals. 

 

For mesh sizes, we make use of the following notation: 
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ℎ =

{
 
 
 
 

 
 
 
 ℎ1 =

8𝜏1
𝑁

,                                 for 𝑖 = 1,2… ,
𝑁

8
, 𝑖 =

3𝑁

8
+ 1,… ,

𝑁

2
,

ℎ2 =
4(𝑑 − 2𝜏1)

𝑁
,                   for 𝑖 =

𝑁

8
+ 1,… ,

3𝑁

8
,

ℎ3 =
8𝜏2
𝑁

,                                 for 𝑖 =
𝑁

2
+ 1,… ,

5𝑁

8
, 𝑖 =

7𝑁

8
+ 1,… ,𝑁 + 1,

ℎ4 =
4(1 − 𝑑 − 2𝜏2)

𝑁
,           for 𝑖 =

5𝑁

8
+ 1,… ,

7𝑁

8
.

  

 

4. Error Analysis 
This section outlines a technique for determining error bounds on the solution and its derivatives at nodal 

points inside the interval  ℧ = (0,1). 
Let  ℎ = 𝑚𝑎𝑥{ℎ1, ℎ2, ℎ3, ℎ4}. 
 

Using the quartic B-spline basis functions from Equation (6) and also using Equations (8)-(11), the 

following relationship can be obtained: 

ℎ[𝑚′(𝑠𝑖+1) + 11𝑚
′(𝑠𝑖) + 11𝑚

′(𝑠𝑖−1) + 𝑚
′(𝑠𝑖−2)]  = 4[𝑚(𝑠𝑖+1) + 3𝑚(𝑠𝑖) − 3𝑚(𝑠𝑖−1) − 𝑚(𝑠𝑖−2)]         (22) 

ℎ2 𝑚″(𝑠𝑖) = 2[𝑚(𝑠𝑖+1) − 2𝑚(𝑠𝑖) + 𝑚(𝑠𝑖−1)] −
ℎ

2
[𝑚′(𝑠𝑖+1) −𝑚

′(𝑠𝑖−1)]                                            (23) 

ℎ3 𝑚‴(𝑠𝑖) = 12[𝑚(𝑠𝑖) − 𝑚(𝑠𝑖−1)] − 3ℎ[𝑚
′(𝑠𝑖+1) + 6𝑚

′(𝑠𝑖) +𝑚
′(𝑠𝑖−1)]                                          (24) 

ℎ4 𝑚𝑖𝑣(𝑠𝑖+) = 24[𝑚(𝑠𝑖−1) + 𝑚(𝑠𝑖) − 2𝑚(𝑠𝑖+1)] + 6ℎ[𝑚
′(𝑠𝑖−1) + 8𝑚

′(𝑠𝑖) + 3𝑚
′(𝑠𝑖+1)]                 (25) 

ℎ4 𝑚𝑖𝑣(𝑠𝑖−) = 24[𝑚(𝑠𝑖+1) + 𝑚(𝑠𝑖) − 2𝑚(𝑠𝑖−1)] − 6ℎ[𝑚
′(𝑠𝑖+1) + 8𝑚

′(𝑠𝑖) + 3𝑚
′(𝑠𝑖−1)]                  (26) 

 

where, 𝑚𝑖𝑣(𝑠𝑖+) denotes the value of  𝑚𝑖𝑣(𝑠𝑖) in the domain [𝑠𝑖 , 𝑠𝑖+1]. By using the operator notation from 

Kadalbajoo and Kumar (2007),  𝐸(𝑚(𝑠𝑖)) = 𝑚(𝑠𝑖+1), Equation (22) can be written as: 

𝑚′(𝑠𝑖) = 
4[𝐸+3−3𝐸−1−𝐸−2] 

ℎ [𝐸+11+11𝐸−1 +𝐸−2]
𝑝(𝑠𝑖)                                                                                                                 (27) 

 

