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Abstract 
Boolean functions form the fundamental components of symmetric cryptographic systems, serving as the building blocks. 
Modifying bent functions makes it feasible to design Boolean functions with desired properties that exhibit high non-linearity. The 

current study offers a comprehensive analysis of bent functions through its support, culminating in the introduction of an algorithm 

for the systematic construction of four variable bent functions. This algorithm enables the complete generation of all 896 four-

variable bent functions. Furthermore, we introduce a methodology for constructing n-variable bent functions (where n > 4), 
leveraging both the algorithm and an established secondary technique for bent function construction. Lastly, we examine the 

estimation of the count of bent functions by utilising certain properties associated with the support of bent functions. 

 

Keywords- Primary construction of bent functions, Algorithm to construct bent functions, Boolean functions, Number of bent 

functions, Auto correlation. 
 

 

 

1. Introduction 
In the field of cryptography, the utilisation of Boolean functions plays a crucial role in the advancement of 
ciphers (Neethu et al., 2018, Srinivasan et al., 2011). The pursuit of Boolean functions exhibiting maximum 
non-linearity has led to the development of bent functions, pioneered by Oscar Rothaus in the 1960s 
(Rothaus, 1976). Initially, bent functions introduced optimal non-linearity in cryptographic applications 
such as constructing ciphers CAST, Grain, and the hash function HAVAL. The construction of substitution 
boxes (S-boxes) is pivotal in block ciphers, as they provide essential cryptographic properties, such as non-
linearity and security. Creating S-boxes with robust cryptographic strength hinges on the chosen 
construction technique. An S-box that exhibits strong cryptographic properties can be constructed by 
generating a set of bent functions as its output. This approach ensures that favourable cryptological 
properties for the S-box are achieved, providing a compelling incentive for the development of bent 
functions. 
 
A substantial body of scholarly work has investigated the iterative, combinatorial, and exhaustive 
methodologies used to formulate bent functions (Carlet et al., 2014). Bent function constructions are 
broadly classified into two types: primary and secondary. Primary constructions entail the development of 
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bent functions based on their innate properties, whereas secondary constructions use  pre-existing bent 
functions as fundamental building blocks (Carlet et al., 2012). The Maiorana-McFarland construction, a 
significant primary construction technique, was independently introduced by Maiorana and McFarland. 
Through their research, these scholars determined the number of functions that can be generated using this 
construction, which remains a fundamental lower bound for the count of bent functions. Following that, a 
plethora of primary construction techniques have been developed. Carlet extensively explored primary 
construction methods for bent functions in a 1996 work (Carlet, 1996), while a subsequent publication in 
2004 focused on the secondary construction of resilient and bent functions (Carlet, 2004).  
 
Depending on the construction techniques employed and the structural characteristics of the functions, bent 
functions are further classified into distinct classes, including the Maiorana-McFarland class, the partial 
spread class, and the class 𝐻 (Dillon, 1974, Carlet and Mesnager, 2011). Carlet identified that new classes 
of bent functions can be generated from pre-existing bent functions through a secondary construction 
technique (Carlet, 1994). The thorough exploration of primary and secondary construction techniques for 
bent functions boosts possibilities and deepens our understanding of their properties and practical 
applications in various cryptographic contexts. 
 
In addition to the constructions mentioned above, bent functions include several noteworthy classes (Li et 
al., 2013, Mesnager et al., 2021), with Climent et al. (2012) contributing to this domain by developing a 
primary construction method for constructing bent functions that leverages a vector space basis. Secondary 
constructions, on the other hand, comprise techniques such as direct sum, Rothaus' construction, indirect 
sum, and their generalisations (Dillon, 1974). 
 
The manipulation of diverse properties of bent functions results in the creation of functions with significant 
cryptographic relevance, rendering them indispensable for the comprehensive study of bent functions. The 
introduction of the construction of bent functions using Niho power functions by Dobbertin et al. (2006) 
has paved the way for various findings and outcomes achieved through the analysis of Niho bent functions 
(Budaghyan et al., 2012). 
 
By imposing additional constraints and extending the capabilities of bent functions, it becomes possible to 
create bent functions well-suited for diverse cryptographic applications, with a notable example being the 
normal extension of bent functions (Carlet et al., 2004). Boolean functions exhibiting rotation symmetry 
invariance are particularly advantageous for hardware implementations as they offer cost-effectiveness 
(Cusick et al., 2016, Dalai et al., 2009). Within this context, rotation symmetric bent functions assume 
significant importance. Additionally, bent functions that can be represented as monomials hold desirable 
properties (Leander, 2006). 
 
Apart from nonlinearity, the algebraic degree of Boolean functions is essential, and Eliseev and 
Stepchenkov's demonstration in 1962 revealed that for 𝑛 ≥  4, the degree of an 𝑛-variable bent function 

cannot exceed 
𝑛

2
, setting the foundation for establishing an upper bound on the number of bent functions. 

Consequently, it was found that constructing Boolean functions with maximum nonlinearity and high 
algebraic degrees is impossible. A Boolean function 𝑓 is considered perfect nonlinear if 𝑓(𝑥) ⊕ 𝑓(𝑥 ⊕ 𝒂) 
is balanced for all non-zero elements 𝒂 as discussed by (Nyberg, 1991; Meier and Staffelbach, 1990). 
Importantly, all bent functions inherently exhibit perfect nonlinearity.  
 
Rank serves as a measure for comparing two functions to ascertain their affine equivalence; if two bent 
functions possess different ranks, it indicates they are not affine equivalent. However, the converse is not 
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always valid, as two bent functions with the same rank may not necessarily be affine equivalent. Gadouleau 
et al. (2023) presented the construction of partial spread bent functions using subspaces generated by linear 
recurring sequences and calculated the ranks of these generated functions, thereby contributing to a deeper 
comprehension of these constructions. 
 
Notably, Langevin and Leander (2011) attempted to determine the count of all 8-variable bent functions by 
partitioning the space of all such functions. This approach closely resembles an exhaustive search in its 
nature and objective. Despite the existence of numerous construction methods for bent functions, the 
complete set of bent functions remains to be discovered, and there currently needs to be a comprehensive 
method to construct all possible bent functions. Consequently, any novel construction method in this area 
holds relevance. In this context, the process involves augmenting an initially empty set by progressively 
adding elements to form a support for a bent function. To facilitate the random generation of bent functions, 
we propose an algorithm. 
 
