
International Journal of Mathematical, Engineering and Management Sciences

Vol. 8, No. 5, 991-1005, 2023

https://doi.org/10.33889/IJMEMS.2023.8.5.057

991 | https://www.ijmems.in

Extended TANYAKUMU Labelling Method to Compute Shortest Paths in

Directed Networks

Trust Tawanda

Department of Statistics and Operations Research,

National University of Science and Technology, Bulawayo, Zimbabwe.

E-mail: trust.tawanda@nust.ac.zw, trustawanda@gmail.com

Elias Munapo
School of Economics and Decision Sciences,

North West University, Mafikeng Campus Mafikeng, South Africa.

E-mail: elias.munapo@nwu.ac.za, emunapo@gmail.com

Santosh Kumar
School of Mathematical and Geospatial Sciences,

RMIT University, Melbourne, Australia.

Corresponding author: santosh.kumar@rmit.edu.au, santosh.kumarau@gmail.com

Philimon Nyamugure
Department of Statistics and Operations Research,

National University of Science and Technology, Bulawayo, Zimbabwe.

E-mail: philimon.nyamugure@nust.ac.zw, pnyamugure@gmail.com

(Received on May 3, 2023; Accepted on July 12, 2023)

Abstract

Shortest path problem (SPP) has various applications in areas such as telecommunications, transportation and emergency

services, and postal services among others. As a result, several algorithms have been developed to solve the SPP and related

problems. The current paper extends the TANYAKUMU labelling method for solving the Travelling salesman problem (TSP) to

solve SPP in directed transportation networks. Numerical illustrations are used to prove the validity of the proposed method. The

main contributions of this paper are as follows: (i) modification of TSP algorithm to solve single source SPP, (ii) the developed

method numerically evaluated on four increasingly complex problems of sizes 11×11, 21×21, 23×23 and 26×26 and lastly (iii)

the solutions obtained from solving these four problems are compared with those obtained by Minimum incoming weight label

(MIWL) algorithm. The proposed algorithm computed the same shortest paths as the MIWL algorithm on all four problems.

Keywords- TANYAKUMU labelling method, MIWL algorithm, Shortest path problem, Transportation network.

1. Introduction
Determination of the shortest route is a basic problem in network theory; a lot of approaches have been

suggested, yet this problem remains active and significant due to its applications in real-life industrial

situations. Shortest path problems (SPP) deal with the computation of the shortest path or route from the

source node to the destination node through a set of intermediate nodes in the network. The weight on any

link joining any two given nodes in the network may be distance, time taken, accident probability, or fuel

consumption, among others. Companies that are in the shipping and transportation business need to use

the shortest routes when shipping their product from one place to another, thus saving on fuel, vehicle

tires, and driver overtime, among others. Shortest path problems can exist in directed networks,

undirected networks, as well as multi-objective directed and undirected networks. Shortest path problem

https://www.ijmems.in/
mailto:trust.tawanda@nust.ac.zw
mailto:trustawanda@gmail.com
mailto:emunapo@gmail.com
mailto:Santosh.kumar@rmit.edu.au
mailto:santosh.kumarau@gmail.com
mailto:philimon.nyamugure@nust.ac.zw
mailto:pnyamugure@gmail.com

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

992 | Vol. 8, No. 5, 2023

has many applications in different areas, which include fire station services, emergency services, network

communications (Di Caprio et al., 2022); Data routing, web search optimization, and social network

analysis (D’Emidio, 2020); Telecommunication (Lewis, 2020); and Travel time reduction (Nguyen et al.,

2022). Shortest path problem has several variants, such as constrained shortest path problem (Wu et al.,

2023), Clustered shortest path problem (Petrovan et al., 2023), Minmax regret shortest path problem

(Carvalho et al., 2023), SPP with positive integer weight in linear time (Thorup, 1999), SPP with parallel

graph library (Edmonds et al., 2006), and SPP with specified nodes (Saksena and Kumar, 1966), among

others.

Kumar et al. (2013) proposed a minimum weight labelling method for computing the shortest path in a

non-directed network. In a k-node network, the algorithm terminates after (k-1) iterations. No

comparisons with other related algorithms were reported. Rosita et al. (2019) combined the Dijkstra

algorithm and multi-criteria decision making (MCDM) to list non-dominated solutions with various

parameters such as distance, risk, congestion, and risk. Numerical illustrations prove that the combination

of the Dijkstra algorithm and MCDM can yield high-quality results. Ojekudo and Akpan (2017) applied

the Dijkstra algorithm to determine transportation routes for the paint industry. The results indicated that

the company can reduce travel distance if they implement the solution. Salem et al. (2022) applied the

Dijkstra algorithm to schedule flights with a comparison of route findings using simulation environments.

Experimental results revealed that simulations can help find the shortest path within a few seconds.

Tawanda (2013) developed a non-iterative optimal tree algorithm. The algorithm transforms the network

into a tree through arc and node replications, thus determining the shortest branch from the source to the

destination node. Numerical illustrations were used to prove the validity and applicability of the

algorithm. Maposa et al. (2014) presented a non-iterative algorithm for finding the shortest route. Twelve

criteria were used to compare the algorithm to other algorithms such as the Dijkstra algorithm and the

dynamic algorithm, among others. Tawanda (2018) computed k possible critical paths in the project

network using Tawanda’s non-iterative optimal tree algorithm for the shortest path problem. The

algorithm was compared with the Critical Path Method (CPM) and the modified Dijkstra’s algorithm.

Hasan et al. (2007) considered a genetic algorithm for SPP. Henzinger et al. (2014) proposed a sub-

quadratic algorithm for SPP.

Liang et al. (2021) improved the Ant colony optimization (ACO) algorithm to improve tourism route

planning. Factors such as weather and comfort degree were considered in the shortest path computations.