Using the value of  𝐸 = 𝑒ℎ𝐷, where 𝐷 =
𝑑

𝑑𝑠
  is an operator, in Equation (27), we get, 

 𝑚′(𝑠𝑖) = 
4[𝑒ℎ𝐷+3−3𝑒−ℎ𝐷−𝑒−2ℎ𝐷]

ℎ [𝑒−2ℎ𝐷+11𝑒−ℎ𝐷+11+𝑒ℎ𝐷]
 𝑝(𝑠𝑖)                                                                                                      (28)

                                                                                                                

 

or 

24ℎ (1 −
1

2
ℎ𝐷 +

1

3
ℎ2𝐷2 −

1

8
ℎ3𝐷3 +

7

144
ℎ4𝐷4 −⋯)𝑚′(𝑠𝑖) = 24ℎ (𝐷 −

1

2
ℎ𝐷2 +

1

3
ℎ2𝐷3 −

1

8
ℎ3𝐷4 +⋯)𝑝(𝑠𝑖)           (29) 

 

After simplification, we get, 

𝑚′(𝑠𝑖) = (𝐷 −
1

2
ℎ𝐷2 +

1

3
ℎ2𝐷3 −

1

8
ℎ3𝐷4 +⋯) [1 + (−

1

2
ℎ𝐷 +

1

3
ℎ2𝐷2 −

1

8
ℎ3𝐷3…)]

−1

𝑝(𝑠𝑖). 

             = (𝐷 +
1

720
ℎ4𝐷5 −

1

2016
ℎ6𝐷7 +

1

17280
ℎ8𝐷9 +⋯)  𝑝(𝑠𝑖). 

                       = (𝐷 −
1

2
ℎ𝐷2 +

1

3
ℎ2𝐷3 −

1

8
ℎ3𝐷4 +⋯) [1 − (−

1

2
ℎ𝐷 +

1

3
ℎ2𝐷2…)

+ (−
1

2
ℎ𝐷 +

1

3
ℎ2𝐷2…)

2

−(−
1

2
ℎ𝐷 +

1

3
ℎ2𝐷2…)

3

+⋯]𝑝(𝑠𝑖). 
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Hence, 

 𝑚′(𝑠𝑖)  = 𝑝′(𝑠𝑖) +
1

720
ℎ4𝑝(5)(𝑠𝑖) −

1

2016
ℎ6𝑝(7)(𝑠𝑖) +

1

17280
ℎ8𝑝(9)(𝑠𝑖) + 𝑂(ℎ

10)                                (30) 

 

Using the similar approach for the Equation (23)-(26) we can prove the following relations: 

𝑚″(𝑠𝑖) = 𝑝
″(𝑠𝑖) −

1

240
ℎ4𝑝(6)(𝑠𝑖) +

1

6048
ℎ6𝑝(8)(𝑠𝑖) + 𝑂(ℎ

8)                                                                    (31) 

𝑚‴(𝑠𝑖) = 𝑝
‴(𝑠𝑖) −

1

12
ℎ2𝑝(5)(𝑠𝑖) +

1

240
ℎ4𝑝(7)(𝑠𝑖) −

1

3024
ℎ6𝑝(9)(𝑠𝑖) + 𝑂(ℎ

8)                                         (32) 

 

To find the truncation error (TE) at the nodal point, define  𝑒(𝑠𝑖) = 𝑚(𝑠𝑖) − 𝑝(𝑠𝑖)  and substitute Equation 

(30)-(32) in the Taylor's series expansion (TSE) of 𝑒(𝑠𝑖 + 𝜗ℎ), we obtain: 

𝑒(𝑠𝑖 + 𝜗ℎ) =
−(10𝜗2 − 1)𝜗

720
ℎ5𝑝5(𝑠𝑖) +

(5𝜗2 − 3)𝜗2

1440
ℎ6𝑝6(𝑠𝑖) +

(7𝜗2 − 5)𝜗

10080
ℎ7𝑝7(𝑠𝑖) + 𝑂(ℎ

8), 

where  0 ≤ 𝜗 ≤ 1. 

