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Abstract 

Jaya algorithm is a highly effective recent metaheuristic technique. In this article, a study is carried out on estimating reliability 

considering the stress and strength following Weibull distribution with same shape & location parameter but different scale 

parameter. The novelty of this study lies in using and analyzing the effectiveness of Jaya algorithm in estimation of reliability via 

maximum likelihood estimation. The simulation studies are carried out with different sample sizes to validate the proposed 

methodology. The technique is also applied to real life data to show its implementation and the results are compared with the 

other methods in the literature. The proposed methodology is simple and gives precise results. The inclusion of location 

parameter in the study significantly impacts the estimated reliability. 

 

Keywords- Reliability, Stress strength interference, Weibull distribution, Maximum likelihood estimation, Jaya algorithm. 

 

 

 

1. Introduction 
The technological developments in the field of aircraft, nuclear power plants, infrastructure, 

transportation, etc. have raised serious concerns with reliability and safety as a small error in the design of 

applications in these sectors can cause a huge disaster. Novel challenges are posed every day and thus the 

field of reliability and safety is gaining increasing importance. The designing and assessment of 

components or operating procedures in the above-mentioned industries based on reliability can be very 

effective in preventing failures or accidents (Gaonkar et al., 2011; Peng et al., 2021). Properties of a 

component like stress and strength require precise designing as these are vital in determining the safety of 

the component. In real life, properties like stress and strength of mechanical components do not take a 

fixed value due to the various uncertainties in materials, loading conditions, environmental conditions, 

etc. Thus, they can be considered to follow a particular distribution which can be determined based on the 

application or prior data. Traditional methods may not be the best approach for designing of mechanical 

components as it does not take uncertainties into consideration. Hence, reliability-based design will be 

suitable in such cases which takes into account the probability of failure if the stress and strength takes 

various values within its range. In the context of stress and strength, reliability can be defined as the 

probability of strength being greater than stress (Abbas & Tang, 2014; An et al., 2008; Xie et al., 2004). If 

stress and strength follow some probability distribution, then the interference area of the two distributions 

give the probability of failure as can be seen in Figure 1. 

 

https://www.ijmems.in/
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Figure 1. Stress-strength interference. 

 

 

In order to determine reliability, estimating the parameters of stress strength distribution is crucial.  Vast 

research has been carried in estimation of reliability of components subjected to various distributions of 

stress and strength. Estimation of stress strength parameters and reliability has been carried out for 

exponential Frechet distribution using different estimation methods like Maximum likelihood estimation, 

Bayes estimation and uniformly minimum variance unbiased estimator (Badr et al., 2019). Researchers 

have worked on evaluating multicomponent stress strength reliability for Chen distribution using classical 

and Bayes estimation method. Studies have been carried out on stress and strength following Chen-

distribution with common shape parameter using classical and Bayesian methods evaluating the methods 

and carrying out analysis using Monte Carlo simulations and applications on real data sets (Kayal et al., 

2020). One of the studies have presented estimation of stress strength reliability for Maxwell-distributed 

variables with different parameters using maximum likelihood and Bayesian methods based on 

progressive type-II censored samples (Chaudhary & Tomer, 2018). A research has been carried out on 

Kumaraswamy distribution in estimating reliability using frequentist and Bayesian methods including 

Lindley’s approximation comparing estimators via Monte Carlo simulations and real data analysis 

(Kızılaslan & Nadar, 2018). Also research has been presented on Pareto distributed stress and strength 

using maximum likelihood estimation and comparing estimator performance through Monte Carlo 

simulations (Rezaei et al., 2015). Similar studies have been conducted by many other researchers in 

estimation of stress strength reliability analyzing different estimation methods for stress and strength 

following various distributions (Louzada et al., 2016; Raqab & Kundu, 2005; Rezaei et al., 2015). Recent 

studies have shown increasing usage of metaheuristics in estimation of parameters (Abbasi et al., 2006; 

Örkcü et al., 2015a; Örkcü et al., 2015b).  

 

Weibull distribution is widely used in reliability studies because of its flexibility and ability to fit a wide 

range of data (Elmahdy, 2015; Kumar & Ram, 2018; Marković et al., 2009; Raikar & Gaonkar, 2023). 