The results revealed that the route computed improved the tourist experience as well as reducing path

length by 20.8%. Zhang et al. (2021) applied an improved multi-objective Ant colony optimization

(ACO) algorithm to solve the ship weather routing problem. Factors such as sailing time, fuel

consumption, and navigation safety were considered. Simulations were used to prove the effectiveness of

the ACO algorithm. Akdas et al. (2021) considered route optimization for solid waste management in

Maltepe, Istanbul, using the ACO algorithm. A better path was determined with 13% efficiency compared

to the existing path. Deng et al. (2012) proposed Fuzzy Dijkstra’s algorithm to compute the shortest

distances in uncertain environments. A numerical illustration was used to demonstrate how the algorithm

iterates as it computes the shortest path in an uncertain environment. Fuzzy Dijkstra’s algorithm was

evaluated on a 23-node directed network, and the results obtained were the same as those obtained by

Agarana et al., (2016). D’Emidio (2020) presented two dynamic algorithms to compute the shortest routes

in massive time evolving networks. The algorithms were tested on synthetic and real-world networks and

proved to be good algorithms in terms of the solutions computed. Kumar et al. (2022) proposed the use of

virtual directions to reduce computational complexity in non-directed networks. Lewis (2020) developed

algorithms that determine the shortest routes in graphs with penalties due to vertex transfer. The idea of

the algorithms is based on Dijkstra’s algorithm. These variants are so useful to model situations like

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

993 | Vol. 8, No. 5, 2023

public transport transfers and junction delays. Nguyen et al. (2022) considered tubular space shortest path

problems and developed an algorithm to solve tubular space shortest path problems. Computed solutions

were better when compared to Dijkstra’s algorithmic solutions in terms of path length, smoothness,

accuracy, and algorithm calculation speed.

This paper has been organized into seven sections. The TANYAKUMU labelling method for TSP is

presented in Section 2, and the Extended TANYAKUMU labelling method for computing the shortest

path problem in directed transportation networks is presented in Section 3. The minimum incoming

weight label (MIWL) algorithm for SPP is presented in Section 4. Numerical illustrations are presented in

Section 5. In Section 6, comparative analysis is presented, and lastly, concluding remarks and further

research suggestions are presented in Section 7.

1.1 Motivation
Several applications of the shortest path problem have motivated the development of alternative

algorithms for computing the shortest path and its respective distance. These applications call for new

methods that can solve the problem in a better way. Many algorithms in the literature are heuristic

algorithms that compute near-optimal solutions to the problem (Wayahdi et al., 2021). In this research, we

are motivated to develop an exact algorithm for the shortest path problem. The complexity of existing

methods has a negative bearing on the teaching side of the algorithms; thus, most algorithms are software-

dependent, and numerical illustrations cannot be used to demonstrate how the algorithms iterate as they

compute the required solutions. TSP-based algorithms have never been extended to solve the shortest path

problem; hence, in this research, we are motivated to solve the SPP using the TSP-based algorithms, thus

integrating TSP and SPP.

2. TANYAKUMU Labelling Method
In this paper, we extend the TANYAKUMU labelling method for TSP to solve SPP. This method was

proposed in 2022 to solve the TSP. The method makes use of node labels as it computes the optimal tour.

The algorithm is simple and straight forward hence, it can be used for teaching purposes. In a network

with V nodes, the algorithm requires a V-1 number of iterations to compute all possible optimal tours if

there is more than one optimal tour in the travelling salesman network. The algorithm was later modified

by Tawanda et al., (2023) to solve a variant of the TSP, namely the Equality generalized travelling

salesman problem (E-GTSP). The algorithm given in Algorithm 1 Table 1 gives the notations used in

Algorithm 1 and the proposed Algorithm 2.

Algorithm 1: Modified TANYAKUMU labelling method to solve E-GTSP.

Initialization: Label all vertices with label 𝒘(𝟏,𝒋)𝒛 for all 𝒋 ∈ 𝑽 = 𝑽𝟏 ∪ 𝑽𝟐 . . . ∪ 𝑽𝒎. 𝒘∗
(𝟏,𝒋)𝟎 = 𝒘(𝟏,𝒋)𝟎.

Step 1. For all 𝒋 ∈ 𝒘∗
(𝟏,𝒋)𝒛 and 𝑽𝒊 where 𝒊 = 𝟏, 𝟐, 𝟑, . . . , 𝒎

 Label 𝑽𝒊 with label (∞)

 Else label 𝑽𝒊 with label 𝒘(𝟏,𝒋)𝒛+𝟏

 𝒘(𝟏,𝒋)𝒛+𝟏 = 𝒘∗
(𝟏,𝒌)𝒛 + 𝒄(𝒌,𝒋).

Step 2. For all 𝒋 ∈ 𝑽𝒊 where 𝒊 = 𝟏, 𝟐, 𝟑, . . . , 𝒎

 Compute 𝒘∗
(𝟏,𝒋)𝒛+𝟏 = 𝑴𝒊𝒏{𝒘(𝟏,𝒋)𝒛+𝟏}

Step 3. If 𝒛 < 𝒎 − 𝟏. Assign 𝒋 → 𝒌 and go to step 1

 Else if 𝒛 = 𝒎 − 𝟏 => all 𝑽𝒊 are visited exactly once. Go to step 4.

Step 4. Return to 𝒋 = 𝟏(Home city) and go to step 2, then STOP.

Tour corresponding to the minimum weight label 𝒘∗
(𝟏,𝒋)𝒛=𝒎 is the minimum weight tour.

Stop.

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

994 | Vol. 8, No. 5, 2023

Table 1. Notations for the TANYAKUMU labelling method.