 

Thus, the QBSM is  𝑂(ℎ5) accurate. 

 

The TE at the discontinuity point 𝑠𝑁
2

= 𝑧   is obtained by utilizing the four-point formula for the second 

derivative approximation of the difference operator given by Equation (16). Hence, the TE is given as: 

𝑒 (𝑠𝑁
2

) = |−𝑝 (𝑠𝑁
2

+ 3ℎ1) + 4𝑝 (𝑠𝑁
2

+ 2ℎ1) − 5𝑝 (𝑠𝑁
2

+ ℎ1) + 𝑝 (𝑠𝑁
2

− 3ℎ1) − 4𝑝 (𝑠𝑁
2

− 2ℎ1)

+ 5𝑝 (𝑠𝑁
2

− ℎ1)|. 

 

We simplify and expand the above equation using TSE, and hence we obtain TE as: 

𝑒 (𝑠𝑁
2

) = 2ℎ1
5𝑝(5) (𝑠𝑁

2

) + 𝑂(ℎ6). 

 

Hence, the TE at the point of the discontinuity 𝑠𝑁
2

= 𝑧  is  𝑂(ℎ5) accurate. 

 

As a result, the TE of the innovative method at the nodal point is 𝑂(ℎ5) precise, and the process of 

convergence is 𝑂(ℎ2). 
 

The following theorem defines the global error bounds. 

 

Theorem 4.1 Let  𝑚(𝑠) be the quartic spline approximation of 𝑝(𝑠) ∈ 𝐶5[0,1] satisfying the boundary 

conditions, then the global error bound for the quartic spline  𝑚(𝑠) and its derivatives 𝑚𝑖(𝑠), 1 ≤ 𝑖 ≤ 4  is 

‖𝑝𝑖(𝑠) − 𝑚𝑖(𝑠)‖
∞
= 𝑂(ℎ5−𝑖), for   𝑖 = 0(1)4. 

 

5. Numerical Examples and Discussion 
In this section, we numerically solved the two examples using the QBSM. Here, the exact solution to the 

problems is not available, so we find the maximum absolute error (MAE) 𝐸𝑁  in the discrete maximum 

norm 


using the double mesh principle, which is given as follows: 

𝐸𝜀
𝑁 = 𝑚𝑎𝑥|𝑚𝜀

𝑁(𝑠𝑘) − 𝑚𝜀
2𝑁(𝑠𝑘)|  and 𝐸𝑁 = 𝑚𝑎𝑥 𝐸𝜀

𝑁, 
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where 𝑚𝜀
𝑁(𝑠𝑘) and 𝑚𝜀

2𝑁(𝑠𝑘)  represent the approximate solution obtained using N and 2N number of mesh 

points. 

 

The rate of convergence (ROC) rN is evaluated using the formula: 

𝑟𝑁 = 𝑙𝑜𝑔2
𝐸𝑁

𝐸2𝑁
. 

 

The outcomes of the two problems are evaluated with MATLAB (R2018a 9.4.0.813654). 

 

Example 1: Consider three-point SPBVP with DST: 

 −𝜀𝑝‴(𝑠) + 4𝑝′(𝑠) − 𝑝(𝑠) = {
  0.7,      𝑠 ≤ 0.5    

−0.6,       𝑠 > 0.5
 

        𝑝(0) = 1, 𝑝′(0) = 0, 𝑝′(1) = 0, 
 

 
Table 2. MAE for the first derivative of Example 1 at 𝜀 = 10−16. 

 

N Quartic B-spline method  Babu and Ramanujam (2007) 

16 2.1700E-01 - 

32 3.6421E-02 - 

64 1.2657E-03 1.6163E-03 

128 6.0469E-04 1.0151E-03 

256 4.7383E-04 1.0860E-03 

 

 

For Example 1, MAE is evaluated for the first derivative of the solution for a sufficiently small value of the 

perturbation parameter 𝜀 = 10−16 to demonstrate the singularly perturbed nature using Shishkin mesh. 