A Boolean function's domain can be represented as a field or an 𝑛-dimensional vector space with 2𝑛 
elements and characteristic 2. While existing literature primarily adopts the field as the domain for 
construction techniques, our approach in this work considers the domain as an 𝑛-dimensional vector space 
over the field with two elements. In contrast to traditional construction procedures for bent functions that 
heavily rely on the properties of the algebraic normal form in Boolean functions, our approach utilises the 
properties of the support of bent functions for the construction process.  
 
This study delves into several distinctive properties of bent functions and their support. Leveraging these 
properties, the authors aim to formulate an algorithm for constructing bent functions and provide an 
approximation for their count. Section 2 introduces the fundamental concepts defining Boolean functions. 
In section 3, a subset 𝛿𝑓 of 𝐺𝐹(2) 𝑛 is defined for each 𝑛-variable Boolean function 𝑓, along with 

establishing a relationship between 𝛿𝑓 and the weight of 𝑓. Furthermore, a characterization criterion for 

bent functions is described, forming the basis for an algorithm that facilitates their primary construction. 
Section 4 derives an equation to approximate the count of bent functions using the proposed primary 
construction algorithm. Additionally, we present a construction method for 𝑛-variable bent functions 
(where 𝑛 is even and 𝑛 > 4) by combining an existing secondary construction technique with the proposed 
primary construction algorithm. The practical usability of the proposed algorithm is discussed in section 5, 
while section 6 concludes the paper. 
 

2. Preliminaries 

It is to be noted that the notation 𝐺𝐹(2) is the field with two elements 0 and 1, under addition modulo 2 
denoted by ⊕ and multiplication modulo 2 denoted by writing two elements conjointly. 𝐺𝐹(2) 𝑛 is used for 
representing the 𝑛-dimensional vector space over the field 𝐺𝐹(2), which consists of 𝑛-tuples with entries 
from 𝐺𝐹(2). The elements in 𝐺𝐹(2)𝑛 have been denoted using bold letters, and 0 is used to denote the 
vector (0, 0, ..., 0). 𝐺𝐹(2)𝑛∗ consists of all elements of 𝐺𝐹(2)𝑛 except 0. 
 
For any two vectors 𝒂 =  (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝒃 =  (𝑏1, 𝑏2, . . . , 𝑏𝑛), denote: 

• Addition of 𝒂 and 𝒃 as 𝒂 ⊕ 𝒃 =  (𝑎1 ⊕ 𝑏1, 𝑎2 ⊕ 𝑏2, . . . , 𝑎𝑛 ⊕ 𝑏𝑛).  
• Scalar product of 𝒂 and 𝒃 as ⟨𝒂, 𝒃⟩ defined by ⟨𝒂, 𝒃⟩ =  𝑎1𝑏1 ⊕ 𝑎2𝑏2 ⊕. . .⊕ 𝑎𝑛𝑏𝑛. 
 
Denote #𝐴 as the cardinality of a set 𝐴. A Boolean function in 𝑛-variable is a function from 𝐺𝐹(2)𝑛 to 
𝐺𝐹(2). 𝐵𝑛 denotes the collection of all Boolean functions in 𝑛-variable. 
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For any d ∈ 𝐺𝐹(2) 𝑛 and 𝑐 ∈ 𝐺𝐹(2), the affine function is 𝑙𝑑,𝑐 (𝒙) =  ⟨𝒅,𝒙⟩ ⊕ 𝑐 . 

 
There are many ways of representing Boolean functions. However, in this paper we use a truth table to 
represent Boolean functions. The truth table representation of an 𝑛-variable Boolean function 𝑓 denoted by 
𝑓(𝑥) is a 2𝑛 bit array with elements from {0,1}, and is defined as (𝑓(𝒙𝟏), 𝑓(𝒙𝟐),. . . , 𝑓(𝒙𝟐𝒏))  where 

𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝟐𝒏 are the elements from 𝐺𝐹(2)𝑛 in lexicographical order. Similarly, define 𝑓(𝑥 ⊕ 𝒂) as 
(𝑓(𝒙𝟏 ⊕ 𝒂), 𝑓(𝒙𝟐 ⊕ 𝒂), . . . , 𝑓(𝒙𝟐𝒏 ⊕ 𝒂)). 
 
The Algebraic normal form of f at 𝒙 = (𝑥1,𝑥2,𝑥3, . . . , 𝑥𝑛) is given by  

𝑓(𝒙) =⊕𝒂∈𝐺𝐹(2)𝑛 𝑏𝑎𝑥1
𝑎1𝑥2

𝑎2𝑥3
𝑎3 … 𝑥𝑛

𝑎𝑛                                                                                                                (1) 

 
where, 𝑏𝑎 ∈ 𝐺𝐹(2) and 𝒂 = (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛). 
 
Hamming weight (or weight) of a vector, denoted by 𝑤𝑡(𝒙), is the number of 1s in the vector 𝒙. The 
hamming weight of a Boolean function is the weight of its truth table. An n-variable Boolean function f is 
balanced if 𝑤𝑡(𝑓) is half of the cardinality of 𝐺𝐹(2)𝑛. Hamming distance (or distance) between two 
functions 𝑓, 𝑔 ∶ 𝐺𝐹(2)𝑛 → 𝐺𝐹(2) denoted by 𝑑(𝑓, 𝑔) is defined as 𝑑(𝑓, 𝑔) = 𝑤𝑡(𝑓 ⊕  𝑔) (Ciungu, 2012). 
Support of a function 𝑓 denoted by 𝑆𝑢𝑝𝑝(𝑓) is defined as the set, {𝒙 ∈  𝐺𝐹(2)𝑛; 𝑓(𝒙)  =  1}. The algebraic 

degree of a Boolean function is defined with respect to the algebraic normal form representation of that 

Boolean function. Algebraic degree of a function 𝑓(𝑥) =⊕𝒂∈𝐺𝐹(2)𝑛 𝑏𝑎𝑥1
𝑎1𝑥2

𝑎2𝑥3
𝑎3 … 𝑥𝑛

𝑎𝑛 is defined as 

max
𝒂𝜖𝐺𝐹(2)𝑛;𝑏𝑎=1

𝑤𝑡(𝒂)                                                                                                                                                                 (2) 

 
Definition 1: The nonlinearity of 𝑓 is given by 
𝑛𝑙(𝑓) = min

𝒂𝜖𝐺𝐹(2)𝑛,𝑐∈𝐺𝐹(2)
𝑑(𝑓, 𝑙𝒂 ,𝑐)                                                                                                                                    (3) 

 

Definition 2: An n variable Boolean function 𝑓 with 𝑛𝑙(𝑓) = 2𝑛−1 − 2
𝑛

2
−1

 is called a bent function. 
 
