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Abstract 

The accurate prediction of both detected and corrected faults is crucial for enhancing software reliability and determining optimal 

release times. Traditional Software Reliability Growth Models (SRGMs) often focus on either fault detection or correction, 

potentially overlooking the comprehensive view needed for effective software maintenance. This paper introduces a Dense Neural 

Network (DNN)-based model that predicts both detected and corrected faults using data from the initial testing phase. The proposed 

model adopted a simpler architecture to reduce computational overhead and minimize time complexity, making it suitable for real-

world applications. By incorporating logarithmic encoding, the model effectively manages missing data and performs well with 

smaller datasets, which are common in early testing stages. The proposed model is compared with existing approaches, 

demonstrating superior results across multiple datasets. This comparative analysis highlights the model's enhanced predictive 

accuracy, computational efficiency, and less time complexity. Additionally, the predicted faults are used to determine the optimal 

release time, based on the customer's reliability requirements and the minimum cost necessary to achieve that reliability. By offering 

a more comprehensive and accurate prediction of software reliability, this model provides a practical solution for software 

development teams, facilitating better decision-making in testing, maintenance, and release planning. 

 

Keywords- Software reliability, Faults prediction, Artificial neural networks, Logarithmic encoding, Detected faults, Corrected 

faults.  

 

Abbreviations 

SRGM Software Reliability Growth Model 

NHPP Non-Homogeneous Poisson Process 

FRF Fault Reduction Factor 

ANN Artificial Neural Network 

DNN Dense Neural Network 

RNN Recurrent Neural Network 

CNN Convolutional Neural Networks 

EDRNN Encoder-Decoder RNN 

LSTM Long Short-Term Memory 

BSO-LAHC Brainstorm Optimisation and Late Acceptance Hill-Climbing 

ReLU Rectified Linear Unit 

MSE Mean Squared Error 

MAPE Mean Absolute Percentage Error 

MAE Mean Absolute Error 
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1. Introduction 
The increasing complexity of modern software systems has made it crucial to ensure their reliability and 

minimise faults. Software faults can lead to system failures, data corruption, security vulnerabilities, and 

other serious issues, particularly in mission-critical applications. Software reliability is a critical aspect of 

software quality, impacting safety, performance, and development costs. Thus, there is a pressing need for 

efficient approaches to predict software faults for ensuring reliable software. To address software reliability, 

researchers have categorized models in Parametric and Non-Parametric models. Parametric models, such 

as Goel-Okumoto, Jelinski Moranda, Delayed S-shaped etc, are based on predefined mathematical 

functions that describe the software failure process over time. These models assume that fault detection 

follows a known probability distribution, such as the Binomial or Poisson type. While parametric models 

provide analytical insights into software failure behavior, they often rely on restrictive assumptions, such 

as immediate and perfect fault correction, which may not reflect real-world testing and debugging 

conditions (Dwivedi and Goyal, 2024). On the other hand, non-parametric models leverage data-driven 

techniques, such as machine learning and neural networks, to model software reliability without assuming 

an explicit mathematical structure. These models can learn complex patterns from historical data and adapt 

to varying fault detection and correction trends. While both approaches have contributed to reliability 

prediction, they suffer from key limitations that hinder their practical effectiveness.  

 

Over the years, researchers have proposed enhanced parametric models to address the shortcomings of 

traditional NHPP-based SRGMs (Huang et al., 2022; Li and Pham, 2017; Li et al., 2022). A key 

improvement has been the integration of fault reduction factors (FRF) to better represent the dynamics of 

fault detection and correction. For example, Xie et al. (2007) introduced an exponential FRF, while Hsu et 

al. (2011) considered time-variable fault reduction factor to reflect varying debugging efficiencies. Another 

critical area of improvement has been the incorporation of imperfect debugging and fault dependency. 

Pachauri et al. (2015) proposed three software reliability models, one considering perfect debugging and 

two considering imperfect debugging. Chatterjee and Shukla (2016) introduced a Weibull curve to capture 

the behaviour of the Fault Reduction Factor (FRF) in software reliability growth models to relieve the 

limitation of remaining faults of the software. To enhance the practical applicability of SRGMs, researchers 

have also explored multi-release modeling. Kumar et al. (2016) introduced a two-dimensional multi-release 

software reliability model that focuses on fault detection and correction processes using a Cobb-Douglas 

production function. Peng and Zhai (2017) introduced a modelling framework for software fault detection 

and correction processes, considering fault dependency. They proposed models considering various 

debugging lags and determined the optimal software release policy within this framework. Pradhan et al. 

(2022) assumed an s-shaped fault reduction factor and extended the proposed model to predict the optimal 

release policy. Dhaka and Nijhawan (2024) considered the environmental effect on the debugging process 

while modelling fault detection and correction by integrating a change point-based fault reduction factor. 

However, Bibyan et al. (2023) used stochastic differential equation to handle the random effect of testing 

coverage while modelling multi-release software model. In Wang et al. (2024) proposed an open-source 

software reliability model considering three-parameter lifetime distribution-based fault detection. Dwivedi 

and Goyal (2025) proposed a multi-version software reliability model considering changing failure patterns 

across multiple versions of software and used different distributions for modelling the failure rates of each 

version depending upon its behaviour. 

 

Despite these advancements, parametric SRGMs still face fundamental limitations. Over time, researchers 

have introduced additional parameters into these models to better represent fault detection and correction 

processes. While this has improved their accuracy, it has also made them more complex, increasing the risk 

of overfitting and reducing their ability to perform well for all software projects. Additionally, these models 

address fault correction delays, they generally assume that all faults have equal severity, failing to account 
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for the prioritization required for debugging faults with varying impacts. Moreover, parametric SRGMs 

often require extensive historical failure data for accurate parameter estimation, limiting their effectiveness 

for new or evolving projects. Their inability to handle large-scale Agile projects with frequent updates and 

changing failure pattern further constrains their practical applicability.  

 

These challenges have motivated researchers to explore non-parametric machine learning approaches for 

reliability assessment. Non-parametric models do not rely on predefined assumptions about fault detection 

and correction rates, allowing them to learn complex, non-linear patterns directly from historical failure 

data. Early research in this domain applied feedforward backpropagation networks and other feedforward 

architectures to model software reliability (Amin et al., 2013; Ho et al., 2003; Karunanithi et al., 1991), but 

these models lacked the ability to capture temporal dependencies in fault trends. Although, Bisi and Goyal 

(2015) improved prediction accuracy using particle swarm optimization-based ANN models, they did not 

incorporate fault correction, limiting their applicability in real-world scenarios. To address this limitation, 

Hu et al. (2007) have explored fault correction processes using recurrent neural network (RNN) 

architectures like Elman neural networks to predict detected and corrected faults. Wang and Zhang (2018) 

introduced a deep encoder-decoder model to predict the number of software faults by leveraging their ability 

to capture temporal patterns and handle sequences of unequal length.  

