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Abstract 

This paper considers a linear system of partial differential equations (PDEs) to describe the stress-strain state of a two-phase body 

under static load, such as water-saturated soil. It investigates the basic properties of a new general differential operator Lame. The 

equations differ from the classical Lame equations by including first derivatives, which account for the influence of pore water on 

soil mineral particles. The properties of the generalized Lamé operator are investigated for the application of variational methods 

to solve the problem. It also describes alternative of the Betti and Clapeyron formulas using strain energy results. The calculus of 

variations of the Galerkin method is used to solve the minimum functional problem. Properties of bilinear forms are established 

and a theorem on the existence and uniqueness of the solution of the two-phase equilibrium problem is proved. The finite element 

method is adapted for a kinematic model that considers excess residual pore pressures. A new stiffness matrix is obtained, which 

is the sum of two matrices:  one for the soil skeleton and one for pore water. The adequacy of the mathematical model of a water-

saturated foundation for a natural experiment is shown. The use of Korn's inequality implies limitations on elastic properties 

(homogeneity, anisotropy) and the geometry of the region (requiring regularity and smooth boundaries). The study illustrates that 

the methodology of mechanics of a deformable solid can be adapted with appropriate modifications to a two-phase body in a 

stabilized state. The finite element method is adapted for a kinematic model that considers excess residual pore pressures. A new 

stiffness matrix is obtained, which is the sum of two matrices: one for the soil skeleton and one for pore water. The finite element 

method is tested on the Flamand problem. The adequacy of the mathematical model of a water-saturated foundation for a full-scale 

experiment is shown. The problem of the action of distributed load on a water-saturated heterogeneous foundation was solved using 

the finite element method and the results were compared with experimental data. The effect of mesh partitioning on the accuracy 

of the numerical solution is also studied in the finite element method. The maximum discrepancy was no more than 26%. 

 

Keywords- Generalized Lame system of equations, Asymmetric positive definite operator, Variational problem, Energy functional, 

Existence and uniqueness of solution. 
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List of Symbols  

Stress tensor, Pa : 𝜎𝑖𝑗,  𝑡𝑖𝑗, i,j=1,..3 

Deformation tensor : 𝜀𝑖𝑗,   i,j=1,..3 

Modulus of elastic deformation, MPa : 𝐸 

Poisson's ratio : 𝜈 

Shear modulus, MPa : 𝐺 

Proportionality factor : ℵ 

Sample height, m : ℎ 

Permanent Lame, MPa : 𝜆 

Symbol of Kronekera :𝛿 

Generalised Lamé operator : 𝐷𝑖𝑗, i,j=1,..3 

Volume force vector, H/m3 : 𝐾𝑖, i=1,..3 

Normal vector : 𝑛𝑖, i=1,..3 

Elastic potential : 𝑊 

Partial derivative vector : 𝜕𝑖, i=1,..3 

Volume deformation : 𝜃 

Vector of load, H  : 𝑞𝑖, i=1,..3 

Displacement vector, m : 𝑢𝑖, i=1,..3 

Space coordinates, m : 𝑥𝑖, i=1,..3 

Superscript   

soil skeleton : s 

pore water (liquid) : l 

transpose operation : T 

Subscript  

coordinate indices : i, j i,j=1,..3 

differentiation operation : , 

 

 

 

1. Introduction 
The expansion of urban infrastructure, construction and operation of various roads and engineering 

structures and development of oil and gas fields are in some cases are carried out on swampy areas 

consisting of soft soils. In these areas, Sediment runoff is hindered due to the flatness of the slightly rugged 

relief of the lowland. As a result, the groundwater level is high and the process of swamping is significant 

in the area. Previous studies have generally reduced soil consolidation to the compaction of saturated soil 

using heat conductivity equations. The use of heat conductivity equations is confirmed by experiments 

during the initial phase of consolidation but fundamentally diverges from experiments at the end of the 

consolidation process, since According to the theoretical models, pore water stresses diminish to zero. Field 

experiments by many authors indicate residual pore pressures in the stabilized state of the soils. The 