Extensive research has been carried out in estimating the reliability when stress and strength follow 

Weibull distribution. (Kundu & Raqab, 2009; Nadarajah & Jia, 2017; Valiollahi et al., 2013). If X and Y 

denote the Weibull random variables for the strength and stress respectively having common shape (p) & 

location parameter (μ) and different scale parameters (σ1 & σ2), then their probability density function 

(pdf) is given by  
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𝑓(𝑥; 𝜇, 𝜎1, 𝑝) =
𝑝

𝜎1
(𝑥 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎1
(𝑥 − 𝜇)𝑝} , 𝑥 > 𝜇, 𝜎1 > 0, 𝑝 > 0                                               (1) 

 

and 

𝑓(𝑦; 𝜇, 𝜎2, 𝑝) =
𝑝

𝜎2
(𝑦 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎2
(𝑦 − 𝜇)𝑝} , 𝑦 > 𝜇, 𝜎2 > 0, 𝑝 > 0                                               (2) 

 

respectively. The corresponding cumulative distribution function (CDF) for strength and stress is given 

by  

𝐹(𝑥; 𝜇, 𝜎1, 𝑝) = 1 − 𝑒𝑥𝑝 {−
1

𝜎1
(𝑥 − 𝜇)𝑝}                                                                                                   (3) 

 

and 

𝐹(𝑦; 𝜇, 𝜎2, 𝑝) = 1 − 𝑒𝑥𝑝 {−
1

𝜎2
(𝑦 − 𝜇)𝑝}                                                                                                   (4) 

 

respectively, where x > μ, y > μ, σ1 > 0, σ2 > 0 and p > 0. 

 

2. Maximum Likelihood Estimation (MLE) 
One of the classical and efficient method used in estimation of parameters is maximum likelihood 

estimation (Ramos et al., 2020; Rodrigues et al., 2018). MLE provides precise estimates with smallest 

variance. The method is considered to be simple, effective, consistent and the estimation accuracy 

increases with increase in sample size (Newey & McFadden, 1994). MLE can get accurate results if 

assisted with proper computational techniques. Let x be a random sample of size n drawn from W(𝜇,
𝜎1,  p) and y be the random sample of size m from W(𝜇, 𝜎2,  p). Then the likelihood function can be given 

as: 

𝐿 = ∏ 𝑓(𝑥𝑖)𝑛
𝑖=1 ∏ 𝑓(𝑦𝑗)

𝑚

𝑗=1
                                                                                                                      (5) 

𝐿 = ∏
𝑝

𝜎1
(𝑥𝑖 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎1
(𝑥 − 𝜇)𝑝} 

𝑛

𝑖=1
. ∏

𝑝

𝜎2
(𝑦𝑗 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎2
(𝑦 − 𝜇)𝑝}

𝑚

𝑗=1
                 (6) 

𝑙𝑛 𝐿 = (𝑚 + 𝑛) 𝑙𝑛 𝑝 −  𝑛 𝑙𝑛 𝜎1 − 𝑚 𝑙𝑛 𝜎2 +  (𝑝 − 1)[∑ 𝑙𝑛 (𝑥𝑖 − 𝜇) +𝑛
𝑖=1 ∑ 𝑙𝑛(𝑦𝑗 − 𝜇)𝑚

𝑗=1 ] −

1

𝜎1
∑ (𝑥𝑖 − 𝜇)𝑝𝑛

𝑖=1 −
1

𝜎2
∑ (𝑦𝑗 − 𝜇)

𝑝𝑚
𝑗=1                                                                                                         (7) 

 

The purpose is to maximize the log-likelihood Equation (7) i.e. the parameter values at which the log-

likelihood function attains it’s maximum. Solving likelihood equations involving nonlinear functions 

using numerical methods can be difficult because of the problems associated with it like non convergence, 

slower convergence and convergence to wrong values. Hence using a heuristic technique can be a good 

choice in solving the likelihood equations. In this paper, Jaya algorithm is used to maximize the above 

likelihood equation.  