Notation Description

 𝑽 Number of vertices or nodes in the network

𝑽𝒊 Cluster 𝑖
𝑳𝟎 Set of all visited nodes

𝑳∗
𝟎 Home city set

𝒘(𝒔,𝒋)𝒛 Label for node 𝑗 showing shortest distance from source node or home 𝑠 to 𝑗 through 𝑧 number of intermediate nodes or

iterations and 𝑤 is the shortest distance

𝒘∗
(𝒔,𝒌)𝒛 Minimum weight node label for the currently added node 𝑘

∞ Restriction node label

𝑼𝑩(𝒔,𝒋)
∗ Previously best upper bound label for node 𝑗

3. Extended TANYAKUMU Labelling Method for Solving Shortest Path Problems
Algorithm 2 gives the steps of the proposed method. This method is capable of computing the exact

shortest distances and respective shortest paths from the source node to all other nodes in the network.

The principle of the algorithm is to determine the shortest paths to any node in the network by comparing

the distances found to the known upper bound and updating it as the algorithm iterates.

Algorithm 2: The proposed method: Extended TANYAKUMU labelling method for SPP.

Step 1. Initialization

 Label all vertices directly connected to the start node (s) with the node label 𝒘(𝒔,𝒋)𝒛

𝐒𝐞𝐭 𝒘(𝒔,𝒋)𝒛 = 𝒘∗
(𝒔,𝒋)𝒛 = 𝑼𝑩(𝒔,𝒋)

∗

Step 2. For all 𝒘∗
(𝒔,𝒋)𝒛

 Set 𝒋 → 𝒌

If 𝒌 is directly connected to 𝒋

Label 𝒋 with 𝒘(𝒔,𝒋)𝒛+𝟏

𝒘(𝒔,𝒋)𝒛+𝟏 = 𝒘∗
(𝒔,𝒌)𝒛 + 𝒄(𝒌, 𝒋)

Else if 𝒌 is not directly connected to 𝒋

Label 𝒋 𝐰𝐢𝐭𝐡 (∞)

Step 3. Compute 𝒘∗
(𝒔,𝒋)𝒛+𝟏 = 𝑴𝒊𝒏{𝒘(𝒔,𝒋)𝒛+𝟏}

𝐈𝐟 𝒘∗
(𝒔,𝒋)𝒛+𝟏 ≤ 𝑼𝑩(𝒔,𝒋)

∗ 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒋

𝐒𝐞𝐭 𝒘∗
(𝒔,𝒋)𝒛+𝟏 = 𝑼𝑩(𝒔,𝒋)

∗ and,

 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 𝐜𝐨𝐫𝐫𝐞𝐬𝐩𝐨𝐧𝐝𝐢𝐧𝐠 𝒋 𝐚𝐧𝐝 𝐠𝐨 𝐭𝐨 𝐒𝐭𝐞𝐩 𝟐

 Else if 𝒘∗
(𝒔,𝒋)𝒛+𝟏 > 𝑼𝑩(𝒔,𝒋)

∗ 𝐟𝐨𝐫 𝐚𝐥𝐥 𝒋

 Go to step 4.

Step 4. 𝐒𝐡𝐨𝐫𝐭𝐞𝐬𝐭 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐭𝐨 𝐧𝐨𝐝𝐞 𝒋 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 𝑼𝑩(𝒔,𝒋)
∗ 𝐟𝐨𝐮𝐧𝐝 𝐝𝐮𝐫𝐢𝐧𝐠 𝐭𝐡𝐞 𝐬𝐞𝐚𝐫𝐜𝐡. Then,

Stop.

Theorem 1. Algorithm 2 has a worst-case time complexity of 𝑂(𝑛3).

Proof. It is easy to note that at each iteration, the algorithm requires operations that are within the range

0 < Operations ≤ 𝑛2. The algorithm terminates after a number of iterations that are way less than 𝑛. It
then follows that the worst time complexity of Algorithm 2 is 𝑂(𝑛3).

4. The Minimum Incoming Weight Label Algorithm
The minimum incoming weight label (MIWL) algorithm was proposed by Munapo et al. (2008) to

compute the shortest paths in directed networks. The algorithm was later modified by Kumar et al. (2013)

to determine the shortest paths in undirected networks. Given in Algorithm 3 below are the steps of the

MIWL algorithm. The proposed algorithm in this paper is compared with the MIWL algorithms on

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

995 | Vol. 8, No. 5, 2023

problem instances of different complexities. MIWL is used for comparison purposes because the

algorithm is simple and computes exact solutions to SPP.

Algorithm 3: Minimum Incoming Weight Label (MIWL) Algorithm.

Step 1. Set 𝒌 ← 𝟐, label source ‘0’

Step 2. Compute the minimum weight 𝒘𝒌 for node 𝒌

 𝒘𝒌 = 𝑴𝒊𝒏{𝒘𝒍𝟏,𝒌, 𝒘𝒍𝟐,𝒌, . . . , 𝒘𝒍𝒌,𝒌 } where 𝒘𝒍𝟏,𝒌, 𝒘𝒍𝟐,𝒌, . . . , 𝒘𝒍𝒌,𝒌 are the weights associated with 𝒍𝒌

incoming links to node 𝒌. Using the minimum weight, modify associated with all the incoming activities to and

outgoing activities from node 𝒌.

Step 3. 𝐈𝐟 𝒌 < 𝒏 − 𝟏, 𝐭𝐡𝐞𝐧 𝐬𝐞𝐭 𝒌 ← 𝒌 + 𝟏 𝐚𝐧𝐝 𝐠𝐨 𝐭𝐨 𝐒𝐭𝐞𝐩 𝟐

Step 4. All nodes have been labelled except for the sink node 𝒏. This implies that we can compute the minimum

weight 𝒘𝒏 for the sink node. Use 𝒘𝒏 to modify the weights of incoming links to the sink node by subtracting 𝒘𝒏

from their weights. The minimum weight recorded at the sink node is the shortest distance along the shortest path

from the source node to the sink node.