 

Other studies have integrated testing effort considerations into fault prediction models. Xiao et al. (2020) 

used dilated casual convolution, a temporal convolutional network method for stepwise fault prediction. Li 

et al. (2022) introduce an attention-based encoder-decoder RNN (EDRNN) for software fault prediction. 

Long short-term memory has been used as the encoder-decoder layer with detection time as time series 

input to predict a cumulative number of faults. Raamesh et al. (2022) proposed a stepwise fault prediction 

model using brainstorm optimization and a late acceptance hill-climbing algorithm (BSO-LAHC). Their 

LSTM-based model demonstrated a 27% improvement in fault correction prediction and a 32% 

enhancement in fault detection prediction compared to existing approaches but it is dependent on 

hyperparameter tuning and extensive training data. Samal and Kumar (2024) proposed deep neural network 

model considering six different hidden layers with varying neutrons ranging between 10000, 5000, 2500, 

1000, 500, 250 respectively for each hidden layer. Their approach demonstrated the improvements in fault 

detection and correction processes compared to existing models.  

 

However, these models are computationally intensive and required large datasets for effective learning. In 

cases where data is sparse, imbalanced, or noisy, these models may fail to generalize well, leading to 

unreliable predictions. Computational complexity is another drawback. Training deep learning models, 

such as LSTM or encoder-decoder architectures, requires significant computational resources. 

Hyperparameter tuning, architecture selection, and optimization processes further increase the complexity. 

Furthermore, most existing non-parametric approaches primarily focus on fault detection, with limited 

attention given to fault correction modeling. While some studies have attempted to address this gap, the 

challenge of integrating detection and correction in a unified framework remains. Additionally, ANN-based 

models may struggle to adapt to evolving software development practices and changing operational 

environments, as they typically require retraining with updated datasets to maintain accuracy.  

 

Both parametric and non-parametric models have contributed significantly to software reliability modeling, 

but they face key limitations that need to be addressed for better fault prediction and reliability assessment 

as summarized below:  

• Traditional SRGMs, which rely on predefined distributions such as exponential, Weibull, or logistic, 

often struggle to accurately model the evolving fault patterns of dynamic software development 

approaches like Agile. 
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• SRGMs incorporate multiple parameters (e.g. fault reduction factors, environmental effects, imperfect 

debugging and multi-release dependencies) which increases their complexity and prone to overfitting.  

• Existing non-parametric approaches, especially deep learning models, require large datasets for accurate 

prediction, but fault data is limited and spans only for two to four weeks, restricting effective training. 

• Advanced deep learning models (e.g. RNNs, LSTMs, attention-based networks) involve extensive 

hyperparameter tuning, high time complexity, and longer processing times. 

• Many ANN-based models focus on predicting the number of detected faults but overlook the fault 

correction process, which is crucial for assessing software reliability comprehensively. 

• Existing models trained on specific datasets may not perform well when applied to different software 

projects, requiring extensive retraining and parameter optimization. 

 

Given the challenges associated with both parametric and non-parametric models, there is a critical need 

for a more efficient and simpler software reliability model that can effectively integrate fault detection and 

correction processes without relying on unrealistic assumptions and complex deep neural architectures. The 

proposed Dense Neural Network (DNN) based non-parametric model that addresses the limitations of 

existing models by simplifying the learning process, reducing time complexity and handling missing data 

using logarithmic encoding. This model integrates fault detection and correction processes while avoiding 

the complexities of deep neural architectures, making it more suitable for real-world software development. 

Specifically, the model offers the following benefits: 

• The proposed model explicitly incorporates both fault detection and fault correction without using the 

complex architecture and excessive layers, reducing the training costs, and processing time. 

• The proposed DNN-based approach achieves better prediction accuracy while reducing time complexity, 

as validate using four existing parametric and non-parametric models.  

• The proposed model reduces the risk of overfitting by employing early stopping, which is common 

concern in deep learning-based reliability models. 

• The proposed model is designed to perform well with both large and smaller datasets, as validated using 

five different datasets ensuring adaptability with varying length of failure data. 

• In addition to fault prediction, the model also assists in optimal release time determination, helping 

project managers make informed release time-to-market by balancing reliability with cost constraints. 

 

By addressing these limitations, the proposed model seeks to provide a more practical and accessible 

solution for software reliability prediction. This will enable developers to leverage the benefits of data-

driven software reliability modeling without encountering the complexities often associated with deep 

learning approaches. The subsequent sections of the paper cover the Proposed Model in Section 2, followed 

by model implementation and validation criteria in Section 3. Next, the results and discussion of the model 

implementation are discussed in Section 4. Furthermore, in Section 5, observation and comparison of the 

proposed model with existing work are discussed in detail to provide a better understanding. Then, in 

Section 6, the optimal release time determination is done based on cost and reliability. Additionally, the 

Limitations and the possibility of future work are presented in Section 7. Finally, the conclusion of the work 

is discussed by summarising the findings and implications in Section 8. 

 

2. Proposed Model 
This section outlines the methodologies employed in the development of the proposed machine learning-

based model for software fault prediction. It provides a comprehensive overview of the techniques used, 

including the architectural design of the Dense neural network (DNN) model, data preprocessing steps, 

model training procedures, and validation strategies.  

 



Dwivedi et al.: DNN-based Software Reliability Model for Fault Prediction and Optimal … 
 

 

1196 | Vol. 10, No. 5, 2025 

2.1 Proposed Model Architecture 
The proposed software reliability model uses a dense neural network architecture to predict both detected 

and corrected software faults, addressing key limitations of existing models. The architecture is designed 

to enhance prediction accuracy while effectively handling missing data and variations in input parameters 

through logarithmic encoding as shown in Figure 1. The architecture of the model consists of a sequential 

neural network with the following layers: 

• Input layer: The model takes input parameters such as time, cumulative detected faults, and corrected 

faults. 

 

• Hidden layers: The model architecture includes two dense (fully connected) hidden layers, with 64 and 

32 neurons respectively and ReLU (Rectified Linear Unit) activation functions: 

➢ Dense Layer 1: This layer captures complex, non-linear relationships between the input features. 

The ReLU activation function introduces non-linearity in the model, allowing it to learn intricate 

patterns within the data. 