 

3. Jaya Algorithm 
Metaheuristics have been used for a long time for solving optimization problems and are found to be 

effective in converging to optimal solutions (Kumar et al., 2017a; Kumar et al., 2017b; Pant et al., 2017; 

Ram & Davim, 2017). Particle Swarm Optimization has been used to solve a reliability optimization 

problem with conflicting objectives of minimizing system cost and maximizing reliability demonstrating 

its effectiveness in generating a well-distributed Pareto optimal set for decision-makers (Kumar et al., 
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2017b). Gray Wolf Optimizer, a nature-inspired metaheuristic has been applied to complex reliability 

optimization problems (Kumar et al., 2017a). Studies have been carried out in reliability optimization 

using the universal moment generating function approach combined with Ant Colony optimization 

algorithm to maximize system reliability (Meziane et al., 2005). Jaya algorithm is one such recently 

developed metaheuristic for solving optimization problems effectively. The specialty of the algorithm is 

that it constantly tries to move towards success and away from failure with each iteration. The algorithm 

has been used by many researchers in solving optimization problems (Ding et al., 2022; Du et al., 2018; 

Rao et al., 2017; Rao & Waghmare, 2017). Jaya algorithm has been used for parameter identification of 

an aerofoil demonstrating superior identification accuracy and robustness compared to other approaches, 

even under quasi-periodic oscillations (Ding et al., 2022). The algorithm has also been used for solving an 

optimization-based damage identification problem in engineering structures by formulating a hybrid 

objective function that combines the multiple damage location assurance criterion and modal flexibility 

change, demonstrating its robustness and efficiency in accurately detecting and quantifying structural 

damage even under high noise levels (Du et al., 2018). In machining processes, the algorithm has been 

implemented in optimization demonstrating its effectiveness in achieving optimal process parameters 

(Rao et al., 2017). In Jaya algorithm, the initial population is randomly generated using upper and lower 

bounds. Then, each candidate is updated based on the equation:  

A'j,k,i = Aj,k,i+ r1,j,i (Aj,best,i- │Aj,k,i│) - r2,j,i (Aj,worst,i- │Aj,k,i│)                                                                      (8) 

 

where, A'j,k,i is the new value of the kth variable for jth candidate solution, Aj,k,i is the old value of the kth 

variable for jth candidate solution and i is the iteration number. r1,j,i and r2,j,i are the random variables. The 

term (Aj,best,i - │Aj,k,i│) takes the candidate solution towards the best solution and the term (Aj,worst,i -

│Aj,k,i│) takes the candidate solution away from the worst solution. r1 and r2 are random variables 

between 0 and 1.  

 

 
 

Figure 2. Flowchart of Jaya algorithm. 
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The candidate solutions are updated among new and old values based on the best function value 

(maximum or minimum). Figure 2 shows the flowchart of Jaya algorithm which outlines the iterative 

process, starting from the initialization of design variables, population size and termination criteria 

followed by identifying the best and worst solutions within the population. The algorithm then updates 

solutions based on their proximity to the best and worst candidates. The decision-making process 

evaluates whether the new solutions outperform the previous ones. The process iterates until the 

termination criteria are met and the optimal solution is reported. 

 

4. Reliability Estimation using Jaya Algorithm 
For the cases involving stress-strength interference, the reliability can be given as P (X > Y) which is 

equal to 

R = P (X > Y) = ∫ (𝑓(𝑥; 𝜇, 𝜎1, 𝑝) ∫ 𝑓(𝑦; 𝜇, 𝜎2, 𝑝)𝑑𝑦
𝑥

0
)𝑑𝑥

∞

0
                                                                      (9) 

R = P (X > Y) = ∫ (

𝑝

𝜎1
(𝑥 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎1
(𝑥 − 𝜇)𝑝} 

∫
𝑝

𝜎2
(𝑦 − 𝜇)𝑝−1 𝑒𝑥𝑝 {−

1

𝜎2
(𝑦 − 𝜇)𝑝} 𝑑𝑦

𝑥

0

) 𝑑𝑥
∞

0
                                                   (10) 

 

On simplification, the reliability can be obtained as (Asgharzadeh et al., 2011) 

R =
𝜎1

𝜎1+𝜎2
                                                                                                                                                 (11) 

 

The log likelihood function for estimated values of parameters can be given as: 

𝑙𝑛 𝐿 = (𝑚 + 𝑛) 𝑙𝑛 𝑝̂ −  𝑛 𝑙𝑛 𝜎1̂ − 𝑚 𝑙𝑛 𝜎2̂ +  (𝑝̂ − 1)[∑ 𝑙𝑛 (𝑥𝑖 − 𝜇̂) +𝑛
𝑖=1 ∑ 𝑙𝑛(𝑦𝑗 − 𝜇̂)𝑚

𝑗=1 ] −
1

𝜎1̂
∑ (𝑥𝑖 − 𝜇̂)𝑝 −

1

𝜎2̂
∑ (𝑦𝑗 − 𝜇̂)