Also, this value of MAE is compared with the existing method given by Babu and Ramanujam (2007) in 

Table 2. Our estimated results are apparently better than in the existing literature Babu and Ramanujam 

(2007). Also, for Example 1, in Table 3, the solution is examined using MAE and ROC by varying the 

perturbation parameter and the number of mesh points. 

 

However, the ROC of the numerical solution, for Example 1, is almost two. Further, for Example 1, the 

error graph plot for both the derivative of the solution and numerical solution has been plotted for N = 128 

and 𝜀 = 10−16, N = 128 and 𝜀 = 10−14  in Figures 1 and 2 respectively.  
 

 
Table 3. MAE and ROC of the solution in Example 1. 

 

𝜀 N = 64 N = 128 N = 256 N = 512 N = 1024 

10-10 9.0791E-01 1.3481E-01 2.4105E-02 4.2841E-03 1.4041E-03 

10-12 6.4785E-02 1.2709E-02 2.8022E-03 9.2504E-04 4.0070E-04 

10-14 8.8142E-03 3.1719E-03 1.3280E-03 6.1558E-04 3.0002E-04 

10-16 5.0656E-03 2.4122E-03 1.1804E-03 5.8469E-04 2.8994E-04 

EN 9.0791E-01 1.3481E-01 2.4105E-02 4.2841E-03 1.4041E-03 

rN 2.75E+00 2.48E+00 2.49E+00 1.61E+00  
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Figure 1. Error plot of Example 1's first derivative solution for N = 128 and 𝜀 = 10-16. 

 

 

 
 

Figure 2. Error plot of Example 1's solution for N = 128 and 𝜀 = 10-14. 

 

 

Table 4. The MAE and ROC of the first derivative of the solution in Example 2. 
 

𝜀 N = 64 N = 128 N = 256 N = 512 N = 1024 

2-2 6.6678E-02 3.3586E-02 1.6863E-02 8.4503E-03 4.2299E-03 

2-4 3.1204E-02 1.5626E-02 7.8333E-03 3.9237E-03 1.9639E-03 

2-6 2.0444E-03 4.4041E-04 2.1679E-04 1.0501E-04 5.1308E-05 

2-8 2.8292E-02 1.5507E-02 8.1082E-03 4.1447E-03 2.0953E-03 

2-10 6.0825E-02 3.5474E-02 1.9278E-02 1.0053E-02 5.1343E-03 

2-12 1.0164E-01 6.5608E-02 3.7684E-02 2.0302E-02 1.0557E-02 

2-14 1.7942E-01 1.0466E-01 6.6955E-02 3.8310E-02 2.0593E-02 

2-16 3.9198E-01 1.7882E-01 1.0549E-01 6.7368E-02 3.8502E-02 

2-18 5.7241E-01 3.9067E-01 1.7852E-01 1.0575E-01 6.7510E-02 

EN 5.7241E-01 3.9067E-01 1.7852E-01 1.0575E-01 6.7510E-02 

rN 5.5112E-01 1.1299E+00 7.5546E-01 6.4745E-01  
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Example 2: Consider three-point SPBVP with DST: 

−𝜀𝑝‴(𝑠) + (1 + 𝑠)𝑝′(𝑠) = {
  𝑠,         0 ≤  𝑠 ≤ 0.5    

(1 + 𝑠)2,  0.5< 𝑠 ≤ 1
 

  𝑝(0) = 1, 𝑝′(0) = 1, 𝑝′(1) = 0. 
 

Tables 4 and 5 show the MAE and ROC of Example 2 for the first derivative of the solution and the 

numerical solution, respectively, for several values of 𝜀 and N. 

 
Table 5. MAE and ROC of the solution in Example 2. 