suggested models of filtration consolidation of soil are not applicable for analyzing of real soil settlement 

in a stabilized state, as the experiments show the presence of residual pore pressure in the soil after the 

filtration consolidation process is complete. The relevance of this study is associated with a new 

interdisciplinary approach to the mechanics of water-saturated soils. Loaded water-saturated soil is modeled 

from the standpoint of deformable solid mechanics as a unified whole (solid phase + liquid phase) at the 

end of the process of filtration consolidation. The soil is linearly deformable, with both phases contributing 

to load-bearing capacity. Air within water-saturated soil is not treated as a separate phase. The stress-strain 

state of the soil foundation is determined by elliptic Lame-type equations. This necessitates an analysis of 

the properties of the Lame-type operator and solutions of the Lame type equations to apply variational 

methods for solving the problem under consideration. 

 

Energy or variational methods have an important place in solid mechanics both as an alternative to the more 

direct method of solving the governing partial differential equations (Barber, 2023). Variational methods 

are used to solve quasi-static processes in solid mechanics by replacing the integration of differential 
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equations or systems of Lame differential equations under mixed boundary conditions. These methods 

reduce the solution of the variational problem to find the minimum of a quadratic functional, which is 

known for its high accuracy and wide applicability (Mikhlin, 1966). In the theory of elasticity, the quadratic 

functional of Galerkin form is represented by the potential energy of deformation (Galerkin, 1915; 

Perelman, 1967; Fletcher, 1984). Selvadurai (2007) reviewed the application of analytical methods in 

elasticity, poroelasticity, and plasticity to solve geomechanics boundary value problems. In works 

(Bukhartsev and Nguyen, 2014; Sarkar and Chakraborty, 2021; Sarkar and Chakraborty, 2022) the 

variational method which was developed within the limit equilibrium method determines the critical 

coefficient of the soil slope stability. The search for the collapse surface is carried out using the functional 

extremum dependent on the soil strength parameters. Onyelowe (2021) applied the variational method to 

optimize additive ratios for soil stabilization and improving its geotechnical properties. The authors (Wang, 

et al., 2022; Patterson et al., 2024) investigate variational (or energy) methods based on the principle of 

minimum deformation energy for static problems in active elastic solids. The variational method is used to 

solve problems of mechanics not only under conditions of small deformations, but also under conditions of 

large deformations using the example of a thin cylindrical shell (He et al., 2023). Additionally, a variational 

approach to fluid-structure interaction is used by Peschka et al. (2022). Numerical methods for solving 

integral and differential equations are widely presented in the book (Kumar and Ram, 2025). 

 

The object of the study is the generalized Lamé operator, which is applicable in the mechanics of water-

saturated soil. Unlike the classical model of linearly deformed soil, the generalized Lamé operator includes 

additional summands, specifically first partial derivatives. These additional terms reflect the influence of 

pore water on the stress-strain state of mineral soil particles (solid phase) under load. 

 

Filtration consolidation models (Tsytovich et al., 1967; Mesri and Choi, 1985) are based on Darcy's 

filtration law, in both linear and nonlinear forms. Darcy's modified law governs the flow in porous media 

flow (Kapoor et al., 2024). After the filtration process ends, models based on Darcy's law cannot describe 

residual pore pressures in a stabilized state. The property of solutions of parabolic type equations is that in 

the absence of a water source, pore pressures are zero, causing the two-phase soil to transition to a single-

phase soil. Field and laboratory tests (Yong et al., 2019; Lachinani et al., 2022; Xu et al., 2022; Zhou et al., 

2022) have shown that there is excess residual pore pressure when all consolidation processes are complete. 

Therefore, filtration consolidation models are inapplicable for describing the stress-strain state of a two-

phase (water-saturated) foundation. 