𝑝𝑚
𝑗=1

𝑛
𝑖=1                                                                                                     (12) 

 

where, 𝜇̂ and 𝑝̂ are common estimated values of location and shape parameter. 𝜎1̂ is the scale parameter 

for strength and 𝜎2̂ is the scale parameter for stress. The parameters are to be estimated in such a manner 

to maximize the likelihood Equation (12). Hence it becomes an optimization problem. In this study, Jaya 

algorithm has been used to maximize the likelihood Equation (12). Table 1 shows the detailed steps for 

evaluating reliability using Jaya algorithm. The number of design variables taken are 4 considering the 

four parameters to be estimated and the population size is taken as 10. Number of iterations is considered 

as the termination criteria. The initial population is randomly generated within the specified range and 

constraints. The best (maximum) and the worst (minimum) solution are calculated based on the log 

likelihood function. The population is then updated based on Equation (8). If the new population gives a 

better maximum value for Equation (12) than the previous one then the new population is accepted and 

the next iteration begins with the updated population. If the new population does not give a better 

maximum than the previous one the next iteration will be proceeded with the previous population. After 

the fixed number of iterations are completed and no variation in the convergence is observed, the final 

variables obtained in the population are the optimum parameter estimates. Run the above steps for a 

number of times to find the best population which gives the best maximum.  

 

If 𝜎1̂ and 𝜎2̂ are the estimates of scale parameters for strength and stress respectively, then the reliability 

estimate, bias and mean squared error can be calculated as: 

R̂ =
𝜎1̂

𝜎1̂+ 𝜎2̂
                                                                                                                                                  (13) 

Bias =
1

N
∑ (R̂ − R)N

i=1                                                                                                                                (14) 

MSE =
1

N
∑ (R̂ − R)2N

i=1                                                                                                                              (15) 
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Table 1. Steps for reliability estimation using Jaya algorithm. 
 

Step No. Procedure 

1. Generate a data of 500 samples of Weibull distribution with real parameters. 

2. Input the population size=10 & number of design variables as 4. 

3. Set the maximum number of iterations for each sample. 

4. Specify the boundaries for the variables. 

5. Generate a random population within the constraints. 

6. Compute the maximum likelihood function value from Equation (12). 

7. Update the population based on Equation (8). 

8. If the updated population gives better maximum, then accept the new population else reject. This completes one iteration. 

9. Go for next iteration and similarly run the program till the maximum iteration number is reached. 

10. The final set of variables is the best solution of estimated parameters for the current experiment. 

11. Compute reliability from Equation (13). 

12. Run the program for 500 experiments. 

13. Compute bias and MSE based on Equation (14) & (15) respectively. 

 

 

5. Simulation Studies 
Simulations are performed in order to study the effectiveness of the proposed methodology. The data is 

randomly generated for strength and stress using Weibull distribution with shape parameter 1.5 and 

location parameter 2. The study has been carried out by varying the scale parameter and analyzing its 

effect on reliability. The scale parameter for strength is taken 2, 2.5 and that for stress is considered as 1, 

1.5, 2, 2.5 and 3. The sample sizes selected are (25, 25), (50, 50), (100, 100) and (500, 500). Total 500 

independent experiments are conducted to check the repeatability of the proposed methodology. Through 

preliminary experiments it was observed that the optimization process stabilizes well before 200 

iterations. Increasing the iteration count beyond this did not significantly improve accuracy but led to 

higher computational time. Hence 200 iterations were chosen as a reasonable trade-off between precision 

and efficiency in evaluating the proposed methodology. 

 

Table 2 depicts the estimated values of reliability using the proposed methodology for different sample 

sizes when μ = 2, σ1 = 2, p = 1.5 and σ2 taking values 1, 1.5, 2, 2.5, 3. Figure 3 illustrates the estimated 

values of reliability for simulation of 500 experiments. The histograms indicate a normal distribution, 

with greater spread observed for smaller sample sizes. For instance, in the first histogram, the mean is 

approximately 0.66667, which corresponds to the true reliability. As the sample size increases, the spread 

decreases indicating improved estimation accuracy with the histogram values clustering more closely 

around 0.66667. Similar inferences are observed in the other histograms, which correspond to different 

values of σ₂. Additionally, the figure demonstrates in accordance with interference theory that as the scale 

parameter of stress (σ₂) increases, the reliability decreases. The reliability estimates using the proposed 

methodology are compared with the reliability using Monte Carlo simulations, R (MCS) for estimated 

parameters. It can be observed that the results of reliability estimates using the proposed methodology are 

very close to the reliability using Monte Carlo simulations. Comparison is also made by calculating bias, 

mean standard error and compilation time. 