These functions are defined only for positive even integer 𝑛.  

The weight of these functions is either 2𝑛−1 − 2
𝑛

2
−1

 or 2𝑛−1 + 2
𝑛

2
−1

 . So, corresponding to each n, we can 

partition the collection of all bent functions into two equal halves with weights 2𝑛−1 − 2
𝑛

2
−1

 and 2𝑛−1 +

2
𝑛

2
−1

 . In this paper, theorems, lemmas, and corollaries concerning bent functions with weight 2𝑛−1 − 2
𝑛

2
−1

 
have been discussed.  
 
Autocorrelation is an important tool for analysing the cryptographic properties of Boolean functions and is 
defined as follows.  
 
Definition 3: Autocorrelation of 𝑓 with shift 𝒂 is  

∆𝑓(𝒂)  = ∑ (−1)𝑓(𝒙)⊕𝑓(𝒙⊕𝒂)
𝐱∈𝐺𝐹(2)𝑛                                                                                                                                          (4) 

 
Boolean functions with a low absolute value of autocorrelation for all nonzero values of 𝑎 are of great 
importance. Hence, an indicator (termed absolute indicator) for reflecting this property is defined.   
 
Definition 4: Absolute indicator is the maximum of autocorrelation, it defined as 
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∆𝑓= max
𝒂𝜖𝐺𝐹(2)𝑛∗

|∆𝑓(𝒂)|                                                                                                                                      (5) 

 

3. Construction of Bent Function 
The collection of all 𝒙 that satisfy 𝑓(𝒙)𝑓(𝒙 ⊕ 𝒂) = 1 (the point-wise multiplication results in 1) denoted 
by 𝛿𝑓  (𝒂), has an inevitable role in the construction of the special type of functions.   

Define, 
𝛿𝑓(𝒂) = {𝒙 ∈  𝐺𝐹(2)𝑛;𝑓(𝒙) = 𝑓(𝒙 ⊕ 𝒂) = 1}. 

 
The following lemma explains a relation between 𝑤𝑡(𝑓) and 𝛿𝑓(𝟎).  

 
Lemma 1. For an n-variable Boolean function 𝑓 
#𝛿𝑓(𝟎) =  𝑤𝑡(𝑓)                                                                                                                                                                       (6) 

 
Proof. We have  
𝛿𝑓(𝟎) =  {𝒙 ∈  𝐺𝐹(2)𝑛;𝑓(𝒙) = 𝑓(𝒙 ⊕ 𝟎) = 1},  

           =  {𝒙; 𝑓(𝒙) = 1}. 
Hence #𝛿𝑓(𝟎) =  𝑤𝑡(𝑓). 

  
Lemma 2. Let 𝑓 be an n-variable Boolean function with 𝛿𝑓(𝒂) ≠  ∅ for some 𝒂 ∈  𝐺𝐹(2)𝑛∗. Then  

 𝑆𝑢𝑝𝑝(𝑓) = ∪𝒂∈𝐺𝐹(2)𝑛∗ 𝛿𝑓(𝒂)                                                                                                                                                            (7) 

 
Proof. We need to prove that  
∪𝐚∈𝐺𝐹(2)𝑛∗ 𝛿𝑓 (𝒂) ⊆ 𝑆𝑢𝑝𝑝(𝑓) and 𝑆𝑢𝑝𝑝(𝑓) ⊆ ∪𝒂∈𝐺𝐹(2)𝑛∗ 𝛿𝑓(𝒂). 

Let 𝒙 ∈ 𝛿𝑓(𝒂) for some 𝒂 ∈  𝐺𝐹(2)𝑛∗.  

 ⇒  𝑓(𝒙) =  𝑓(𝒙 ⊕ 𝒂) = 1  
 ⇒  𝒙 ∈  𝑆𝑢𝑝𝑝(𝑓)   
 ⇒  𝛿𝑓(𝒂) ⊆  𝑆𝑢𝑝𝑝(𝑓). 

 
Since a is arbitrary,  
∪𝐚∈𝐺𝐹(2)𝑛∗ 𝛿𝑓 (𝒂) ⊆ 𝑆𝑢𝑝𝑝(𝑓).  

Let y be an element from 𝑆𝑢𝑝𝑝(𝑓). Since 𝛿𝑓(𝒂) ≠  ∅, the set 𝛿𝑓(𝒂) has at least two elements (if x is there, 

then 𝒙 ⊕ 𝒂). Let x1 and x2 are two different elements in 𝑆𝑢𝑝𝑝(𝑓). Also assume that 𝒙𝟏  ≠  𝒚. If 𝒃 =  𝒙𝟏  ⊕
 𝒚, then 𝒚 ∈  𝛿𝑓(𝒃). This is true for all elements from 𝑆𝑢𝑝𝑝(𝑓). 

Hence, 
𝑆𝑢𝑝𝑝(𝑓) ⊆ ∪𝐚∈𝐺𝐹(2)𝑛∗ 𝛿𝑓(𝒂). 

 
The next theorem explains a relation between 𝛿𝑓 (𝒂) and weight of a Boolean function. 