➢ Dense Layer 2: This layer further refines the feature representations learned by the first dense layer. 

The additional depth allows the model to capture interactions between input features. 

 

• The output layer of the proposed DNN model is designed to provide predictions for the cumulative 

number of detected and corrected software faults. This layer consists of two neurons, one dedicated to 

detected faults and the other to corrected faults. By using a linear activation function the model can 

accurately forecast the cumulative faults.  

 

2.2 Data Preprocessing 
Before training the DNN model, several data preprocessing steps are performed:  

 

2.2.1 Feature Scaling Using Logarithmic Encoding  
The input layer applies logarithmic encoding to the raw input parameters. This is essential for managing 

wide variations in input data and mitigating the impact of missing values. By converting input features into 

a logarithmic scale, the model can better capture the underlying patterns in the data, leading to more 

accurate predictions. To make sure that a Dense Neural Network (DNN) learns effectively, it's crucial to 

scale its inputs within a specific range, usually between 0 and 1. This scaling ensures that the network can 

process the data optimally. One way to achieve this is by using an encoding function. This function converts 

the actual value, such as testing time, into a value within the range of 0 to 1, allowing the DNN to work 

efficiently with the data. 
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Figure 1. Model architecture. 
 

 
 

The input variable is encoded using a logarithmic transformation to account for the non-linear nature of the 

data using following function: 

𝒙∗ = 𝒍𝒏( 𝟏 + 𝜷𝒙)                                                                                                                                   (1) 
 

Here, 𝛽 is the encoding parameter, 𝑥 is input (in proper units) and x* is encoded value. However, the value 

of 𝑥∗ need to be confined within range [0, 1] for input parameters by selecting a proper value of 𝛽. Let, xmax 

is the maximum value of input variable (in proper units) and x*
max is the maximum value of the encoded 

input. Taking these values, value of 𝛽 is determined as following: 

𝜷 =
(𝒆𝒙𝒑(𝒙𝒎𝒂𝒙

∗ )−𝟏)

𝒙𝒎𝒂𝒙
                                                                                                                                    (2) 

 

The experiments done by (Bisi and Goyal, 2016) shows that choosing 𝑥𝑚𝑎𝑥
∗  within the range of 0.85 to 0.96 

for the logarithmic encoding leads to consistently lower Mean Absolute Percentage Error (MAPE) across 

diverse datasets. This indicates that scaling the data within this particular range allows the neural network 

to learn more effectively. By utilizing logarithmic encoding with a carefully chosen 𝛽 and 𝑥𝑚𝑎𝑥
∗ , we ensure 

that the normalized data falls within the desired range while preserving valuable information about the 

original data distribution.  

 

This encoding technique transforms the input values using the logarithm function, which helps in several 

ways: 

• Handling missing data: Logarithmic encoding reduces the skewness of input data distributions, making 

the model more robust to missing data. When data points are missing or incomplete, the transformed 

values provide a more stable input to the model, reducing the impact of these gaps on overall prediction 

performance. 

• Managing variation in input: Software testing data often exhibit high variability, with testing done in 

days, weeks, CPU hours etc. Logarithmic encoding compresses the range of input values, ensuring that 

large variations do not disproportionately influence the model and helps the network learn more 

effectively from the data. 
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2.2.2 Dataset Splitting 
To evaluate the performance and robustness of the proposed software reliability model, we conducted 

experiments using three different data splitting ratios: 60-40, 70-30, and 80-20. These ratios represent the 

proportions of the dataset allocated to the training and testing sets, respectively. Through extensive 

experimentation, we found that the 80-20 split ratio yielded the best performance across all datasets. This 

ratio provided a substantial amount of data for training, enhancing the model’s learning process, while still 

maintaining a sufficient testing set to validate its performance. 

 

2.3 Model Training 
The DNN model is trained using a systematic and efficient process designed to maximize predictive 

accuracy while minimizing computational overhead. Here are the key steps involved in the training process: 

 

2.3.1 Data Preparation 
The training dataset is divided into input features (X_train) and target variables (Y_train). The input features 

consist of time, detected faults and corrected faults, while the target variables are the cumulative detected 

and corrected faults. 

 

2.3.2 Model Compilation 
The model is compiled using the Adam optimizer, a popular choice for training neural networks due to its 

adaptive learning rate and efficient handling of sparse gradients. The mean squared error (MSE) is selected 

as the loss function to measure the difference between the predicted and actual values of cumulative 

detected and corrected faults. MSE is particularly suitable for regression tasks, providing a clear objective 

for the model to minimize prediction errors. 

 

2.3.3 Early Stopping 
To prevent overfitting, early stopping is employed during the training process. This technique monitors the 

loss function on the validation dataset and halts training if the loss does not improve for a specified number 

of epochs. By early stopping, the model avoids overfitting to the training data, ensuring better generalization 

to unseen data. 

 

2.3.4 Training Process 
The model is trained for a fixed number of epochs or until the early stopping criteria are met. This iterative 

process involves feeding batches of training data through the model, adjusting the weights and biases to 

minimize the loss function. The use of two dense layers with Rectified Linear Unit (ReLU) activation 

functions promotes faster training times and lower computational requirements compared to more complex 

deep learning architectures like RNNs or CNNs. This simplicity allows for efficient training while still 

capturing the essential patterns in the data. 

 

3. Model Implementation and Validation Criteria 
In this section, the proposed model has been implemented on actual datasets to predict future faults. 

Following the methodology discussed in Section 2.1, 80 percent of the data has been utilized for training 

the model. The results obtained from this implementation are evaluated using four error metrics: Mean 

Squared Error (MSE), Bias, Variance, and Adjusted R-Squared. Additionally, the performance of the 

proposed model is compared with existing models. The existing models are also implemented on these 

datasets, and the predicted faults are compared to assess their performance relative to the proposed model. 

The detailed description of the datasets used, evaluation criteria, and comparative models is provided in the 

subsequent subsections. This comprehensive evaluation highlights the effectiveness of the proposed model 
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in predicting both detected and corrected faults, showcasing its advantages in terms of prediction accuracy, 

time complexity, and computational requirements. 

 

3.1 Datasets 
For the training and evaluation of our proposed software reliability model, we utilized five project datasets 

containing historical software testing data. These datasets provide a rich source of information essential for 

building an accurate and reliable prediction model. The key attributes in each dataset include: 

• Testing time (t): The time elapsed during the software testing process. 

• Cumulative number of faults detected (Dt): The total number of faults detected up to a given testing 

time. 

• Cumulative number of faults corrected (Ct): The total number of faults corrected up to a given testing 

time. 