Step 5. Backtracking is used to trace all the links in the shortest paths through the nodes with a weight of zero

after modifications. The shortest path from the source node to the sink node is unique if and only if each node has

only one link with a zero modified weight link entering that node. Else alternative paths exist and can be

determined during backtracking.

5. Numerical Illustrations
To demonstrate how the proposed method computes the shortest paths from the source node to all other

nodes in the network, we present two illustrative examples with detailed solution procedures. The

numerical illustrations prove that the proposed algorithm can be used for teaching purposes since it is

easy to follow.

5.1 Example
Consider the following: The 7-node network in Figure 1 was used by Srinivasan (2017) to demonstrate

how Dijkstra’s algorithm computes the shortest distance from source node 1 to target node 7.

Figure 1. Seven nodes transportation network.

5.2 Solution
Initialization: Connect the source node 1 to all other nodes that are directly connected to it by labelling

the neighborhood nodes, thus nodes 2 and 3 by node labels 15(1,2)0 and 20(1,3)0 respectively. The upper

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

996 | Vol. 8, No. 5, 2023

bound node labels corresponding to all visited nodes are given by 𝑤∗
(1,𝑗)0 = {15(1,2)0 , 20(1,3)0} and to all

unvisited nodes is (∞). Assign 𝑗 → 𝑘 and go to the next iteration.

Iteration 1: Consider updating labels 𝑤∗
(1,𝑘)0 to find new labels for the nodes, thus 𝑤(1,𝑗)1 as shown in

Table 2 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)1 =

{25(1,2,4)1 , 40(1,2,5)1 , and 40(1,3,6)1}. Consider all node labels as input for the next iterations that satisfies

the condition 𝑤∗
(1,𝑗)1 ≤ 𝑈𝐵(1,𝑗)

∗ . Assign 𝑗 → 𝑘 and go to the next iteration.

Table 2. Modified link distances after iteration 1.

𝑤∗
(1,𝑘)0 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7

15(1,2)0 ∞ ∞ 25(1,2,4)1 40(1,2,5)1 ∞ ∞

20(1,3)0 ∞ ∞ 35(1,3,4)1 ∞ 40(1,3,6)1 ∞

𝑤∗
(1,𝑗)1 ∞ ∞ 25(1,2,4)1 40(1,2,5)1 40(1,3,6)1 ∞

Iteration 2: Consider updating labels 𝑤∗
(1,𝑘)1 to find new labels for the nodes, thus 𝑤(1,𝑗)2 as shown in

Table 3 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)2 =

{45(1,2,4,5)2 , 40(1,2,4,6)2 , 50(1,2,5,7)2}. Consider all node labels as input for the next iterations that satisfy

the condition 𝑤∗
(1,𝑗)1 ≤ 𝑈𝐵(1,𝑗)

∗ except the sink node label. Using this condition, the upper bound node

labels for nodes 5 and 7 are discarded, and upper bound node label for node 6 is considered as input for

the next iteration. Assign 𝑗 → 𝑘 and go to the next iteration.

Table 3. Modified link distances after iteration 2.

𝑤∗
(1,𝑘)1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7

25(1,2,4)1 ∞ ∞ ∞ 45(1,2,4,5)2 40(1,2,4,6)2 55(1,2,4,7)2

40(1,2,5)1 ∞ ∞ ∞ ∞ ∞ 50(1,2,5,7)2

40(1,3,6)1 ∞ ∞ ∞ ∞ ∞ 60(1,3,6,7)2

𝑤∗
(1,𝑗)2 ∞ ∞ ∞ 45(1,2,4,5)2 40(1,2,4,6)2 50(1,2,5,7)2

Iteration 3: Consider updating labels 𝑤∗
(1,𝑘)2 to find new labels for the nodes, thus 𝑤(1,𝑗)3 as shown in

Table 4 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)2 =

{60(1,2,4,6,7)3}. At this iteration we only have one node labels that corresponds to the sink node; this

implies that we do not have any node label that can be used as input for the next iteration. As a result, the

algorithm terminates, and all shortest paths form the source to other nodes in the network have been

computed.

Table 4. Modified link distances after iteration 3.

𝑤∗
(1,𝑘)2 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7

40(1,2,4,6)2 ∞ ∞ ∞ ∞ ∞ 60(1,2,4,6,7)3

𝑤∗
(1,𝑗)3 ∞ ∞ ∞ ∞ ∞ 60(1,2,4,6,7)3

The best upper bound node labels to nodes 2, 3, 4, 5, 6 and 7 give the shortest path, and the respective

shortest distance. The best upper bound node label for node 2 and 3 are given by 15(1,2)0 and 20(1,3)0,

and was computed in the initialization step. The best upper bound for node 4 is given by 25(1,2,4)1, and

was found in iteration 1. The best upper bound node label for node 5 is given by 40(1,2,5)1, and was found

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

997 | Vol. 8, No. 5, 2023

on iteration 1. The best upper bound node labels for node 6 are given by 40(1,3,6)1 and 40(1,2,4,6)2 ,

computed on iterations 1 and 2, respectively. Lastly the best upper bound node label for node 7 is given

by 50(1,2,5,7)2, computed on iteration 2. Table 5 below shows all shortest paths from node 1 to all other

nodes in the network.

Table 5. Computed single source shortest paths.

Start node Target node Shortest path Path length

1 2 (1) → (2) 15

1 3 (1) → (3) 20

1 4 (1) → (2) → (4) 25

1 5 (1) → (2) → (5) 40

1 6 (1) → (3) → (6) or (1) → (2) → (4) → (6) 40

1 7 (1) → (2) → (5) → (7) 50

This solution is optimal and is the same as the one obtained by Srinivasan, (2017). The only difference is

that the algorithm used fewer iterations to compute all the shortest paths in the network.