  
Theorem 1. Relation between 𝑤𝑡(𝑓) and #𝛿𝑓(𝒂)) Let 𝑓 be a Boolean function of n-variables with 

#𝛿𝑓(𝒂) =  𝐶 and 𝐶 ≠ 0 ∀ 𝒂 ∈ 𝐺𝐹(2)𝑛∗ then 
𝐶×(2𝑛−1)

𝑤𝑡(𝑓)−1
= 𝑤𝑡(𝑓) (where 𝐶 is a constant).  

 
Proof. 𝑤𝑡(𝑓) = #𝑆𝑢𝑝𝑝(𝑓) = # ∪𝐚∈𝐺𝐹(2)𝑛∗ 𝛿𝑓(𝒂) 

Let #𝛿𝑓(𝒂) = 𝐶 for all 𝒂 ∈ 𝐺𝐹(2)𝑛∗ and #𝐺𝐹(2)𝑛∗ is 2n − 1. 

Each 𝒙 with 𝑓(𝒙) = 1 is contained in every 𝛿𝑓(𝒂) with 𝑓(𝒙 ⊕ 𝒂) = 1. There are exactly 𝑤𝑡(𝑓) number 
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of  𝛿𝑓 (𝒂) with 𝒙 ∈ 𝛿𝑓(𝒂). So, each x will be contained in exactly 𝑤𝑡(𝑓) − 1 sets (excluding 𝒂 = 𝟎). 

#𝑆𝑢𝑝𝑝(𝑓) =
#𝛿𝑓(𝒂)×𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑
=

𝐶×(2𝑛−1)

𝑤𝑡(𝑓)−1
                                                                                             (8) 

 
Hence, the relation. 
 
Note: Suppose 𝐶 = 0 in Theorem 1, then the function will be either with weight one or zero. 

 

3.1 Characterization of Bent Functions 
The following theorem gives the characterization of bent functions with respect to absolute indicator.  
 
Theorem 2. A Boolean function 𝑓 is bent if and only if the absolute indicator of 𝑓 is zero, that is ∆𝑓  =  0 

(Zhang and Zheng, 1996). 
 
The set 𝛿𝑓(𝒂) and autocorrelation have some similarities. Theorem 3, Theorem 4 and Corollary 1 illustrate 

a connection between 𝛿𝑓(𝒂) and autocorrelation. 

 
Theorem 3. For an n-variable Boolean function, following are equivalent. 

i. #𝛿𝑓(𝒂) = 2𝑛−2 ± 2
𝑛

2
−1 ∀ 𝒂 ∈ 𝐺𝐹(2) 𝑛∗. 

ii. 𝑤𝑡(𝑓) = 2𝑛−1 ± 2
𝑛

2
−1 and 𝑓 is bent. 

 
Proof. Proof of the theorem can be demonstrated by considering the following two cases.  

Case 1: Let 𝑓 be a bent function of n-variables with weight 2𝑛−1−2
𝑛

2
−1

 . 
Since 𝑤𝑡(𝑓(𝑥))  =  𝑤𝑡(𝑓(𝑥 ⊕  𝒂)) ∀𝒂 ∈  𝐺𝐹(2)𝑛, 

𝑤𝑡(𝑓(𝑥 ⊕  𝒂)) is also 2𝑛−1−2
𝑛

2
−1

. 
 
Since f is bent, 

𝑤𝑡(𝑓(𝑥) ⊕ (𝑓(𝑥 ⊕  𝒂)) = 2𝑛−1 [𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2]                                                                                                         (9) 

                                           =  𝑤𝑡(𝑓(𝑥)) + 𝑤𝑡(𝑓(𝑥 ⊕  𝒂)) − 2 × #𝛿𝑓(𝒂) (𝑅𝑒𝑖𝑑, 2021)                            (10) 

                                           = (2𝑛−1−2
𝑛

2
−1)+ (2𝑛−1−2

𝑛

2
−1) − 2 × #𝛿𝑓(𝒂)                                                (11) 

⇒ #𝛿𝑓(𝒂) = 2𝑛−2 − 2
𝑛

2
−1.  

 

Let #𝛿𝑓(𝒂) = 2𝑛−2 − 2
𝑛

2
−1 ∀ 𝒂 ∈ 𝐺𝐹(2) 𝑛∗. 

 

We get 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1 . [Theorem 1] 

 

𝑤𝑡(𝑓(𝑥) ⊕ (𝑓(𝑥 ⊕  𝒂)) =  𝑤𝑡(𝑓(𝑥)) + 𝑤𝑡(𝑓(𝑥 ⊕  𝒂)) − 2 × #𝛿𝑓(𝒂)                                                   (12) 

                                           = (2𝑛−1−2
𝑛

2
−1) + (2𝑛−1−2

𝑛

2
−1) − (2𝑛−1−2

𝑛

2 )                                           (13) 

                                           = 2𝑛−1∀ 𝒂 ∈ 𝐺𝐹(2)𝑛                                                                                                  (14) 

⇒ ∆𝑓  =  0                                                                                                                                                                             (15) 

⇒ 𝑓 is bent and 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1

. 
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Case 2: #𝛿𝑓(𝒂) = 2𝑛−2 + 2
𝑛

2
−1∀ 𝒂 ∈ 𝐺𝐹(2)𝑛∗ if and only if  𝑓 is a bent function with weight 2𝑛−2 + 2

𝑛

2
−1

. 

The proof is similar to case 1. 
 
Next theorem states the connection between support of a bent function and one of its properties.  
 
Theorem 4. Let 𝑓 be an n-variable Boolean function with support 𝑋, then  

#𝛿𝑓(𝒂) = 2𝑛−2 + 2
𝑛

2
−1∀ 𝒂 ∈ 𝐺𝐹(2)𝑛∗ if and only if each element in 𝐺𝐹(2) 𝑛∗ can be expressed as the sum 

of two vectors of 𝑋 in 
2𝑛−2±2

𝑛
2

−1

2
 ways. 

 
Proof. Let 𝑓 be an n-variable Boolean function with support 𝑋. The theorem can be proved by considering 
two cases.  
 

Case 1: Let #𝛿𝑓(𝒂) = 2𝑛−2 − 2
𝑛

2
−1∀ 𝒂 ∈ 𝐺𝐹(2) 𝑛∗. 