 

The study utilized five project datasets containing historical software testing data for model training and 

evaluation naming:  

i. Jira API V2.1 

ii. Jira API V2.2  

iii. Jira API V2.3  

iv. Firefox 3 

v. Firefox 3.5 

 

Each dataset offers a detailed account of testing times, cumulative detected faults, and cumulative corrected 

faults, which are crucial for training the proposed DNN-based model. Detailed descriptions of first three 

datasets are provided in the Appendix (Tables 15 to 17) and last two datasets are obtained from the existing 

research (Xiao et al., 2020). 

 

3.2 Validation Criteria 
The proposed DNN-based SRGM is evaluated against existing parametric and non-parametric models. This 

section presents a criteria used (Tables 1 and 2) for comparative analysis of the proposed model on above 

dataset, highlighting the advantages of the proposed model in terms of prediction accuracy, adaptability, 

and its ability to predict fault corrected.  

 
3.2.1 Evaluation Criteria 
To assess the effectiveness of the proposed model compared to existing approaches, we employ six different 

error criteria 

• Mean squared error (MSE): Measures the average squared difference between predicted and actual 

values. Lower MSE indicates better prediction accuracy. 

• Bias: Evaluates the systematic tendency of the model to under- or overestimate the actual values. Ideally, 

a model should exhibit minimal bias. 

• Variance: Assesses the spread of the predictions around the average. Lower variance signifies higher 

consistency in the model's predictions. 

• Adjusted R-squared: An adjusted version of the R-squared statistic that accounts for the number of 

model parameters. Values closer to 1 indicate a better fit between the model and the data. 
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3.2.2 Comparative Models 
We compare the proposed DNN-based SRGM with four existing models as summarized in Table 2: 

• Xiao model (Xiao et al., 2020) and Hu model (Hu et al., 2007): These are non-parametric models 

utilizing neural networks for predicting detected and corrected faults.  

• Dhaka model (Dhaka and Nijhawan, 2024) and Li model (Li and Pham, 2017): These are statistical 

software reliability models designed for fault correction.  

 

Therefore, the comparison with these models (Table 2) is carried out for predicting detected and corrected 

faults to ensure a fair comparison. 

 
Table 1. Error metrics. 

 

Error metrics 
Mean squared error 

Bias 
Variance 

Adjusted R squared 
 

 

 
 

Table 2. Comparison model. 
 

Comparison model 
Xiao model (Xiao et al., 2020) 

Hu model (Hu et al., 2007) 
Dhaka model (Dhaka and Nijhawan, 2024) 

Li model (Li and Pham, 2017) 
 

 

4. Results and Discussion  
This section presents the comprehensive results obtained from the evaluation of the proposed software fault 

prediction model. It provides a detailed analysis of the Dense neural network (DNN) model's performance 

in predicting both detected and corrected software faults across various datasets. The results are presented 

through a combination of comparison tables and prediction graphs, allowing for a clear understanding of 

the model's predictive capabilities. 

 

4.1 Dataset 1 (Jira API V2.1) 
In the first experiment with the Jira API V2.1 dataset, the proposed model, as well as the comparison models 

(Xiao Model (Xiao et al., 2020), Hu Model (Hu et al., 2007), Dhaka Model (Dhaka and Nijhawan, 2024), 

and Li Model (Li and Pham, 2017)), are implemented to predict detected and corrected faults. The proposed 

model required 100 epochs and a batch size of 8 to reach the optimal solution. In contrast, the Xiao model 

required 250 epochs with a batch size of 28, and the Hu model required 300 epochs with a batch size of 20. 

The parametric models (Dhaka Model, Li Model), which rely heavily on initial parameter settings, 

struggled to provide optimal solutions despite multiple attempts to adjust these parameters. The prediction 

error remained high for parametric models as shown in Tables 3 and 4. The proposed model demonstrated 

superior performance across all four-error metrics (Mean Squared Error, Bias, Variance, and Adjusted R-

Squared), highlighting the effectiveness of the non-parametric approach. The proposed model outperformed 

the existing comparison models consistently, as the predicted faults obtained from the implementations of 

the proposed model is much closer to the actual faults in the testing sets. 
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Table 3. Prediction error of detected faults (Dataset 1). 
 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 7.771 528.727 319.602 1832.527 1596.262 

Adjusted R2 0.999 0.994 0.997 0.975 0.978 

Bias 1.464 -1.705 -1.966 -11.177 -7.400 

Variation 5.092 20.812 17.871 41.560 39.487 

 

 

Table 4. Prediction error of corrected faults (Dataset 1). 
 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 25.274 415.227 430.682 3360.877 30118.699 

Adjusted R2 0.999 0.997 0.997 0.937 0.630 

Bias 1.906 -7.671 -6.818 -18.118 97.763 

Variation 8.805 14.192 15.747 55.385 144.213 

 
 

 
 

Figure 2. Actual vs predicted detected faults (Dataset 1). 

 

 

 
 

Figure 3. Actual vs predicted corrected faults (Dataset 1). 
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The graphical representation of the predicted fault and actual fault with respect to time has been presented 

in Figures 2 and 3. In these graphs, the detected faults obtained from the proposed model as well as 

comparison models has been plotted to highlight the prediction accuracy.  

 

4.2 Dataset 2 (Jira API V2.2) 
For the Jira API V2.2 dataset, the proposed model also showed a significant improvement in predicting 

detected and corrected faults. Similar to the first experiment, the proposed model reached optimal 

performance with 80 epochs and a batch size of 8, while the Xiao and Hu models required more epochs and 

larger batch sizes. The results indicated in Tables 5 and 6 shows that the proposed model had lower Mean 

Squared Error, Bias, and Variance, as well as better Adjusted R-Squared values compared to the existing 

models. This suggests that the proposed model is more accurate and reliable in predicting software faults.  

 
Table 5. Prediction error of detected faults (Dataset 2). 

 

Metric Proposed model  Xiao model Hu model Dhaka model Li model 

MSE 9.38 13.93 491.22 6908.89 6908.89 

Adjusted R2  0.9999 0.9998 0.9996 0.0006 0.0006 

Bias -0.13 -3.33 1.89 0.23 0.23 

Variation 1.09 3.60 20.95 84.06 84.06 

 

 

 

Table 6. Prediction error of corrected faults (Dataset 2). 
 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 10.30 34.51 105.04 5191.93 7161.24 

Adjusted R2 0.9999 0.9985 0.9971 0.0095 0.008 

Bias 1.12 -4.96 -9.13 -21.20 -18.00 

Variation 3.04 3.19 7.27 72.40 85.58 

 
 

 

 
 

Figure 4. Actual vs predicted detected faults (Dataset 2). 
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Figure 5. Actual vs predicted corrected faults (Dataset 2). 