 

𝜀 N = 64 N = 128 N = 256 N = 512 N = 1024 

2-2 3.0409E-02 1.5145E-02 7.5606E-03 3.7778E-03 1.8883E-03 

2-4 1.1202E-02 5.4932E-03 2.7245E-03 1.3574E-03 6.7756E-04 

2-6 2.8500E-04 2.2263E-05 2.3862E-05 1.5848E-05 8.9179E-06 

2-8 3.3122E-03 1.6943E-03 8.5638E-04 4.3054E-04 2.1589E-04 

2-10 4.3488E-03 2.1532E-03 1.0728E-03 5.3581E-04 2.6783E-04 

2-12 4.9181E-03 2.3351E-03 1.1421E-03 5.6560E-04 2.8161E-04 

2-14 5.9273E-03 2.5241E-03 1.1906E-03 5.8038E-04 2.8682E-04 

2-16 1.2829E-02 2.9999E-03 1.2717E-03 5.9894E-04 2.9165E-04 

2-18 5.7681E-02 6.4503E-03 1.5055E-03 6.3745E-04 3.0011E-04 

EN 5.7681E-02 1.5145E-02 7.5606E-03 3.7778E-03 1.8883E-03 

rN 1.9293E+00 1.0022E+00 1.0010E+00 1.0382E+00 1.0004E+00 

 

 

6. Conclusion 
This paper presents a distinctive quartic B-spline approach for addressing singularly perturbed third-order 

boundary value problems with non-smooth data. The suggested method is implemented for two test 

problems, which has increased MAE and ROC. Also, the numerical outcomes are in contrast to the existing 

approach proposed by Babu and Ramanujam (2007), and our proposed method results are better. As the 

value of the perturbation parameter decreases, to study the behaviour of the solution at the boundary and 

interior layer, a large number of mesh points is needed in that region; hence, the choice of uniform mesh is 

not favourable for such a problem, so we modified the mesh selection. The truncation error of the QBSM 

is derived and shown to be 𝑂(ℎ5)  accurate, and the method of convergence is 𝑂(ℎ2). Also, an error plot 

for the solution's derivative and solution has been plotted. Additionally, a hybrid difference operator is used 

to address the discontinuity point. Future studies could be aimed at developing this methodology for 

nonlinear cases and coupled systems with more complicated boundary conditions, as well as comparisons 

with other existing numerical methods. Furthermore, the suggested approach generates a spline function 

that may be applied to get the solution at any point in the domain. 

 

 
Conflict of Interest 

The authors certify that this article does not include any potential conflict of interest. 

 

AI Disclosure 

The authors declare that no assistance is taken from generative AI to write this article. 

 

Acknowledgments  

This research received no funding from public, commercial, or non-profit organizations. The authors express gratitude for the 

editor's and anonymous reviewers' comments, which enhanced the paper's quality. 

 

 

 

 



Mane & Lodhi: Quartic B-Spline Technique for Third-Order Linear Singularly Perturbed … 
 

 

1189 | Vol. 10, No. 4, 2025 

References 

Ayele, M.A., Tiruneh, A.A., & Derese, G.A. (2022). Uniformly convergent scheme for singularly perturbed space 

delay parabolic differential equation with discontinuous convection coefficient and source term. Journal of 

Mathematics, 2022(1), 1874741. https://doi.org/10.1155/2022/1874741. 

Babu, A.R., & Ramanujam, N. (2007). An asymptotic finite element method for singularly perturbed third and fourth-

order ordinary differential equations with discontinuous source term. Applied Mathematics and Computation, 

191(2), 372-380. https://doi.org/10.1016/j.amc.2007.02.093. 

Babu, A.R., & Ramanujam, N. (2008). An asymptotic finite element method for singularly perturbed higher order 

ordinary differential equations of convection-diffusion type with discontinuous source term. Journal of Applied 

Mathematics & Informatics, 26(5_6), 1057-1069. 

Caglar, N., & Caglar, H. (2006). B-spline solution of singular boundary value problems. Applied Mathematics and 

Computation, 182(2), 1509-1513. https://doi.org/10.1016/j.amc.2006.05.035. 

Daba, I.T., & Duressa, G.F. (2022). Computational method for singularly perturbed parabolic differential equations 

with discontinuous coefficients and large delay. Heliyon, 8(9), e10742. 

http://dx.doi.org/10.1016/j.heliyon.2022.e10742. 