5.3 Example 2

An eight-node network in Ojekudo and Akpan, (2017) is considered. Nodes 1 and 8 are the source and

destination nodes, respectively. All other nodes in the network are intermediate nodes. Figure 2 below

shows the eight-node network.

Figure 2. Eight nodes transportation network.

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

998 | Vol. 8, No. 5, 2023

5.4 Solution
Initialization step: Connect the source node 1 to all other nodes that are directly connected to it by

labelling the neighborhood nodes, thus nodes 2 and 3 by node labels 6.2(1,2)0 and 3.6(1,3)0 respectively.

The upper bound node labels corresponding to all visited nodes are given by 𝑤∗
(1,𝑗)0 =

{6.2(1,2)0 , 3.6(1,3)0} and to all unvisited nodes is (∞). Assign 𝑗 → 𝑘 and go to the next iteration.

Iteration 1: Consider updating labels 𝑤∗
(1,𝑘)0 to find new labels for the nodes, thus 𝑤(1,𝑗)1 as shown in

Table 6 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)1 =

{10.7(1,2,3)1 , 14.6(1,3,4)1 , and 13.9(1,3,5)1}. Consider all node labels as input for the next iterations that

satisfies the condition 𝑤∗
(1,𝑗)1 ≤ 𝑈𝐵(1,𝑗)

∗ . Using this condition, the upper bound node label for node 3 on

this iteration is discarded, and upper bound node labels for nodes 4 and 5 is considered as input for the

next iteration. Assign 𝑗 → 𝑘 and go to the next iteration.

Table 6. Modified link distances after iteration 1.

𝑤∗
(1,𝑘)0 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7 𝑗 = 8

6.2(1,2)0 ∞ 10.7(1,2,3)1 ∞ 17.8(1,2,5)1 ∞ ∞ ∞

3.6(1,3)0 ∞ ∞ 14.6(1,3,4)1 13.9(1,3,5)1 ∞ ∞ ∞

𝑤∗
(1,𝑗)1 ∞ 10.7(1,2,3)1 14.6(1,3,4)1 13.9(1,3,5)1 ∞ ∞ ∞

Iteration 2: Consider updating labels 𝑤∗
(1,𝑘)1 to find new labels for the nodes, thus 𝑤(1,𝑗)2 as shown in

Table 7 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)2 =

{16.5(1,3,5,6)2 , 27.9(1,3,4,7)2 , and 21.1(1,3,5,8)2}. Consider all node labels as input for the next iterations that

satisfies the condition 𝑤∗
(1,𝑗)2 ≤ 𝑈𝐵(1,𝑗)

∗ except the destination node. Using this condition, the upper

bound node label for node 8 on this iteration is discarded, and upper bound node labels for nodes 6 and 7

is considered as input for the next iteration. Assign 𝑗 → 𝑘 and go to the next iteration.

Table 7. Modified link distances after iteration 2.

𝑤∗
(1,𝑘)1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7 𝑗 = 8

14.6(1,3,4)1 ∞ ∞ ∞ ∞ 18.4(1,3,4,6)2 27.9(1,3,4,7)2 ∞

13.9(1,3,5)1 ∞ ∞ ∞ ∞ 16.5(1,3,5,6)2 ∞ 21.1(1,3,5,8)2

𝑤∗
(1,𝑗)2 ∞ ∞ ∞ 16.5(1,3,5,6)2 27.9(1,3,4,7)2 21.1(1,3,5,8)2

Iteration 3: Consider updating labels 𝑤∗
(1,𝑘)2 to find new labels for the nodes, thus 𝑤(1,𝑗)3 as shown in

Table 8 below. The upper bound distances and corresponding paths are given by 𝑤∗
(1,𝑗)2 =

{18.5(1,3,5,6,7)3 and 21.3(1,3,5,6,8)3}. Consider all node labels as input for the next iterations that satisfies

the condition 𝑤∗
(1,𝑗)3 ≤ 𝑈𝐵(1,𝑗)

∗ except the destination node. Using this condition, the upper bound node

label for node 8 on this iteration is discarded and upper bound node label for node 7 is considered as input

for the next iteration. Assign 𝑗 → 𝑘 and go to the next iteration.

Table 8. Modified link distances after iteration 3.

𝑤∗
(1,𝑘)1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7 𝑗 = 8

16.5(1,3,5,6)2 ∞ ∞ ∞ ∞ ∞ 18.5(1,3,5,6,7)3 21.3(1,3,5,6,8)3

27.9(1,3,4,7)2 ∞ ∞ ∞ ∞ ∞ ∞ 35.1(1,3,4,7,8)3

𝑤∗
(1,𝑗)3 ∞ ∞ ∞ ∞ ∞ 18.5(1,3,5,6,7)3 21.3(1,3,5,6,8)3

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

999 | Vol. 8, No. 5, 2023

Iteration 4: Consider updating labels 𝑤∗
(1,𝑘)3 to find new labels for the nodes, thus 𝑤(1,𝑗)4 as shown in

Table 9 below. The upper bound distance and corresponding path is given by 𝑤∗
(1,𝑗)4 =

{25.7(1,3,5,6,7,8)4}. At this iteration we only have one node label that corresponds to the sink node 8, this

implies that we do not have any node label that can be used as input for the next iteration. As a result, the

algorithm terminates and all shortest paths form the source to other nodes in the network have been

computed.

Table 9. Modified link distances after iteration 4.