 

Similarly, Figures 4 and 5 highlights the graphical representation of actual faults vs predicted fault for the 

20 percent of testing data. The Figure 4 shows the cumulative number of detected faults over time, 

comparing actual data (dotted line) with predictions from proposed model and various existing models 

(Xiao Model, Hu Model, Dhaka Model, and Li Model). The proposed model aligns closely with the actual 

detected faults as compared to Xiao and Dhaka models, whereas the Hu model underestimates significantly 

and the Li model shows an almost constant prediction, failing to capture the trend. The second Figure 5 

illustrates the cumulative number of corrected faults over time with these models. Similar to the Figure 4, 

the proposed model gives the better accuracy rather than the Xiao and Dhaka models, while the Hu model 

overestimates and the Li model underestimates the faults. 

 

4.3 Dataset 3 (Jira API V2.3) 
In the third experiment with the Jira API V2.3 dataset, the proposed model continued to demonstrate 

superior performance. With the training parameters (50 epochs and a batch size of 8), it outperformed the 

Xiao, Hu, Dhaka, and Li models across all error metrics as shown in Tables 7 and 8. 

 
Table 7. Prediction error of detected faults (Dataset 3). 

 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 0.53 2.35 28.92 518.05 518.05 

Adjusted R2 0.99 0.94 0.93 0.76 0.76 

Bias -0.13 -1.45 5.18 9.10 3.46 

Variation 0.72 0.98 1.47 22.95 22.95 

 

 

The parametric models again failed to achieve optimal results due to their dependence on initial parameter 

settings and assumptions. The proposed model's flexibility and ability to learn from data without restrictive 

assumptions made it more effective in fault prediction as depicted in Figures 6 and 7. 

 
Table 8. Prediction error of corrected faults (Dataset 3). 

 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 0.70 2.95 5.37 215.35 513.97 

Adjusted R2 0.99 0.96 0.92 0.88 0.85 

Bias 0.30 -0.85 -0.92 -2.99 0.00 

Variation 0.79 0.47 2.14 14.48 22.86 
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Figure 6. Actual vs predicted detected faults (Dataset 3). 

 

 

 
 

Figure 7. Actual vs predicted corrected faults (Dataset 3). 

 

 

4.4 Dataset 4 (Firefox 3) 
The Firefox 3 dataset provided further validation of the proposed model's effectiveness. The proposed 

model achieved optimal performance with 100 epochs and a batch size of 8, whereas the comparison models 

required more epochs and larger batch sizes to reach similar levels of performance. 

 
Table 9. Prediction error of detected faults (Dataset 4). 

 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 2.436 35.264 5.490 3.844 15.489 

Adjusted R2 0.999 0.989 0.997 0.996 0.9930 

Bias -0.0417 -0.8566 -0.215 -0.459 0.58 

Variation 1.5747 15.994 2.9557 2.9277 12.93 
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Table 10. Prediction error of corrected faults (Dataset 4). 
 

Metric Proposed model Xiao model Hu model Dhaka model Li model 

MSE 2.21 51.74 33.25 6.78 8.46 

Adjusted R2 0.999 0.95 0.98 0.99 0.900 

Bias 0.33 0.45 -5.13 0.21 0.27 

Variation 1.46 7.25 6.65 2.42 2.11 

 

 

 
 

Figure 8. Actual vs predicted detected faults (Dataset 4). 

 

 

The proposed model's predictions are more accurate, with lower Mean Squared Error and Bias, and better 

Variance, and Adjusted R-Squared values as shown in Tables 9 and 10. These results show the advantages 

of using proposed model for fault prediction in complex software systems. The graphical representations 

of predicted faults over time in Figures 8 and 9 showed that the proposed model's predictions aligned more 

closely with the actual fault data across different projects. 

 

 
 

Figure 9. Actual vs predicted corrected faults (Dataset 4). 
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4.5 Dataset 5 (Firefox 3.5) 
In the final experiment with the Firefox 3.5 dataset, the proposed model once again demonstrated its 

superiority. It required the 50 epochs and 8 batch size to outperformed the existing models in all four-error 

metrics. 

 

 
 

Figure 10. Actual vs predicted detected faults (Dataset 5). 

 

 

 

 
 

Figure 11. Actual vs predicted detected faults (Dataset 5). 
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Table 11. Prediction error of detected faults (Dataset 5). 
 

Metric Proposed model Xiao model Hu model Dhaka model Li model 
MSE 3.11004 13.8658 15.0122 34.9230 59.5101 

Adjusted R2 0.9998 0.9989 0.9984 0.9971 0.9941 
Bias 0.1107 -1.3293 -0.8902 -0.0184 2.3789 

Variation 0.7709 1.4577 2.0668 3.8868 6.2134 
 

 

Table 12. Prediction error of corrected faults (Dataset 5). 
 

Metric Proposed model  Xiao model Hu model Dhaka model Li model 
MSE 5.2830 11.9390 11.8780 181.6377 23.2319 

Adjusted R2 0.9976 0.9954 0.9957 0.9409 0.9910 
Bias 1.0137 -1.0366 -0.4878 4.522 1.0181 

Variation 2.7102 3.3164 3.4328 12.7742 4.7402 
 
 

Across all five datasets, the proposed DNN-based software reliability model consistently outperformed the 

existing models (Dhaka and Nijhawan, 2024; Hu et al., 2007; Li and Pham, 2017; Xiao et al., 2020) in 

terms of Mean Squared Error, Bias, Variance, and Adjusted R-Squared as depicted in Tables 11 and 12. 

The non-parametric approach of the proposed model, combined with its ability to handle missing data and 

variation in input through logarithmic encoding, proved to be a more effective method for software fault 

prediction. The detailed results and graphical representations (Figures 10 and 11) of predicted faults 

underscore the advantages of the proposed model in delivering accurate and reliable predictions for 

software. 

 

5. Observations and Comparison 
From the above experiments, it can be illustrated that the proposed model consistently outperformed the 

existing models in all four-error metrics. This section discusses about the results obtained from the proposed 

model and existing models to show the effectiveness of proposed model. The comparative analysis is 

conducted based on three critical parameters: prediction accuracy, computational requirements of 

hyperparameters, and time complexity. These parameters are essential for evaluating the overall 

performance and feasibility of the models in practical applications as detailed in further subsections.  