 

In this paper, the kinematic model of water-saturated soil is considered (Maltseva, 2022). This model for a 

two-phase (mineral particles of soil & pore water) soil mass considers the influence of pore water on the 

stress-strain state of the two-phase body. The two-phase of soil is confirmed by numerous field experiments 

(Bugrov et al., 1997; Maltseva et al., 2024). The model was tested on specific real scenarios in the reporting 

of Maltseva et al. (2020). In the article, within the kinematic model framework, solutions are constructed 

for the problems of loading the soil surface with typical loads describing the stress-strain state of each phase 

of a two-phase medium (soil skeleton + pore water), while considering the residual pore pressure. The 

deviation of the calculated residual pore pressures from the experimental data was no more than 5% 

(laboratory experiment) and 7% (full-scale experiment). According to the calculation method, a forecast of 

the deformation of the structure foundations made of weak water-saturated soils was developed. The need 

for this study is due to the inconsistency of filtration consolidation theory with full-scale and laboratory 

experiment results. 

 

The kinematic soil model is based on the linear-deformable soil model but differs due to the two-phase 

nature of the soil. For the soil skeleton, the equations of state of the elastic medium are fulfilled. For pore 
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water, hypotheses are introduced that take into account different properties of water in the soil pores 

compared to a solid body. The equation of state of pore water is formulated in the third hypothesis. The 

relationship between solid and liquid soil particles is established using equilibrium and kinematic 

interaction equations (hypothesis 4). 

 

The kinematic model is based on the following hypotheses: 

(i) Soil (peat, loam, clay) contains free incompressible water in the pores, which is hydraulically continuous. 

 

(ii) The soil skeleton is linearly deformable. The load on the soil foundation is consistent with the limitation 

on the relative deformation of the soil skeleton 𝜀𝑠 < 0.01. Subsidence and swelling of the soil skeleton are 

not taken into account. Free and trapped air are combined with the soil skeleton and are not considered 

separately. 

 

(iii) Unlike the theory of filtration consolidation, the expulsion of part of the water from the soil pores does 

not obey the filtration law and is described by a new physical equation: the relative deformation of the pore 

water 𝜀𝑙 is caused by the pressure difference 𝑑𝜎𝑙/𝑑𝑥3, not the pressure itself. The mathematical expression 

for the one-dimensional case is: 
𝑑𝜎𝑙

𝑑𝑥3
=
𝐸𝑙

ℎ
𝜀𝑙, 

 

where, the superscript 𝑙 (liquid) refers to pore water, 𝐸𝑙 is the mechanical constant determined by the 

uniaxial compression test of a two-phase soil sample, h is the height of the sample, 𝜀𝑙 < 0.01. The 

difference in pore pressure causes small relative movements of particles of the soil skeleton and pore water, 

rather than the speed of water movement. 

 

(iv) Unlike the theory of filtration consolidation, the equation of conservation of mass of pore water is not 

used. Relative deformation of pore water 𝜀𝑙  characterizes the change in relative porosity along the height 

of the sample. The relationship between solid and liquid soil particles is represented by relative linear 

deformations: 

𝜀𝑠 = −ℵ𝜀𝑙, 
 

where, the parameter ℵ > 0 is determined experimentally and describes what part of the relative volume 

the liquid phase releases. The relationship between solid and liquid soil particles is represented through 

relative linear deformations. 

 

Let us present a complete system of equations describing the stress-strain state of water-saturated soil for 

the spatial case i, j=1,2,3 

 

Equilibrium equations, 

(𝜎𝑖𝑗
𝑠 − 𝜎𝑖𝑗

𝑙 𝛿𝑖𝑗),𝑗 = 0; 

 

Equations of state for the soil skeleton  

𝜎𝑖𝑖
𝑠 = (2𝐺 + 𝑏𝑖)𝜀𝑖𝑖

𝑠 + 𝜆𝜃,            𝜃 = 𝜀𝑖𝑖
𝑠 ; 

𝜎𝑖𝑗
𝑠 = 𝐺𝜀𝑖𝑗

𝑠 , 𝑖 ≠ 𝑗, 

𝐺 =
𝐸𝑠

2(1+𝜈)
, 𝜆 =

𝜈𝐸𝑠

(1+𝜈)(1−2𝜈)
, 𝑏𝑖 =

𝐸𝑖
𝑙

ℵ𝑖
2; 
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Equations of state of pore water (hypothesis 3) 