Du, Z., Ge, W., & Zhou, M. (2005). Singular perturbations for third-order nonlinear multi-point boundary value 

problem. Journal of Differential Equations, 218(1), 69-90. https://doi.org/10.1016/j.jde.2005.01.005. 

El-Zahar, E.R., Al-Boqami, G.F., & Al-Juaydi, H.S. (2024). Piecewise approximate analytical solutions of high-order 

reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 9(6), 

15671-15698. https://doi.org/ 10.3934/math.2024756. 

Goh, J., Majid, A.A., & Ismail, A.I.M. (2012). A quartic B-spline for second-order singular boundary value problems. 

Computers & Mathematics with Applications, 64(2), 115-120. https://doi.org/10.1016/j.camwa.2012.01.022. 

Howes, F.A. (1983). The asymptotic solution of a class of third-order boundary value problems arising in the theory 

of thin film flows. SIAM Journal on Applied Mathematics, 43(5), 993-1004. https://doi.org/10.1137/0143065. 

Kadalbajoo, M.K., & Kumar, V. (2007). B-spline method for a class of singular two-point boundary value problems 

using optimal grid. Applied Mathematics and Computation, 188(2), 1856-1869. 

https://doi.org/10.1016/j.amc.2006.11.050. 

Khan, A., & Khandelwal, P. (2019). Numerical solution of third order singularly perturbed boundary value problems 

using exponential quartic spline. Thai Journal of Mathematics, 17(3), 663-672.  

Kumar, M., & Gupta, Y. (2010). Methods for solving singular boundary value problems using splines: a review. 

Journal of Applied Mathematics and Computing, 32, 265-278. http://dx.doi.org/10.1007/s12190-009-0249-2. 

Kumar, M., & Tiwari, S. (2012). An initial-value technique to solve third-order reaction–diffusion singularly perturbed 

boundary-value problems. International Journal of Computer Mathematics, 89(17), 2345-2352. 

http://dx.doi.org/10.1080/00207160.2012.706280. 

Lodhi, R.K., & Sahu, S.S. (2020). Numerical treatment of fourth order self-adjoint singularly perturbed boundary 

value problems via septic b-spline method. Solid State Technology, 63(6), 5252-5262. 

Lodhi, R.K., & Mishra, H.K. (2018). Septic B-spline method for second order self-adjoint singularly perturbed 

boundary-value problems. Ain Shams Engineering Journal, 9(4), 2153-2161. 

http://dx.doi.org/10.1016/j.asej.2016.09.016. 

Malge, S., & Lodhi, R.K. (2024). Quartic B-Spline method for non-linear second order singularly perturbed delay 

differential equations. International Journal of Mathematical, Engineering & Management Sciences, 9(3),685-

696. http://dx.doi.org/10.33889/IJMEMS.2024.9.3.035. 

 



Mane & Lodhi: Quartic B-Spline Technique for Third-Order Linear Singularly Perturbed … 
 

 

1190 | Vol. 10, No. 4, 2025 

Mane, S.T., & Lodhi, R.K. (2024). Nonpolynomial spline for numerical solution of singularly perturbed convection-

diffusion equations with discontinuous source term. International Journal of Mathematical, Engineering & 

Management Sciences, 9(3),632-645. https://doi.org/10.33889/ijmems.2024.9.3.032. 

Mane, S.T., & Lodhi, R.K. (2024). A novel quintic B-spline technique for numerical solution of fourth-order 

singularly-perturbed boundary value problems with discontinuous source terms. Boundary Value Problems, 

2024(1), 167. https://doi.org/10.1186/s13661-024-01983-8. 

Nayfeh, A.H. (1981). Introduction to perturbation techniques. Wiley, New York. 

O’Malley, R.E. (1991). Singular perturbation methods for ordinary differential equations. Springer-Verlag, New 

York. 