# 𝛿𝑓 (𝒂) =  {𝒙 ∈  𝐺𝐹(2)𝑛;𝑓(𝒙) =  𝑓(𝒙 ⊕ 𝒂) = 1}  

𝒙 ∈  𝛿𝑓(𝒂) ⇒  𝒙 ⊕  𝒂 ∈  𝛿𝑓(𝒂)  

⇒  𝒙, 𝒙 ⊕  𝒂 ∈ 𝑋 𝑎𝑛𝑑 𝒙 ⊕ (𝒙 ⊕ 𝒂) = 𝒂. 

Corresponding to each 𝒂 ∈  𝐺𝐹(2)𝑛∗, there exist 
2𝑛−2−2

𝑛
2

−1

2
 pairs 𝒙, 𝒚 such 𝒙 ⊕  𝒚 =  𝒂. 

Suppose each element of 𝐺𝐹(2)𝑛∗ can be expressed as the sum of two elements of 𝑋 in exactly 
2𝑛−2−2

𝑛
2

−1

2
 

ways, then for any 𝒂 ∈ 𝐺𝐹(2)𝑛∗, 𝒚 = 𝒙 ⊕ 𝒚 for exactly 
2𝑛−2−2

𝑛
2

−1

2
 pairs 𝒙, 𝒚 ∈  𝑋, all these 𝒙, 𝒚 ∈  𝛿𝑓(𝒚), 

implies #𝛿𝑓(𝒚) = 2𝑛−2 − 2
𝑛

2
−1 ∀ 𝒚 ∈ 𝐺𝐹(2) 𝑛∗ . 

Case 2: #𝛿𝑓(𝒚) = 2𝑛−2 + 2
𝑛

2
−1∀ 𝒚 ∈ 𝐺𝐹(2) 𝑛∗ if and only if each element in 𝐺𝐹(2)𝑛∗ can be expressed as 

the sum of two vectors of X in 
2𝑛−2+2

𝑛
2

−1

2
 different ways. Proof is similar to case 1. 

 
The following corollary is a direct consequence of Theorem 3 and Theorem 4. 
 
Corollary 1 (Characterization for support of a bent function). For an n-variable Boolean function 𝑓 with 

support 𝑋, 𝑓 is bent if and only if each element in 𝐺𝐹(2)𝑛∗ can be expressed as the sum of two vectors of 𝑋 

in 
2𝑛−2±2

𝑛
2

−1

2
 different ways. 

 

Additionally, bent functions with 𝑤𝑡(𝑓) = 2𝑛−1 + 2
𝑛

2
−1 can be created using bent functions with weight 

𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1

 by adding 2
𝑛

2
−1 elements to the support with respect to the proposed characterization 

criteria.  
 

Suppose 𝑓 is a bent function with weight 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1

 then 𝑓 ⊕ 1 is a bent function with weight, 

𝑤𝑡(𝑓) = 2𝑛−1 + 2
𝑛

2
−1 .  

 
The following details explain the construction of support of bent function from a given support of bent 
function. 
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Definition 5. Let 𝑋 ⊂ 𝐺𝐹(2)𝑛. Then for any 𝒂 ∈ 𝐺𝐹(2)𝑛, we define 𝑋 ⊕ 𝒂 = {𝒙 ⊕ 𝒂; 𝒙 ∈ 𝑋}. 
 
Lemma 3. Suppose 𝑋 ⊂  𝐺𝐹(2)𝑛 has the property that each element in 𝐺𝐹(2)𝑛∗ can be expressed as the 

sum of two different elements of 𝑋 in exactly 
2𝑛−2±2

𝑛
2

−1

2
 ways, then 𝑋 + 𝒂 has also the same property. 

 
Proof. Let 𝑋 ⊂  𝐺𝐹(2)𝑛. The lemma can be proved by considering the following two cases.  

Case1: Suppose 𝑋 has the property that each element in 𝐺𝐹(2)𝑛∗ can be expressed as the sum of two 

different elements of 𝑋 in exactly 
2𝑛−2±2

𝑛
2

−1

2
 ways, and let 𝒄 ∈ 𝐺𝐹(2)𝑛∗ be an arbitrary element. By the 

property of 𝑋, there exists 2𝑛−1 − 2
𝑛

2
−1

 number of pair of elements 𝒙𝟏, 𝒙𝟐 ∈ 𝑋 with 𝒄 = 𝒙𝟏 ⊕ 𝒙𝟐, and 
subsequently 𝒙𝟏 ⊕ 𝒂, 𝒙𝟐 ⊕ 𝒂 ∈ 𝑋 ⊕ 𝒂. Clearly, 
(𝒙𝟏 ⊕ 𝒂) ⊕ (𝒙𝟐 ⊕ 𝒂)   = (𝒙𝟏 ⊕ 𝒙2) ⊕ (𝒂 ⊕ 𝒂)  

                                        = 𝒙𝟏 ⊕ 𝒙2  
                                        = 𝒄                                                                                                                                           (16) 
 
Case 2: Suppose 𝑋 has the property that each element in 𝐺𝐹(2) 𝑛∗ can be expressed as the sum of two 

distinct elements of 𝑋 in exactly 
2𝑛−2+2

𝑛
2

−1

2
 ways, then 𝑋 ⊕  𝒂 also has the same property. Proof is similar 

to case 1. 
 
Theorem 5. Suppose 𝑋 ⊂  𝐺𝐹(2)𝑛 has the property that each element in 𝐺𝐹(2)𝑛∗ can be expressed as the 

sum of two distinct elements of X in exactly 
2𝑛−2±2

𝑛
2

−1

2
 ways, then 

#(𝑋 ⊕  𝒂) ∩  (𝑋 ⊕  𝒃)  = {
2𝑛−1 ± 2

𝑛

2
−1, 𝑖𝑓 𝒂 = 𝒃

2𝑛−2 ± 2
𝑛

2
−1, 𝑖𝑓 𝒂 ≠ 𝒃

                                                                                  (17) 

 
Proof. Let 𝑋 ⊂  𝐺𝐹(2)𝑛. The theorem can be proved by considering two cases.  
Case 1: Each element in 𝐺𝐹(2)𝑛∗ can be expressed as the sum of two distinct elements of X in exactly 

2𝑛−2−2
𝑛
2

−1

2
 ways. 