𝑤∗
(1,𝑘)1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7 𝑗 = 8

18.5(1,3,5,6,7)3 ∞ ∞ ∞ ∞ ∞ ∞ 25.7(1,3,5,6,7,8)4

𝑤∗
(1,𝑗)4 ∞ ∞ ∞ ∞ ∞ ∞ 25.7(1,3,5,6,7,8)4

The best upper bound node labels for nodes 2, 3, 4, 5, 6, 7 and 8 give the shortest path, and the respective

shortest distance. The best upper bound node label for node 2 and 3 are given by 6.2(1,2)0 and 6.3(1,3)0,

and were computed in the initialization step. The best upper bound node label for node 4 is given by

14.6(1,2,4)1, and was computed on iteration 1. The best upper bound node label for node 5 is given by

13.9(1,3,5)1, and was computed on iteration 1. The best upper bound node label for node 6 is given by

16.5(1,3,5,6)2, computed on iteration 2. The best upper bound node label for node 7 is given by

18.5(1,3,5,6,7)3 computed on iteration 3. Lastly, the best upper bound node label for node 8 is given by

21.1(1,3,5,8)2 computed on iteration 2. Table 10 below shows all shortest paths from node 1 to all other

nodes in the network.

Table 10. Computed single source shortest paths.

Start node Target node Shortest path Path length

1 2 (1) → (2) 6.2

1 3 (1) → (3) 6.3

1 4 (1) → (2) → (4) 14.6

1 5 (1) → (3) → (5) 13.9

1 6 (1) → (3) → (5) → (6) 16.5

1 7 (1) → (3) → (5) → (6) → (7) 18.5

1 8 (1) → (3) → (5) → (8) 21.1

The computed shortest paths are optimal and are the same as the ones in Ojekudo and Akpan (2017). The

proposed algorithm used fewer iterations to determine all the shortest paths in the network.

6. Comparative Analysis
In order to demonstrate the robust performance of the Extended TANYAKUMU labelling method,

comparative analysis is considered in this section. The proposed method was applied to four increasingly

complex problems. The results obtained manually are compared with the results obtained by MIWL

algorithm. This was done to prove the efficiency and validity of the method. We considered 11 × 11

transportation network in Di Caprio et al. (2022), 21×21 transportation network in Agarana et al. (2016),

23×23 transportation network in Akram et al. (2021) and 26×26 random network in Figure 5.

Comparative analysis focused on the shortest path computed, and the respective shortest distance

obtained. We managed to do comparisons up to 26 nodes network due to the fact that all computations are

computed manually. The networks for comparative analysis are given in Figures 3-6 below.

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1000 | Vol. 8, No. 5, 2023

Network 1: Consider a transportation network in Figure 3 below with 11 nodes and 25 links. Node (1) is

the starting point and node (11) is the target node. Link weights are given in Table 11.

Figure 3. Eleven nodes transportation network.

Table 11. Link costs for network 1 in Figure 3.

Link Cost Link Cost Link Cost Link Cost Link Cost

(1, 2) 800 (1, 3) 35 (1, 6) 650 (1, 9) 290 (1, 10) 420

(2, 3) 180 (2, 5) 495 (2, 9) 90 (3, 4) 650 (3, 5) 730

(3, 8) 42 (4, 5) 190 (4, 6) 310 (4, 11) 71 (5, 6) 610

(6, 11) 23 (7, 6) 390 (7, 11) 45 (8, 4) 710 (8, 7) 230

(9, 7) 120 (9, 8) 13 (9, 10) 23 (10, 7) 330 (10, 11) 125

Network 2: Consider a transportation network in Figure 4 below with 21 nodes and 40 links. Node (A) is

the starting point and node (U) is the target node. Link weights are given in Table 12.

Table 12. Link costs for network in Figure 4.

Link Cost Link Cost Link Cost Link Cost Link Cost

(A, B) 270 (A, C) 250 (A, D) 2000 (B, I) 1800 (C, B) 1800

(C, H) 290 (C, I) 2000 (D, C) 750 (D, E) 2700 (E, C) 450

(E, F) 1200 (F, G) 7000 (F, L) 500 (G, H) 1300 (H, I) 2500

(H, J) 2500 (I, J) 2000 (J, O) 270 (K, H) 500 (K, J) 2200

(K, M) 900 (L, G) 350 (L, K) 10000 (L, M) 1500 (L, Q) 400

(M, N) 300 (M, P) 450 (N, J) 2000 (N, O) 3200 (O, T) 3200

(P, O) 2600 (P, S) 180 (Q, M) 550 (Q, P) 1000 (Q, R) 700

(R, S) 400 (R, U) 550 (S, T) 480 (S, U) 500 (U, T) 270

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1001 | Vol. 8, No. 5, 2023

Figure 4. Twenty-one nodes transportation network.

Network 3: Consider a transportation network in Figure 5 below with 23 nodes and 40 links. Node (1) is

the starting point and node (23) is the target node. Link costs are given in Table 13.

Table 13. Link costs for network in figure 5.

Link Cost Link Cost Link Cost Link Cost Link Cost

(1, 2) 12 (1, 3) 9 (1, 4) 8 (1, 5) 7 (2, 6) 5

(2, 7) 6 (3, 8) 10 (4, 7) 17 (4, 11) 6 (5, 8) 6

(5, 11) 7 (5, 12) 10 (6, 9) 6 (6, 10) 10 (7, 10) 9

(7, 11) 6 (8, 12) 5 (8, 13) 3 (9, 16) 6 (10, 16) 12

(10, 17) 15 (11, 14) 8 (11, 17) 6 (12, 14) 13 (12, 15) 12

(13, 15) 10 (13, 19) 17 (14, 21) 11 (15, 18) 8 (15, 19) 5

(16, 20) 9 (17, 20) 7 (17, 21) 6 (18, 21) 15 (18, 22) 3

(18, 23) 5 (19, 22) 15 (20, 23) 13 (21, 23) 12 (22, 23) 4

Figure 5. Twenty-three nodes transportation network.

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1002 | Vol. 8, No. 5, 2023

Network 4: Consider a transportation network in Figure 6 below with 26 nodes and 49 links. Node (A) is

the starting point and node (Z) is the target node. Link costs are given in Table 14.