Pandya, J.U., & Doctor, H.D. (2012). Numerical solution of third order singularly perturbed ode of convection-

diffusion type using spline collocation. International Journal of Mathematics and Scientific Computing, 2(2), 81-

85. 

Rajendran, M., Sethurathinam, S., Veerasamy, S., & Agarwal, R.P. (2025). A computational study on two-parameter 

singularly perturbed third-order delay differential equations. Computation, 13(2), 24. 

https://doi.org/10.3390/computation13020024. 

Roos, H.G., Stynes, M., & Tobiska, L. (1996). Numerical methods for singularly perturbed differential equations. 

Springer-Verlag, Berlin. 

Rufai, M.A., & Ramos, H. (2022). Numerical integration of third-order singular boundary-value problems of Emden–

Fowler type using hybrid block techniques. Communications in Nonlinear Science and Numerical Simulation, 105, 

106069. https://doi.org/10.1016/j.cnsns.2021.106069. 

Saini, S., & Mishra, H.K. (2015). A new quartic B-spline method for third-order self-adjoint singularly perturbed 

boundary value problems. Applied Mathematical Sciences, 9(8), 399-408. 

http://dx.doi.org/10.12988/ams.2015.48654. 

Shanthi, V., & Ramanujam, N. (2008). An asymptotic hybrid difference scheme for singularly perturbed third and 

fourth order ordinary differential equations with discontinuous source term. Neural, Parallel and Scientific 

Computations, 16(3), 327. https://doi.org/10.5555/1561709.1561712. 

Sharma, K.K., Rai, P., & Patidar, K.C. (2013). A review on singularly perturbed differential equations with turning 

points and interior layers. Applied Mathematics and Computation, 219(22), 10575-10609. 

https://doi.org/10.1016/j.amc.2013.04.049. 

Subburayan, V., & Mahendran, R. (2020). Asymptotic numerical method for third-order singularly perturbed 

convection diffusion delays differential equations. Computational and Applied Mathematics, 39, 1-21. 

http://dx.doi.org/10.1063/1.5112336. 

Sun, Y. (2005). Positive solutions of singular third-order three-point boundary value problem. Journal of 

Mathematical Analysis and Applications, 306(2), 589-603. 

Thula, K., & Roul, P. (2018). A high-order B-spline collocation method for solving nonlinear singular boundary value 

problems arising in engineering and applied science. Mediterranean Journal of Mathematics, 15, 1-24.  

Valanarasu, T., & Ramanujam, N. (2007a). An asymptotic numerical method for singularly perturbed third-order 

ordinary differential equations with a weak interior layer. International Journal of Computer Mathematics, 84(3), 

333-346. https://doi.org/10.1080/00207160601177200. 

Valanarasu, T., & Ramanujam, T. (2007b). Asymptotic numerical method for singularly perturbed third-order 

ordinary differential equations with a discontinuous source term. Novi Sad Journal of Mathematics, 37(2), 41-57. 

Valarmathi, S., & Ramanujam, N. (2002a). An asymptotic numerical method for singularly perturbed third-order 

ordinary differential equations of convection-diffusion type. Computers & Mathematics with Applications, 44(5-

6), 693-710. https://doi.org/10.1016/S0898-1221(02)00183-9. 



Mane & Lodhi: Quartic B-Spline Technique for Third-Order Linear Singularly Perturbed … 
 

 

1191 | Vol. 10, No. 4, 2025 

Valarmathi, S., & Ramanujam, N. (2002b). A computational method for solving boundary value problems for third-

order singularly perturbed ordinary differential equations. Applied Mathematics and Computation, 129(2-3), 345-

373. https://doi.org/10.1016/S0096-3003(01)00044-3. 

Weili, Z. (1990). Singular perturbations of boundary value problems for a class of third-order nonlinear ordinary 

differential equations. Journal of Differential Equations, 88(2), 265-278. https://doi.org/10.1016/0022-

0396(90)90099-B. 

 

 
 

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0) 

license at https://creativecommons.org/licenses/by/4.0/ 

 

 
Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps 

and institutional affiliations. 
 

 