 

5.1 Prediction Accuracy 
Accurate prediction of detected and corrected faults can provide a more comprehensive view of software 

reliability and better guide testing and maintenance efforts. The proposed model demonstrated superior 

prediction accuracy compared to existing models such as Xiao Model (Xiao et al., 2020), Hu Model (Hu et 

al., 2007), Dhaka Model (Dhaka and Nijhawan, 2024) and Li Model (Li and Pham, 2017). The error 

prediction is evaluated using four error metrics, as discussed in Tables 3 to 12. After training the model, 

predictions for future faults are performed on the testing set of each dataset using the proposed and 

comparative models, as detailed in Tables 13 and 14. These tables present the average cumulative faults at 

the conclusion of the testing period for each dataset, offering insight into the models' predictive performance 

over the entire testing duration. The Prediction accuracy is evaluated using the mean absolute error (MAE) 

between the actual and predicted faults for the 20% testing sets of each dataset. The accuracy is calculated 

using the following formula, 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏𝟎𝟎% − (
𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑨𝑬)

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑨𝒄𝒕𝒖𝒂𝒍 𝑽𝒂𝒍𝒖𝒆
× 𝟏𝟎𝟎%)                                                                  (3) 

 

 

The proposed model achieved the highest prediction accuracy with an average of 98% for detected faults 
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and 96% for corrected faults across all five datasets as shown using graphs in Figure 12. Additionally, the 

overall prediction accuracy for each model is depicted in Figures 13 and 14 showcasing that the proposed 

model consistently outperformed other models in terms of prediction accuracy across all datasets. 

 

 

  
 

Figure 12. Prediction accuracy of detected and corrected faults (a-b). 

 

 

 
 

Figure 13. Average prediction accuracy of the models. 

 

 

 
Table 13. Prediction of cumulative detected faults at the end of testing. 

 

 Actual Proposed model Xiao model Hu model Dhaka model Li model 

Dataset 1 534 544 483 680 450 450 

Dataset 2 261 263 266 307 138 138 

Dataset 3 81 82 84 75 43 43 

Dataset 4 66 64 52 69 63 56 

Dataset 5 119 117 122 124 125 108 
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Table 14. Prediction of Cumulative corrected faults at the end of testing 
 

 Actual Proposed model Xiao model Hu model Dhaka model Li model 

Dataset 1 504 512 472 473 376 80 

Dataset 2 248 247 249 243 139 103 

Dataset 3 78 77 79 75 51 47 

Dataset 4 48 44 31 51 40 42 

Dataset 5 95 93 86 78 81 89 

 

 

 

5.2 Computational Performance 
The computational requirements for hyperparameters, such as the number of epochs, batch size, and 

learning rate, significantly affect the feasibility and efficiency of a model. Models with lower computational 

requirements are more practical for real-world applications, especially when computational resources are 

limited. The details of the hyperparameters required by models for training the dataset has been shown in 

Figure 14. It can be clearly observed that the proposed model required fewer epochs and a smaller batch 

size to reach optimal performance compared to the existing models. This efficiency in training indicates 

lower computational requirements and faster convergence, making the proposed model more practical for 

real-world applications. 

 

 

  
 

Figure 14. Hyperparameters used for the model validation. 

 

 

 

5.3 Time Complexity 
Time complexity is a critical factor in evaluating the scalability and real-time applicability of a model. 

Lower time complexity indicates that the model can be trained and deployed faster, making it more suitable 

for dynamic and large-scale environments. The proposed model employs a relatively simple architecture 

with two dense layers, each consisting of 64 neurons with ReLU activation functions. The time complexity 

for a single forward pass through this model is 𝑂(𝑛 ⋅ 𝑑) where n is the number of input features and d is 

the number of neurons in a layer. Considering the model's simplicity and the use of dense layers, the 

backward pass has a similar time complexity, leading to an overall training time complexity of 𝑂(𝐸 ⋅ 𝐵 ⋅
𝑛 ⋅ 𝑑), where E is the number of epochs and B is the batch size. This ensures faster training times and lower 

computational requirements compared to more complex architectures. 
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In contrast, the LSTM model and simple RNN model, with its ability to capture temporal dependencies, 

involves a more intricate architecture. Each LSTM cell requires the computation of multiple gates (input, 

forget, and output gates) and the cell state update, which significantly increases the computational load. 

The time complexity for a single forward pass through an LSTM layer is 𝑂(𝑇 ⋅ 𝑛 ⋅ ℎ2), where 𝑇 is the 

sequence length, n is the number of input features, and h is the number of hidden units. The backward pass 

similarly involves complex gradient calculations, resulting in a training time complexity of 𝑂(𝐸 ⋅ 𝐵 ⋅ 𝑇 ⋅
𝑛 ⋅ ℎ2). This higher complexity often translates to longer training times and greater computational demands 

unlike proposed model. This makes the proposed model a robust and practical solution for software fault 

prediction, suitable for various real-world applications where resource efficiency and quick adaptability are 

crucial. 

 

6. Optimal Release Time Determination Considering Cost and Reliability 
The process of fault prediction helps in analysing the reliability growth of the software product. Although, 

determining the number of detected and corrected faults in the software is not the sole concern for a software 

developer. Deciding when to release software is critical for market competition. Releasing too early can 

lead to numerous remaining defects and increased maintenance costs. While, delaying the release to reach 

high reliability incurs significant development and testing costs. The optimal release time ensures the 

software meets acceptable reliability standards at minimal cost, maximizes market opportunities by hitting 

crucial market windows, and efficiently manages resources. It enhances customer satisfaction and retention 

by delivering reliable products. Therefore, in this study the optimal release time has been determined using 

the proposed model by ensuring that the software meets a reliability requirement while minimizing the 

associated costs. The cost required to develop the software is divided into phases as discussed below: 

 

Setup and development cost (Cs): This includes all costs associated with setting up the development 

environment, initial design, coding, integrating tools and 3rd party APIs. 

 

Market opportunity cost (Cm): Market opportunity cost refers to the potential revenue and competitive 

advantages lost when a software product is not released at the most opportune time. Releasing a software 

product late can result in missed market windows, allowing competitors to capture market share and 

diminishing the product's potential impact. The Market Opportunity Cost is quadratic function of software 

release time established by Jiang et al. (2012) as formulated as  

𝑪𝒎 = 𝒄𝟎𝒕𝟐                                                                                                                                               (4) 

 

Testing cost (Ct): Cost incurred to perform the testing of various components of the project until the release 

time. It can be calculated as the product of cost of testing per unit time and the time to release the software 

as given below. 

𝑪𝒕 = 𝒄𝟏𝒕                                                                                                                                                  (5) 

 

Debugging cost in-house testing phase (Ch): Costs for fixing bugs discovered during the testing phase. 