Table 14. Link costs for network in Figure 6.

Link Cost Link Cost Link Cost Link Cost Link Cost

(A, B) 1 (A, G) 8 (B, C) 2 (B, H) 4 (C, D) 3

(C, H) 1 (D, E) 8 (D, J) 5 (D, I) 3 (E, F) 1

(E, K) 9 (F, K) 2 (G, H) 2 (G, L) 2 (H, L) 2

(H,M) 5 (I, H) 4 (I, M) 2 (J, I) 5 (J, M) 1

(J, O) 3 (K, J) 3 (K, P) 10 (L, Q) 6 (L, R) 8

(M, L) 2 (M, R) 2 (M, S) 6 (N, M) 4 (N, T) 3

(O, N) 11 (O, P) 5 (O, U) 6 (P, V) 13 (Q, R) 1

(Q, W) 8 (R, S) 2 (R, W) 15 (S, T) 5 (S, Y) 2

(T, O) 1 (U, Y) 1 (U, Z) 3 (V, U) 1 (V, Z) 1

(W, X) 7 (X, S) 1 (X, Y) 2 (Y, Z) 10

Figure 6. Twenty-six nodes transportation network.

A summary of all computational results is provided in Table 15.

Table 15. Comparative results.

Problem

Source

Problem

Size

Solution Methods Shortest path Shortest

Distance

Number of

Iterations

Di Caprio et al.,
(2022)

11 × 11 MIWL Algorithm
Proposed Method

(1) → (3) → (8) → (7) → (11)

(1) → (3) → (8) → (7) → (11)

352
352

10
05

Agarana et al.,

(2016)
21 × 21 MIWL Algorithm

Proposed Method

(A) → (D) → (E) → (F) → (L) → (Q) → (R) → (U)

(A) → (D) → (E) → (F) → (L) → (Q) → (R) → (U)

8050

8050

20

08

Akram et al.,
(2021)

23 × 23 MIWL Algorithm

Proposed Method

(1) → (5) → (11) → (17) → (21) → (23)

(1) → (4) → (11) → (17) → (21) → (23)

(1) → (5) → (11) → (17) → (21) → (23)

(1) → (4) → (11) → (17) → (21) → (23)

38
38

38

38

22

06

Random graph 26 × 26 MIWL Algorithm

Proposed Method
(A) → (B) → (C) → (D) → (J) → (O) → (U) → (Z)

(A) → (B) → (C) → (D) → (J) → (O) → (U) → (Z)

23

23

25

08

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1003 | Vol. 8, No. 5, 2023

In all the problems considered for comparative analysis, it should be noted that the proposed algorithm

has computed the same solutions as MIWL algorithm. The number of iterations required by the MIWL

algorithm are dependent on the number of nodes, whereas the number of iterations for the Extended

TANYAKUMU labelling method depends on the number of links in the shortest path. Thus, the exact

number of iterations cannot be pre-determined but a general upper bound using the number of nodes in

the network can be used.

7. Conclusion and Further Research
In this paper, the authors have extended the TANYAKUMU labelling method to determine the shortest

path in transportation networks. In other words, a new algorithm has been developed for solving SPP, that

is simple, easy to apply and can be used for teaching purpose. In this research, we have demonstrated that

TSP based algorithm can be extended to solve SPP. The algorithm computes shortest paths from the

source node to all other nodes in directed network. The algorithm is applicable only on directed

transportation networks. We carried out comparative analysis using the problems of different sizes and

complexity to proof the validity of the proposed method. Extended TANYAKUMU labelling method was

used to compute optimal shortest paths manually in directed networks with up to 26 nodes, thus, this

simple approach can be used to solve large problems. The computed shortest paths were compared with

shortest paths computed using MIWL algorithm. The comparative analysis revealed that the Extended

TANYAKUMU labelling method and the MIWL algorithm computed the same optimal solutions in all

transportation networks considered in this study. Future development of this study should focus on the

development of a software or a code for the proposed method to perform computational comparisons on

lager network. Future studies will also consider introducing fuzzy theory to the Extended TANYAKUMU

labelling method for shortest paths problem. Lastly, we will consider extending the shortest path

algorithm to compute critical paths in project networks (Tawanda, 2018; Munapo et al., 2008).

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgements

The authors would like to acknowledge the APC funded by the North West University, South Africa. The authors would like to

thank the Editor-in-Chief, section editors and anonymous reviewers for their comments that helped them to improve the quality

of this work.

References

Agarana, M.C., Omoregbe, N.C., & Ogunpeju, M.O. (2016). Application of Dijkstra algorithm to proposed tramway

of a potential world class university. Applied Mathematics, 7, 496-503. https://doi.org/10.4236/am.2016.76045.

Akdaş, H.Ş., Demir, Ö., Doğan, B., Bas, A., & Uslu, B.Ç. (2021). Vehicle route optimization for solid waste

management: A case study of maltepe, Istanbul. In 2021 13th International Conference on Electronics,

Computers and Artificial Intelligence (pp. 1-6). IEEE. Pitesti, Romania.

Akram, M., Habib, A., & Alcantud, J.C.R. (2021). An optimization study based on Dijkstra algorithm for a network

with trapezoidal picture fuzzy numbers. Neural Computing and Applications, 33(4), 1329-1342.

https://doi.org/10.1007/s00521-020-05034-y.

Carvalho, I.A., Noronha, T.F., Duhamel, C., Vieira, L.F., & Santos, V.F.D. (2023). A fix‐and‐optimize heuristic for

the minmax regret shortest path arborescence problem under interval uncertainty. International Transactions in

Operational Research, 30(2), 1120-1143.

http://dx.doi.org/10.4236/am.2016.76045

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1004 | Vol. 8, No. 5, 2023

D’Emidio, M. (2020). Faster algorithms for mining shortest-path distances from massive time-evolving graphs.