 

Table 3 and Figure 4 shows these results for same set of parameters with σ1 = 2.5. The trends observed 

are also similar with the histograms exhibiting lesser variability for larger sample sizes. The expected 

inverse relationship between the scale parameter of stress (σ₂) and reliability is observed reinforcing the 

consistency of the findings across different parameter settings. The computational code for Jaya algorithm 

was compiled using MATLAB 2018 software. The estimated reliability values obtained in all the cases 

are very close to the real reliability values. Also, as the sample size increases the mean squared error 

reduces and the estimated reliability moves closer to the real reliability. But, at the same time as the 

sample size increases the time taken for compilation also increases. So, optimization for reliability is a 
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trade-off between the accuracy of reliability value and the compilation time. Figure 5 shows the 

convergence behavior of the proposed algorithm for different sample sizes. It can be seen that the Jaya 

algorithm values converge towards optimal solutions after at most 50 iterations in all cases. 

 
Table 2. Results of reliability estimate, bias, mean square error (MSE) and compilation time (t) when 

μ = 2, σ1 = 2, p = 1.5. 
 

n, m  
σ2 = 1 

(R = 0.66667) 
σ2 = 1.5 

(R = 0.57143) 
σ2 = 2 

(R = 0.5000) 
σ2 = 2.5 

(R = 0.44444) 
σ2 = 3 

(R = 0.4) 

(25, 25) 

R̂ 0.67048 0.57646 0.49865 0.44200 0.39395 

Bias 0.00381 0.00503 -0.00135 -0.00245 -0.00605 

MSE 0.00517 0.00248 0.00288 0.00235 0.00232 

t (s) 37.32877 37.31540 37.4313 37.53155 37.40354 

R (MCS) 0.67406 0.57615 0.50143 0.44374 0.39868 

(50, 50) 

R̂ 0.67021 0.57283 0.50234 0.44139 0.39831 

Bias 0.00355 0.0014 0.00234 -0.00305 -0.00169 

MSE 0.00094 0.001070 0.00126 0.00109 0.00108 

t (s) 64.15220 65.14447 64.1661 66.30122 65.09571 

R (MCS) 0.66752 0.57394 0.49544 0.44139 0.40095 

(100, 100) 

R̂ 0.66876 0.57147 0.49942 0.44363 0.39980 

Bias 0.00209 0.00004 -0.00058 -0.00081 -0.0002 

MSE 0.00047 0.00052 0.00058 0.00057 0.0005 

t (s) 118.114 118.1314 119.1136 118.6877 119.5847 

R (MCS) 0.67021 0.57328 0.49791 0.44162 0.39804 

(500, 500) 

R̂ 0.66781 0.57128 0.50026 0.44438 0.40018 

Bias 0.00114 -0.00015 0.00026 -0.00006 0.00018 

MSE 0.00008 0.0001 0.00011 0.00011 0.00009 

t (s) 550.1336 551.3976 551.2057 550.0018 552.2750 

R (MCS) 0.66686 0.57278 0.50246 0.44439 0.40023 

 
 

Table 3. Results of reliability estimate, bias, mean square error (MSE) and compilation time (t) 

when μ = 2, σ1 = 2.5, p = 1.5. 
 

n, m  σ2 = 1 
(R = 0.714286) 

σ2 = 1.5 
(R = 0.625) 

σ2 = 2 
(R = 0.5556) 

σ2 = 2.5 
(R = 0.5) 

σ2 = 3 
(R = 0.4545) 