Subcase 1: 𝒂 =  𝒃.  
 
Clearly  
 
𝑋 ⊕  𝒂 =  𝑋 ⊕  𝒃  

#𝑋 ⊕  𝒂 = #𝑋 = 2𝑛−1 − 2
𝑛

2
−1

  
 
Subcase 2: 𝒂 ≠  𝒃. 
 
𝒙 ∈  (𝑋 ⊕  𝒂)  ∩  (𝑋 ⊕  𝒃) 𝑖𝑓 𝒙 =  𝒙𝟏  ⊕  𝒂 𝑎𝑛𝑑 𝒙 =  𝒙𝟐  ⊕  𝒃 ; 𝒙𝟏, 𝒙𝟐  ∈  𝑋  
⇒  𝒙𝟏  ⊕  𝒂 =  𝒙𝟐  ⊕  𝒃  
⇒  𝒙𝟏  ⊕ 𝒙𝟐  =  𝒂 ⊕  𝒃  
 
Since 𝒂 ≠  𝒃, 𝒂 ⊕  𝒃 ≠  𝟎  

⇒  𝒂 ⊕  𝒃 ∈  𝐺𝐹(2)𝑛∗.  
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Hence, 𝒂 ⊕ 𝒃 can be expressed as the sum of two distinct elements of 𝑋 in exactly 
2𝑛−2−2

𝑛
2

−1

2
 ways.  

 
Corresponding to each representation, there will be two elements in (𝒙 ⊕ 𝒂) ∩ (𝒙 ⊕ 𝒃) (Example: If 
𝒙𝟏  ⊕ 𝒙𝟐  =  𝒂 ⊕  𝒃 then 𝒙𝟏 ⊕ 𝒂 =  𝒙𝟐 ⊕ 𝒃 and 𝒙𝟐 ⊕ 𝒂 =  𝒙𝟏 ⊕ 𝒃, hence two elements in (𝑋 ⊕ 𝒂) ∩
(𝑋 ⊕ 𝒃) are 𝒙𝟏  ⊕  𝒂 and 𝒙𝟐  ⊕  𝒂)  
 
Hence if 𝒂 ≠  𝒃, we have 

#(𝑋 ⊕ 𝒂) ∩ (𝑋 ⊕ 𝒃) = 2𝑛−2 − 2
𝑛

2
−1

.  
 
Case 2: If X has the property that each element in 𝐺𝐹(2) 𝑛∗ can be expressed as the sum of two different 

elements of X in exactly 
2𝑛−2+2

𝑛
2

−1

2
 ways, then  

#(𝑋 ⊕ 𝒂) ∩ (𝑋 ⊕ 𝒃) = {
2𝑛−1 + 2

𝑛

2
−1, 𝑖𝑓 𝒂 = 𝒃

2𝑛−2 + 2
𝑛

2
−1, 𝑖𝑓 𝒂 ≠ 𝒃

                                                                                       (18) 

Proof is similar to case 1. 
 
The following result is a consequence of Theorem 5. 
 
Corollary 2. Suppose 𝑋 ⊂ 𝐺𝐹(2)𝑛 has the property that each element in 𝐺𝐹(2)𝑛∗ can be expressed as the 

sum of two distinct elements of X in exactly 
2𝑛−2±2

𝑛
2

−1

2
 ways, then 𝑋 ⊕ 𝒂 =  𝑋 ⊕ 𝒃 if and only 𝒂 =  𝒃.  

 
Using the above corollary, corresponding to the support of each bent function, it is feasible to make  2𝑛  

different bent functions with the same weight. Furthermore, an 𝑛-variable function 𝑓 ⊕ 1 is bent if and 
only if 𝑓 is bent. Effectively, it is possible to generate 2𝑛+1 bent functions with each bent function. 

 
The subsequent subsection is dedicated to the construction of bent functions, employing the characterization 
criteria described earlier. 
 

3.2 Primary Construction of Bent Functions  
By leveraging the properties related to the support of bent functions, it becomes feasible to construct bent 
functions. For this purpose, the following algorithm (Algorithm 1) is developed. In this context, our 
endeavour is to transform an initially empty set into a support structure for a bent function through a process 
of extension. 
 

Hence 𝑓(𝑡)  = {
1, 𝑖𝑓 𝑡 ∈ 𝑋

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Here (𝑓(𝑡)) is the truth table representation of a bent function with 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1 . 

 

If f is a bent function of n-variables with weight 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1 , then 𝑓 ⊕ 1 is a bent function with 

weight 𝑤𝑡(𝑓) = 2𝑛−1 + 2
𝑛

2
−1

. So, it is able to build bent functions with 𝑤𝑡(𝑓) = 2𝑛−1 + 2
𝑛

2
−1 from bent 

functions with 𝑤𝑡(𝑓) = 2𝑛−1 − 2
𝑛

2
−1 by XORing 1 to the determined function.  
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Algorithm 1 Construction of bent functions 
Data: Even integer 𝑛 >  2 
Result: Support of a bent function 𝑋  

𝐵 ←  𝐺𝐹(2)𝑛  
𝑋 ←  ∅   
𝑍 ←  ∅ is a multiset  
𝐴 ←  ∅  

𝑘 ← 2𝑛−1 − 2
𝑛

2
−1   

𝑙 ←  
2𝑛−1−2

𝑛
2

−1

2
   

for 𝑖  𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0, 𝑘) do 

    choose 𝑥𝑐 ∈ 𝐵 (random) 
    𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑥𝑐)  
    for 𝑥 ∈ 𝑋 do 

    𝑍 = 𝑍. 𝑎𝑑𝑑(𝑥 ⊕ 𝑥𝑐) 
  End 

 𝑋 = 𝑋. 𝑎𝑑𝑑(𝑥𝑐)  
    for 𝑧 ∈ 𝑍 𝑤𝑖𝑡ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑧 𝑏𝑒𝑖𝑛𝑔 𝑙  do 