Algorithms, 13(8), 191.

Deng, Y., Chen, Y., Zhang, Y., & Mahadevan, S. (2012). Fuzzy Dijkstra algorithm for shortest path problem under

uncertain environment. Applied Soft Computing, 12(3), 1231-1237.

Di Caprio, D., Ebrahimnejad, A., Alrezaamiri, H., & Santos-Arteaga, F.J. (2022). A novel ant colony algorithm for

solving shortest path problems with fuzzy arc weights. Alexandria Engineering Journal, 61(5), 3403-3415.

Edmonds, N., Breuer, A., Gregor, D.P., & Lumsdaine, A. (2006). Single-source shortest paths with the parallel boost

graph library. In The Shortest Path Problem (pp. 219-248). Piscataway, NJ.

Hasan, B.S., Khamees, M.A., & Mahmoud, A.S.H. (2007). A heuristic genetic algorithm for the single source

shortest path problem. In 2007 IEEE/ACS International Conference on Computer Systems and Applications (pp.

187-194). IEEE. Amman, Jordan.

Henzinger, M., Krinninger, S., & Nanongkai, D. (2014). A subquadratic-time algorithm for decremental single-

source shortest paths. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms (pp. 1053-1072). Society for Industrial and Applied Mathematics.

Kumar, S., Munapo, E., Ncube, O., Sigauke, C., & Nyamugure, P. (2013). A minimum weight labelling method for

determination of a shortest route in a non-directed network. International Journal of System Assurance

Engineering and Management, 4, 13-18.

Kumar, S., Munapo, E., Nyamugure, P., & Tawanda, T. (2022). Mathematics of OR: Significance and applications

of virtual directions in reducing computational complexity in network optimization. In: Chauhan, I.S. (ed)

Emerging Trends in Applied Research, Integrated Publications (pp. 33-48), Delhi, India.

Lewis, R. (2020). Algorithms for finding shortest paths in networks with vertex transfer penalties. Algorithms,

13(11), 269.

Liang, S., Jiao, T., Du, W., & Qu, S. (2021). An improved ant colony optimization algorithm based on context for

tourism route planning. PLoS One, 16(9), e0257317. https://doi.org/10.1371/journal.pone.0257317.

Maposa, D. Mupondo, N.C., & Tawanda, T. (2014). Non-iterative algorithm for finding shortest route. International

Journal of Logistics Economics and Globalisation, 6(1), 56-77.

Munapo, E., Jones, B.C., & Kumar, S. (2008). A minimum incoming weight label method and its application in

CPM networks. ORiON, 24(1), 37-48.

Nguyen, D.V.A., Szewczyk, J., & Rabenorosoa, K. (2022). an effective algorithm for finding shortest paths in

tubular spaces. Algorithms, 15(3), 79. https://doi.org/10.3390/a15030079.

Ojekudo, N.A., & Akpan, N.P. (2017). Anapplication of Dijkstra’s algorithm to shortest route problem. IOSR

Journal of Mathematics, 13(3), 20-32.

Petrovan, A., Pop, P., Sabo, C., & Zelina, I. (2023). Novel two-level hybrid genetic algorithms based on different

Cayley-type encodings for solving the clustered shortest-path tree problem. Expert Systems with Applications,

215, 119372. https://doi.org/10.1016/j.eswa.2022.119372.

Rosita, Y.D., Rosyida, E.E., & Rudiyanto, M.A. (2019). Implementation of Dijkstra algorithm and multi-criteria

decision-making for optimal route distribution. Procedia Computer Science, 161, 378-385.

Saksena, J.P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5),

909-913. https://doi.org/10.1287/opre.14.5.909.

Salem, I.E., Mijwil, M.M., Abdulqader, A.W., & Ismaeel, M.M. (2022). Flight-schedule using Dijkstra's algorithm

with comparison of routes findings. International Journal of Electrical and Computer Engineering, 12(2), 1675.

Srinivasan, G. (2017). Operations research: Principles and applications. 3rd Edition, PHI Learning Pvt. Ltd.

https://doi.org/10.3390/a15030079
https://doi.org/10.1016/j.eswa.2022.119372
https://doi.org/10.1287/opre.14.5.909

Tawanda et al.: Extended TANYAKUMU Labelling Method to Compute Shortest Paths in …

1005 | Vol. 8, No. 5, 2023

Tawanda, T. (2013). Tawanda’s non-iterative optimal tree algorithm for shortest route problems. Scientific Journal

of Pure and Applied Science, 2(2), 87-94.

Tawanda, T. (2018). Determining k-possible critical paths using Tawanda's non-iterative optimal tree algorithm for

shortest route problems. International Journal of Operational Research, 32(3), 313-328.

Tawanda, T., Nyamugure, P., Kumar, S., Munapo, E. (2023). Modified TANYAKUMU labelling method to solve

equality generalized travelling salesman problem. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A.,

Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks

and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_88.

Thorup, M. (1999). Undirected single-source shortest paths with positive integer weights in linear time. Journal of

the ACM, 46(3), 362-394.

Wayahdi, M.R., Ginting, S.H.N., & Syahputra, D. (2021). Greedy, A-Star, and Dijkstra’s algorithms in finding

shortest path. International Journal of Advances in Data and Information Systems, 2(1), 45-52.

Wu, W., Hayashi, T., Haruyasu, K., & Tang, L. (2023). Exact algorithms based on a constrained shortest path model

for robust serial-batch and parallel-batch scheduling problems. European Journal of Operational Research,

307(1), 82-102.

Zhang, G., Wang, H., Zhao, W., Guan, Z., & Li, P. (2021). Application of improved multi-objective ant colony

optimization algorithm in ship weather routing. Journal of Ocean University of China, 20, 45-55.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses under the

Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