After or during testing, the debugging phase starts, where the detected faults are corrected. This phase often 

runs concurrently with testing. 

𝐶ℎ = 𝑐2𝑚𝑐(𝑡)                                                                                                                                           (6) 

 

where, 𝑐2 is the cost required to correct a fault, and 𝑚𝑐(𝑡) is the number of faults corrected. 

 

Debugging cost in field-testing phase (Beta testing): This phase occurs after in-house testing and involves 

releasing the software to a controlled group of users. It’s typically shorter but crucial for catching 
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environment-specific or real-world faults.  

𝐶𝑓 = 𝑐3[𝑚𝑑(𝑡) − 𝑚𝑐(𝑡)]                                                                                                                      (7) 

 

Debugging in warranty period (Cw): Costs associated with fixing defects discovered during the warranty 

period offered to customers. If w is the warranty period, then the cost for removing faults in warranty period 

can be given as 

𝐶𝑤 = 𝐶4[𝑚𝑑(𝑡𝑤) − 𝑚𝑐(𝑡)]                                                                                                                    (8) 

 

Therefore, the total cost can be calculated as the summation of all the above costs and it can be represented 

as  

𝑪(𝒕) = 𝑪𝒔 + 𝑪𝒎 + 𝑪𝒕 + 𝑪𝒉 + 𝑪𝒇 + 𝑪𝒘                                                                                                  (9) 

𝑪(𝒕) = 𝒄𝒔 + 𝒄𝟎𝒕𝟐 + 𝑪𝟏𝒕 + 𝑪𝟐𝒎𝒄(𝒕) + 𝑪𝟑[𝒎𝒅(𝒕) − 𝒎𝒄(𝒕)] + 𝑪𝟒[𝒎𝒅(𝒕𝒘) − 𝒎𝒄(𝒕)                           (10) 

 

Let Tlc is the lifecycle of software and 𝑚𝐶(𝑡) denotes the total number of corrected faults up to period t. 

𝑎 = 𝑚𝑑(𝑇𝑙𝑐) denotes the number of total faults of software in the lifecycle. The reliability target set by the 

client and the development team through mutual agreement is denoted as R* The software reliability at time 

t, represented as R(t), can be formulated in terms of the cumulative number of corrected faults as 

𝑹(𝒕) =
𝒎𝒄(𝒕)

𝒂
                                                                                                                                          (11) 

 

The objective is to minimize the expected cost of software C(t) i.e.  

𝒎𝒊𝒏 𝑪 (𝒕) = min{𝒄𝒔 + 𝒄𝟎𝒕𝟐 + 𝑪𝟏𝒕 + 𝑪𝟐𝒎𝒄(𝒕) + 𝑪𝟑[𝒎𝒅(𝒕) − 𝒎𝒄(𝒕)] + 𝑪𝟒[𝒎𝒅(𝒕𝒘) − 𝒎𝒄(𝒕)]}      (12) 
 

Subject to 

𝑅(𝑡) ≥ 𝑅∗                                                                                                                                              (13) 

 

The cost associated with each phase of software development can vary significantly depending on factors 

such as the size of the project, specific requirements, and the functionalities being implemented. To model 

these variations, we assume the costs related to fault correction in different phases as 𝑐𝑠 = $5, 𝑐0 = $2, 𝑐1 =
$2, 𝑐2 = $3, 𝑐3 = $4, 𝑐4 = $5. This cost distribution has been determined based on insights from the 

literature (Aggarwal et al., 2015; Anand et al., 2022; Franch and Ruhe, 2016; Kapur et al., 2012), where 

the costs are carefully constrained according to the relationship c1 <c2 <c3 <c4 and the value of cs and c0 

can vary depending upon the software. This ordering reflects the understanding that as faults are detected 

and corrected in later stages of the software lifecycle, the cost associated with their correction generally 

increases.  

 

We are implementing the cost model on Dataset 1 (Jira API V2.1), focusing on determining the optimal 

release time based on reliability constraints. The lifecycle of the software is set at 150 days, with a warranty 

period w of 30 days. The reliability requirement R* is specified as 0.96. The time to reach this reliability 

target with minimal cost can be obtained using Equation (12). From the analysis, as illustrated in the Figure 

15, the software's reliability begins to increase significantly above 0.95 from day 108, eventually reaching 

the target reliability of 0.96 at day 110. At this point, the associated cost is $1924. Therefore, the optimal 

release time for the software, considering both the reliability target and cost minimization, is determined to 

be 110 days. 
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Figure 15. Optimal cost determination. 

 

 

This method can also be applied to other datasets as well to determine the optimal release time, enabling 

better decision-making in software project management. By calculating the time at which the reliability 

target is met with minimal cost, software developers can make informed decisions about the best time to 

release the software, ensuring a balance between product reliability and development costs. 

 

7. Limitations and Future Work  
The proposed system demonstrates promising results, it is important to acknowledge its limitations and 

outline potential areas for future research and development. Some limitations of the proposed work include: 

• While the proposed model has been validated using five datasets with varying characteristics, its 

generalizability across industrial-scale datasets from different domains (e.g., embedded systems, safety-

critical software) can be further explored. 

• The current model does not incorporate fault severity levels. It can provide a better reliability assessment, 

enabling better prioritization of fault correction efforts. 

• Due to the unavailability of actual cost structures and their variability across projects and organizations, 

cost calculations in this study are based on assumed values. 

 

By acknowledging these limitations, future research efforts can focus on expanding the model by 

incorporating diverse software fault datasets and integrating fault severity levels to enhance reliability 

assessment. Additionally, addressing fault dependencies across multiple sprints will improve long-term 

fault prediction in Agile development. Further advancements can include refining data preprocessing 

techniques and optimizing model performance for real-world applications.  

 

8. Conclusion 
This paper proposes an DNN-based non-parametric model to predict both detected and corrected faults, 

addressing the gap of simpler model in existing research. The proposed model demonstrated promising 

results in accurately predicting both detected and corrected faults across various software failure datasets. 

It utilizes a dense neural network architecture combined with logarithmic encoding of input parameters. 