    𝐴 = 𝐴. 𝑎𝑑𝑑(𝑧) 
             for 𝑥 ∈ 𝑋 do 

     𝐵 = 𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥 ⊕ 𝑧) 
    End 

  End 

  for 𝑎 ∈ 𝐴 do 

    𝐵 = 𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥𝑐 ⊕ 𝑎) 
  End 
  choose 𝑐𝑜𝑚𝑝 ∈ {0,1} (random) 
    if 𝑐𝑜𝑚𝑝 == 0 then 

     𝑋 = 𝑋 
  end  

  Else 

    𝑋 = 𝐺𝐹(2)𝑛 − 𝑋 

  End 

End 

 
 

4. Count of Bent Functions 

Finding the exact count of bent functions is still considered a herculean task when it is 8-variabled or more; 
this is because an exhaustive search is infeasible in this setting (Lakshmy et al.,2014). To overcome this 
issue, a lot of studies have been conducted on the approximations of bent functions (Langevin and Leander, 
2011, Tokareva, 2011). The authors enumerated the count of bent functions using the counting principle 
and found that it agrees with the proposed algorithm. 
 
Counting principle: Consider a process that consists of 𝑟 stages. Suppose that: 
(a) There are 𝑛1 possible results for the first stage. 
(b) For every possible result of the first stage, there are 𝑛2 possible results at the second stage.  



Nelson et al.: An Algorithm for Constructing Support of Bent Functions by Extending a Set… 
 

 

1050 | Vol. 8, No. 5, 2023 

(c) More generally, for all possible results of the first 𝑖 − 1 stages, there are 𝑛𝑖 possible results at the 𝑖𝑡ℎ 

stage. Then, the total number of possible results of the 𝑟-stage process is 𝑛1𝑛2 . . . 𝑛𝑟. 
 
Let 𝑏𝑖 be the cardinality of B at the beginning of each step in the algorithm. Since the sets are made with 

cardinality 2𝑛−1 − 2
𝑛

2
−1

, it is conceivable to choose the first element in 𝑏0 ways, the second element in 

𝑏1 ways, and similarly 𝑖𝑡ℎ element in 𝑏𝑖−1 ways. Hence, by the counting principle, the number of functions 
become, 

∏ 𝑏𝑖
2𝑛−1−2

𝑛
2

−1−1
𝑖=0                                                                                                                                                                    (19) 

 
Any change in the order of choosing an element will not affect the set. Therefore, it is necessary to divide 

the above term with (2𝑛−1 − 2
𝑛

2
−1)!. Since there are exactly the same number of bent functions with 2𝑛−1 −

2
𝑛

2
−1

 and 2𝑛−1 + 2
𝑛

2
−1

 elements in the support, it is required to multiply the entire equation with 2. The 
resulting formula is given by, 

∏ 𝑏𝑖
2𝑛−1−2

𝑛
2

−1
−1

𝑖=0

(2𝑛−1−2
𝑛
2

−1)!
                                                                                                                                                                   (20) 

 
As 𝑛 increases, count of bent functions will increase drastically. So, it is necessary to express count of bent 
functions as power of two. For this, the logarithm to the base 2 is taken on the equation (20), which yields 

1 + ∑ log2(𝑏𝑖) − ∑ log2(𝑖 + 1)2𝑛−1−2
𝑛
2

−1

𝑖=0

2𝑛−1−2
𝑛
2

−1

𝑖=0

                                                                               (21) 

 
Corresponding to this, an algorithm has been developed, which is given as  (Algorithm 2). 
 
Algorithm 2 Count of bent functions 

Data: Even integer 𝑛 >  2  
Result: log2 of approximated count of 𝑛-variable bent functions 
𝐵 ←  𝐺𝐹(2)𝑛  
𝑋 ←  ∅   
𝑍 ←  ∅ is a multiset  
𝐴 ←  ∅  

𝑘 ← 2𝑛−1 − 2
𝑛

2
−1   

𝑙 ←  
2𝑛−1−2

𝑛
2

−1

2
   

𝑎𝑝𝑝𝑟𝑜𝑥_𝑛𝑢𝑚 ← 1   

for 𝑖  𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0, 𝑘) do 
    𝑎𝑝𝑝𝑟𝑜𝑥_𝑛𝑢𝑚 = 𝑎𝑝𝑝𝑟𝑜𝑥 _𝑛𝑢𝑚 + (log2

(#𝐵) − log2(𝑖 + 1)) 

    choose 𝑥𝑐 ∈ 𝐵 (random)  𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥𝑐 ) 
    for 𝑥 ∈ 𝑋 do 

    𝑍 = 𝑍. 𝑎𝑑𝑑(𝑥 ⊕ 𝑥𝑐) 
  End 

 𝑋 = 𝑋. 𝑎𝑑𝑑(𝑥𝑐)  
    for 𝑧 ∈ 𝑍 𝑤𝑖𝑡ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑧 𝑏𝑒𝑖𝑛𝑔 𝑙  do 

    𝐴 = 𝐴. 𝑎𝑑𝑑(𝑧) 
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             for 𝑥 ∈ 𝑋 do 

     𝐵 = 𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥 ⊕ 𝑧) 
    End 

  End 

  for 𝑎 ∈ 𝐴 do 

    𝐵 = 𝐵. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑥𝑐 ⊕ 𝑎) 
  End 

End 

approx_num 

 
The number of functions is obtained as the output of Algorithm 2. Values corresponding to each 𝑏𝑖 (for 
𝑛 = 4) is given in Table 1. 
 
 

Table 1. Number of possible elements. 
 

b0 16 

b1 15 

b2 14 

b3 12 

b4 8 

b5 1 

 
 

4.1 Secondary Construction of Bent Functions 

Since the proposed algorithm does not construct bent functions with a number of variables greater than 4, 
the authors introduce a procedure (Algorithm 3) to construct 𝑛-variable bent functions (𝑛 >  4) by applying 
the proposed algorithm (Algorithm 1) in combination with an existing secondary construction technique 
for bent functions introduced by Rothaus. 
  