(25, 25) R̂ 0.72190 0.62783 0.55491 0.50477 0.45412 

Bias 0.00761 0.00283 -0.00069 0.00477 -0.00038 

MSE 0.0022 0.00513 0.00373 0.00378 0.00399 

t (s) 37.38062 37.44218 37.30677 37.72256 37.48941 

R (MCS) 0.72272 0.62468 0.55738 0.49725 0.45317 

(50, 50) R̂ 0.71925 0.62720 0.55715 0.49797 0.45418 

Bias 0.00496 0.00220 0.00155 -0.00203 -0.00032 

MSE 0.00079 0.00101 0.00109 0.00122 0.00106 

t (s) 64.84338 65.1444 65.03510 65.00493 65.6791 

R (MCS) 0.71020 0.62719 0.55680 0.50152 0.45515 

(100, 100) R̂ 0.71713 0.62689 0.55583 0.49966 0.45510 

Bias 0.00284 0.00189 0.00023 -0.00034 0.00060 

MSE 0.00035 0.00052 0.00058 0.00069 0.00055 

t (s) 119.8956 120.6025 120.1363 120.2996 120.635 

R (MCS) 0.71626 0.62109 0.55707 0.50042 0.00542 

(500, 500) R̂ 0.71463 0.62610 0.55549 0.50019 0.45443 

Bias 0.00034 0.00110 -0.00011 0.00019 0.00007 

MSE 0.00007 0.00009 0.00010 0.00011 0.00011 

t (s) 637.9747 626.1736 626.3683 631.763 635.9884 

R (MCS) 0.71600 0.62433 0.55234 0.50070 0.45353 
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Figure 3. Histogram of 500 experiments for μ = 2, σ1 = 2, p = 1.5. 

 

 

 
 

Figure 4. Histogram of 500 experiments for μ = 2, σ1 = 2.5, p = 1.5. 
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Figure 5. Convergence behavior of Jaya algorithm for different sample sizes. 

 

6. Application to Real Life Data 
The proposed methodology has been applied to the strength data shown in Table 4 and Table 5 

previously used by many researchers in their study (Badar & Priest, 1982; Jia et al., 2017). The data 

depicts the strength in GPA of single glass fibers for 63 samples of length 10mm and 69 samples of 

length 20mm. The reliability in this context is evaluated based on the strength of gauge length 10mm 

being greater than strength of gauge length 20mm using the proposed methodology. The scale parameter 

for data of gauge length 10 mm is estimated to be 16.1367 and that for gauge length 20 mm is estimated 

to be 5.1950. The location and shape parameters are considered common for both the data and are 

estimated to be 0.9980 and 3.3837 respectively. The Kolmogorov-Smirnov test was conducted to check 

the fitness of estimated parameters with the data. For the data of gauge length 10mm, the Kolmogorov-

Smirnov statistic was found to be 0.0410, p value 0.998 and log likelihood function value as -59.4464. 

The Kolmogorov-Smirnov statistic, p value and log likelihood function value for data of gauge length 

20mm are calculated to be 0.0783, 0.8196 and -49.0843 respectively. This shows that the Weibull 

distribution with estimated parameters gives a good fit for both the data sets. The maximum value of log 

likelihood function in Equation (12) is obtained as -108.5307. The estimated reliability is 0.7564. The 

interference of distributions with the estimated parameters can be seen in Figure 6. The proposed 

methodology has diverse applications across multiple domains. In engineering it can be used in reliability 

analysis ensuring structural safety and material quality. In finance, it can be used to compare investment 

returns and assess credit risk, while in healthcare, it can be used to evaluate treatment effectiveness. 

Additionally, it can be implemented in comparing marketing strategies, performance evaluation in sports, 

model comparison, etc. making it a valuable tool for data-driven decision-making. The economic and 

commercial impact of this research lies in its potential applications in reliability engineering and risk 

assessment. By improving the estimation of stress-strength reliability using the Jaya algorithm, industries 

such as aerospace, automotive, manufacturing and materials science can enhance the accuracy of failure 

                          Sample Size = (10, 10)                                                     Sample Size = (50, 50) 

  

              Sample Size = (100, 100)                                                                        Sample Size = (500, 500) 
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predictions leading to better product design, reduced maintenance costs and improved safety. The 

methodology can also contribute in optimizing quality control processes, minimizing warranty claims and 

increasing overall operational reliability making it valuable for businesses aiming to improve product 

durability and cost-effectiveness. 

 
Table 4. Data of gauge length 10mm. 

 

Strength of glass fibers in GPA for data of gauge length 10mm 

1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397 2.445 2.454 

2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 

2.675 2.738 2.74 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.03 

3.125 3.139 3.145 3.22 3.223 3.235 3.243 3.264 3.272 3.294 3.332 

3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 

3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.02 - - - 

 

 
 

Table 5. Data of gauge length 20mm. 
 