Logarithmic encoding helps manage the wide range of input values, reducing skewness and enhancing the 
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training process's efficiency and accuracy. By capturing intricate patterns and interactions within the data 

that might be overlooked by linear or non-logarithmic methods, the model demonstrates superior 

performance in predicting faults across various software failure datasets. Accurate prediction of both 

detected and corrected faults is essential for software maintenance. It significantly reduces the need for 

post-deployment debugging and enhances overall software quality, contributing to the broader field of 

software reliability. Furthermore, the model's ability to determine the optimal release time based on the 

predicted faults ensures that software is released when it meets the reliability requirements of the customer, 

thereby minimizing costs associated with over-testing or premature release. This dual focus on fault 

prediction and optimal release time determination makes the proposed model a valuable tool for supporting 

the development and maintenance of high-quality software systems. 
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Appendix: Datasets 1 to 3 

Dataset 1: Jira V2.1 
Table 15. Jira V2.1 dataset. 

 

Time Detected faults 
Cumulative detected 

faults 

Corrected 

faults 

Cumulative 

corrected faults 
Time Detected faults 

Cumulative detected 

faults 

Corrected 

faults 

Cumulative corrected 

faults 

1 1 1 0 0 59 12 204 10 152 

2 3 4 0 0 60 10 214 7 159 

3 7 11 0 0 61 3 217 3 162 

4 17 28 2 2 63 1 218 1 163 

5 4 32 3 5 64 4 222 3 166 

8 5 37 4 9 65 6 228 6 172 

9 4 41 2 11 66 16 244 13 185 

10 1 42 1 12 67 15 259 11 196 

11 3 45 3 15 68 2 261 2 198 

12 2 47 1 16 70 4 265 5 203 

15 5 52 3 19 71 10 275 12 215 

16 7 59 4 23 72 24 299 17 232 

17 3 62 1 24 73 5 304 4 236 

18 3 65 2 26 74 3 307 5 241 

19 5 70 4 30 75 4 311 6 247 

22 4 74 2 32 76 1 312 2 249 

23 1 75 2 34 77 5 317 5 254 

24 2 77 2 36 78 3 320 6 260 

25 5 82 4 40 79 4 324 10 270 
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Table 15 continued… 
 

26 2 84 3 43 80 13 337 11 281 

29 2 86 2 45 81 7 344 9 290 

30 5 91 5 50 82 3 347 3 293 

31 2 93 2 52 83 3 350 1 294 

32 6 99 4 56 84 4 354 5 299 

33 1 100 2 58 85 13 367 13 312 

36 2 102 2 60 86 19 386 16 328 

37 6 108 4 64 87 7 393 8 336 

38 4 112 3 67 88 2 395 5 341 

39 3 115 2 69 89 7 402 6 347 

40 4 119 3 72 91 1 403 4 351 

42 1 120 2 74 92 21 424 14 365 

43 9 129 8 82 93 4 428 6 371 

44 13 142 10 92 94 16 444 12 383 

45 2 144 2 94 95 19 463 16 399 

46 8 152 7 101 96 6 469 12 411 

47 3 155 4 105 98 1 470 6 417 

49 1 156 1 106 99 20 490 22 439 

50 3 159 4 110 100 17 507 35 474 

51 8 167 7 117 101 8 515 6 480 

52 4 171 6 123 102 6 521 7 487 

53 3 174 2 125 103 2 523 3 490 

54 4 178 5 130 105 3 526 3 493 

56 1 179 1 131 106 3 529 5 498 

57 3 182 4 135 107 5 534 6 504 

58 10 192 7 142      

 
 

Dataset 2: Jira V2.2 
 

Table 16. Jira V2.2 dataset. 

 

Time Detected faults Cumulative 

detected faults 

Corrected 

faults 

Cumulative 

corrected faults 

Time Detected faults Cumulative detected 

faults 

Corrected 

faults 

Cumulative corrected 

faults 

107 1 1 0 0 137 9 137 9 94 

108 6 7 0 0 140 4 141 6 100 

109 3 10 1 1 141 7 148 8 108 

114 2 12 2 3 142 11 159 11 119 

115 8 20 1 4 143 17 176 13 132 

116 6 26 2 6 144 11 187 9 141 

117 12 38 5 11 145 2 189 3 144 

119 1 39 0 11 148 3 192 2 146 

120 5 44 3 14 149 12 204 12 158 

121 3 47 3 17 150 5 209 10 168 

122 5 52 2 19 151 4 213 9 177 

123 2 54 2 21 152 3 216 9 186 

124 9 63 4 25 155 2 218 7 193 

126 1 64 2 27 156 8 226 14 207 

127 6 70 5 32 157 6 232 7 214 

128 10 80 6 38 158 6 238 6 220 

129 10 90 4 42 159 4 242 8 228 

130 15 105 9 51 160 1 243 1 229 

131 1 106 5 56 163 9 252 11 240 

133 1 107 4 60 164 2 254 4 244 

134 3 110 5 65 165 2 256 0 244 

135 11 121 9 74 166 1 257 2 246 

136 7 128 11 85 169 4 261 2 248 
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Dataset 3: Jira V2.3 
 

Table 17. Jira V2.3 dataset. 
 

Time Detected faults Cumulative detected 

faults 

Corrected 

faults 

Cumulative corrected 

faults 

Time Detected faults Cumulative detected 

faults 

Corrected 

faults 

Cumulative corrected 

faults 

170 2 2 0 0 254 1 46 1 36 

171 1 3 1 1 255 1 47 2 38 

172 3 6 1 2 256 1 48 1 39 

176 2 8 1 3 263 1 49 1 40 

177 1 9 1 4 268 1 50 1 41 

178 1 10 1 5 271 1 51 1 42 

179 1 11 1 6 272 1 52 1 43 

180 1 12 1 7 275 1 53 1 44 

185 1 13 1 8 276 1 54 1 45 

186 1 14 1 9 277 2 56 2 47 

187 1 15 1 10 278 1 57 2 49 

189 1 16 1 11 280 1 58 1 50 

190 3 19 1 12 282 2 60 2 52 

191 1 20 1 13 284 1 61 1 53 

192 1 21 1 14 290 2 63 2 55 

204 2 23 1 15 292 2 65 2 57 

207 3 26 2 17 299 1 66 2 59 

208 3 29 2 19 302 1 67 1 60 

211 2 31 2 21 308 1 68 2 62 

212 1 32 1 22 309 1 69 1 63 

214 1 33 1 23 310 2 71 2 65 

215 1 34 1 24 316 1 72 1 66 

218 1 35 1 25 325 1 73 1 67 

219 1 36 1 26 338 1 74 2 69 

228 1 37 1 27 340 1 75 1 70 

234 1 38 1 28 344 1 76 1 71 

240 1 39 1 29 345 1 77 1 72 

241 1 40 1 30 348 1 78 1 73 

242 2 42 2 32 352 1 79 2 75 

243 1 43 1 33 358 1 80 2 77 

246 1 44 1 34 359 1 81 1 78 

247 1 45 1 35 
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