Rothaus’s construction (Mesnager and Mesnager, 2016): Rothaus (1976) invented a secondary construction 
technique that builds a bent function of 𝑛 + 2-variables using three bent functions of 𝑛-variables. For the 

n-variable bent functions 𝑔, ℎ, 𝑘 and 𝑔 ⊕ ℎ ⊕ 𝑘, the function 𝑓(𝑔, ℎ, 𝑘) defined for every (𝑥1,𝑥2,𝒙) ∈
𝐺𝐹(2)𝑛+2 with 𝑥1,𝑥2 ∈ 𝐺𝐹(2) and 𝒙 ∈ 𝐺𝐹(2)𝑛  given by: 
 
𝑓′(𝑔, ℎ, 𝑘, 𝑥1, 𝑥2,𝒙) =  𝑔(𝒙)ℎ(𝒙) ⊕ 𝑔(𝒙)𝑘(𝒙) ⊕ ℎ(𝒙)𝑘(𝒙) ⊕ [𝑔(𝒙) ⊕ ℎ(𝒙)]𝑥1 ⊕ [𝑔(𝑥) ⊕
                                            𝑘(𝑥)]𝑥2 ⊕ 𝑥1𝑥2                                                                                                    (22) 
is also a bent function. 
 
Suppose ℎ(𝒙) = 𝑔(𝒙), then 𝑔 ⊕ ℎ ⊕ 𝑘 = 𝑘. 
 
Let Roth be the function that maps (𝑔, 𝑘) to 𝑓(𝑔, 𝑔, 𝑘) and denote the algorithm that produces 4-variable 
bent function as func1. The algorithm to construct an m-variable bent function (m > 4) is denoted as 
algorithm 3 and is described below. 
 

Algorithm 3 Construction of 𝑚-variable bent functions  

Data: 𝑚 number of variables required (even integer greater than 4) 
Result: An 𝑚-variable bent function 
𝐵 ←  𝐺𝐹(2)4  
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𝑋 ←  ∅   
𝑍 ←  ∅ is a multiset  
𝐴 ←  ∅  

𝑛 =
𝑚−4

2
 (number of iterations required)  

𝐹 ← () (collection of truth table of functions)  

for 𝑖  𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0, 𝑚 + 1) do 

    F.append(()) 
End 

for 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0,2𝑛) do 

    F(0).append(func1) 
End 

for 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0, 𝑛 + 1) do 
   for 𝑝 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0,

𝑙𝑒𝑛(𝐹[𝑗−1])

2
) do 

    F(j).append(Roth(𝐹[𝑗 − 1][2 ∗ 𝑝], 𝐹[𝑗 − 1][2 ∗ 𝑝 + 1])) 
   End 

End 

F(m) (The 𝑚-variable bent function) 
 

In algorithm 3, in the process of constructing an 𝑚-variable bent function, 2
𝑚−4

2  4-variable bent functions 

are constructed. Using these 4-variable bent functions 
2

𝑚−4
2

2
 6-variable bent functions are constructed. 

Similarly, using these functions it is possible to construct 8, 10, 12…, m variable bent functions.  
 

5. Experimental Illustration  
The authors make a novel attempt to create bent functions with number of variables 4, 6, 8, 10 and 12 using 
the Algorithm 1. However, this algorithm need not provide bent functions if the number of variables is 
greater than 4. For example, if the number of variables is chosen to be 6 and selected 21 elements from 
GF(2)6 are picked as A = {000000, 000001, 000010, 000011, 000100, 000101, 000110, 000111, 001000, 
001001, 001010, 001011, 001100, 010000, 010100, 011000, 011101, 100000, 100110, 110000, 110111}, 
then it is possible to represent each of the element in B = {000011, 000010, 000001, 000100, 001000, 
001100, 001101, 001001, 000101, 000110, 000111} in six different ways as pairwise sum of two elements 
from 𝐴. Suppose an additional element is added to set 𝐴. In that case, it becomes possible to represent at 

least one of the elements in the set 𝐵 in seven or more different ways, resulting in a support with 22 
elements. However, it is essential to note that the support of a 6-variable bent function should ideally contain 
28 elements, not 22. The algorithm will work properly for 𝑛 = 4. Using this algorithm, it is possible to 
produce 4-variable bent functions, and the count of the functions that can be constructed using this 
technique is calculated using Algorithm 2. The count of bent functions in 4-variable that can be constructed 
using the algorithm is 896. It is equal to the total number of 4-variable bent functions. To date, the same 
could only be calculated using an exhaustive search.  
 
To generate bent functions corresponding to each even integer 𝑛, in literature, a secondary construction is 
discussed. Accordingly, a combination of primary (refer to Algorithm 1) and secondary construction (refer 
to Algorithm 3) techniques leads to the generation of bent functions of any number of variables.   
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6. Conclusion 
This paper presents an algorithm for constructing all 4-variable bent functions. Our proposed algorithm can 
precisely count the number of 4-variable bent functions, 896. Previously, determining this count required 
an exhaustive search, but our approach offers a more efficient and systematic method. It is also shown that 
this proposed algorithm can be combined with a secondary construction for constructing 𝑛 variable bent 
functions with number of variables 𝑛 > 4. The algorithm under consideration manifests a fundamental 
limitation, as it needs more direct extendibility to facilitate the principal construction of 6-variable bent 
functions. In this current investigation, we have undertaken a novel approach wherein the empty set is 
extended to encompass the underlying support structure of a bent function. It is noteworthy to highlight that 
a multitude of non-empty sets, as viable alternatives to the empty set, are also amenable to extension, thus 
serving as potential support structures for bent functions. However, the precise governing criteria dictating 
the feasibility of such extensions for non-empty sets remain enigmatic. Consequently, the pivotal research 
endeavour pertains to ascertaining the minimal prerequisites that render a non-empty set eligible for 
expansion into a support structure of a bent function, thus constituting an intellectually formidable challenge 
for the scientific community. A possible future work is to extend the proposed algorithm to 6 variables and 
above. The authors of this study are currently involved in developing an innovative methodology aimed at 
the primary construction of 6 or more variable bent functions. In parallel, they are actively engaged in a 
rigorous investigation to establish criteria that can effectively characterize whether a given set is eligible to 
be considered a subset of the support structure for a bent function. These combined efforts signify a 
substantial advancement in the field of bent functions, opening new avenues for further research and 
applications. 
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