Strength of glass fibers in GPA for data of gauge length 20mm 

1.312 1.314 1.479 1.552 1.7 1.803 1.861 1.865 1.944 1.958 1.966 

1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.14 2.179 2.224 2.24 

2.253 2.27 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 

2.435 2.478 2.49 2.511 2.514 2.535 2.554 2.566 2.57 2.586 2.629 

2.633 2.642 2.648 2.684 2.697 2.726 2.77 2.773 2.8 2.809 2.818 

2.821 2.848 2.88 2.809 2.818 2.821 2.848 2.88 2.954 3.012 3.067 

3.084 3.09 3.096 3.128 3.233 3.433 3.585 3.585 - - - 

 

The proposed methodology applied to the data set has been compared with other studies in the literature 

to evaluate its effectiveness and accuracy in estimating reliability. Table 6 shows the results of proposed 

methodology to that of the existing literature. The proposed methodology gives a better log likelihood 

value is achieved compared to those obtained using other methodologies in the literature for the 

considered data. The reliability obtained using proposed methodology is close to the results obtained by 

Kundu & Gupta (2006) and Kundu & Raqab (2009). The results for reliability estimate is higher 

compared to the estimate by Valiollahi et al. (2013) and slightly on the lower side compared to the results 

of Nadarajah & Jia (2017). 

 

 
 

Figure 6. Weibull plots for gauge length data with estimated parameters. 
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Table 6. Comparison of results for proposed methodology. 
 

Method/Reference Data 

set 

Shape 

parameter 

Scale 

parameter 

Location 

parameter 

K-S p-value Log likelihood 

value 

Reliability 

Proposed 
Methodology 

I 3.3837 16.1367 0.9980 0.0410 0.998 -59.4464 
0.7564 

II 3.3837 5.1950 0.9980 0.0783 0.8196 -49.0843 

Kundu & Gupta 

(2006) 

I 3.8770 37.2333 - 0.0800 0.8154 -60.1524 
0.7624 

II 3.8770 11.6064 - 0.0461 0.9985 -48.8703 

Kundu & Raqab 

(2009) 

I 4.6344 86.9579 1.312 0.0767 0.8525 - 
0.7406 

II 4.6344 248.3652 1.312 0.0464 0.9984 - 

Nadarajah & Jia 
(2017) 

I 5.049 0.12547 - 0.088 0.719 -39.438 
0.8000 

II 6.725 0.01046 - 0.050 0.997 -68.149 

Valiollahi et al. 

(2013) 

I 5.049 424.574 - 0.0867 0.7197 - 
0.5002 

II 5.505 214.131 - 0.0578 0.9658 - 

 

7. Conclusion 
In this study, the estimation of reliability for stress strength interference was carried out using Jaya 

algorithm via maximum likelihood estimation. It was considered that the stress and strength follow 

Weibull distribution with common location and shape parameter but different scale parameter. The 

methodology was applied to simulated data sets of different sample sizes and different scale parameters. 

The simulation studies assessed reliability using the proposed methodology, the real parameters and 

Monte Carlo simulation. The estimated reliability from the proposed methodology was compared to real 

reliability using bias and mean squared error. The results show that the estimated reliability values using 

the proposed methodology are very close to the real reliability values and the reliability using Monte 

Carlo simulations for estimated parameters. Additionally, the bias and mean squared error values were 

observed to be low, further validating the accuracy of the proposed methodology. Also, as the sample size 

increases, the estimated reliability moves closer to the real reliability and mean squared error also 

decreases supporting the general trend of estimated values approaching closer to real values. The 

proposed method using Jaya algorithm efficiently converges to optimal solutions after at the most 50 

iterations for all the considered sample sizes. An application to real life data is also shown along with the 

estimated reliability and interference graph. The inclusion of location parameter in the study significantly 

affects the reliability results. The comparison of the proposed methodology with other methods for the 

considered dataset demonstrates that it achieves a higher maximum log-likelihood value, highlighting its 

effectiveness over existing approaches in the literature. The above methodology can also be applied for 

other methods of estimation like least squares, weighted least squares, etc. in which optimization is 

involved. Further research can be carried by varying the location and shape parameters and analyzing its 

influence on reliability. Also, interference of various other distributions like gamma, Laplace, etc. 

including cases of systems with multiple components can be considered in evaluation of reliability. 

Additionally, a comparative analysis of the Jaya algorithm with other metaheuristic and standard 

numerical optimization methods can be explored under progressively censored data to evaluate its 

performance in reliability estimation.  
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