𝑃𝑖𝑗
𝑙 = 𝐸𝑖

𝑙𝜀𝑖𝑗
𝑙 𝛿𝑖𝑗,      𝑃𝑖𝑗

𝑙 = ℎ𝑖𝜎𝑖𝑗,𝑗
𝑙 𝛿𝑖𝑗; 

 

Phase interaction equations (hypothesis 4) 

𝜀𝑖𝑖
𝑠 = −ℵ𝑗𝜀𝑖𝑗

𝑙 𝛿𝑖𝑗; 

 

Cauchy equations 

𝜀𝑖𝑗
𝑠 =

1

2
(𝑢𝑖,𝑗
𝑠 + 𝑢𝑗,𝑖

𝑠 ),        𝜀𝑖𝑗
𝑙 = 𝑢𝑖,𝑗

𝑙 𝛿𝑖𝑗. 

 

After transforming the system of equations describing the stabilized state of the two-phase soil after the end 

of the consolidation process, we obtained a solving system of linear differential equations of the Lamé type 

(1). The residual pore pressure is necessarily non-zero. Considering the above contributions, it is observed 

that none of the authors has explored this direction of work. In this paper, the properties of the generalized 

Lame operator were investigated. In a bounded simply connected three-dimensional domain with a 

piecewise smooth surface, an open internal domain was isolated by cutting out a layer along the boundary, 

in which a lineal of twice continuously differentiable functions was introduced. It was proved that the 

negative generalized differential Lame operator is positive definite under homogeneous mixed boundary 

conditions, but is not symmetric. 

 

The application of variational methods to solving a mixed boundary value problem with the generalized 

Lame operator is based on the introduction of a variational equality with the Galerkin form. Using the 

projection theorem, the existence and uniqueness of a generalized solution to the equilibrium problem for 

a two-phase body were proved. 

 

Analogues of three Betti formulas were obtained, and one of them was used to prove the asymmetry of the 

operator considered in this paper. In the theorem on the reciprocity of work for a two-phase body, an 

additional term appeared compared to a similar theorem for an elastic body; this term reflects the physical 

equations for the liquid phase. An analogue of the Clapeyron formula showed that in the representation of 

specific energy, the sum of the first two terms is a quadratic functional, i.e. a homogeneous function of the 

second degree, while the third term is a bilinear functional. 

 

Thus, projection methods of mathematical physics, such as the Bubnov-Galerkin method, are applicable to 

find a solution to the system of Equations (1). The problem's formulation using a functional in the Galerkin 

form is generalized, allowing the solution to be determined in a wider class of functions compared to the 

solution based on Equations (1) and conditions (2). Variational formulations of elasticity theory problems 

are based on various variational principles, including those of Lagrange, Castigliano, Reissner and Hu-

Washitz. It is known that the Lagrange principle on the work of external forces (both volume and surface) 

on possible displacements coincides with the principle of minimum potential energy. This article considers 

the prospects for extending the classical theory to non-Hookean elasticity law and finite displacements. The 

finite element method is closely related to variational formulations of elasticity theory problems. It is 

applied in solving both test and real problems of equilibrium of a two-phase body, as the problem's operator 

is limited and positively defined. 

 

2. Problem Definition 
The system of the kinematic model equations is a structure of generalized Lame equations and the unknown 

value is the vector of the solid phase displacements u (real functions of the real argument). The system of 

second-order differential equations has the form (Maltseva, 2022): 
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𝐷𝑖𝑗𝑢𝑗 = 𝐾𝑖,    i, j=1,2,3                                                                                                                               (1) 

𝐷𝑖𝑗 = −((𝐺 + 𝜆 + 𝑏𝑖𝛿𝑖𝑗)𝜕𝑖𝜕𝑗 + 𝐺𝛿𝑖𝑗𝜕𝑘𝜕𝑘 + 𝑐𝑖𝛿𝑖𝑗𝜕𝑗), 

 

where, K - volume force vector; 

𝐺, 𝜆, 𝑏𝑖, 𝑐𝑖 - positive constant coefficients; 

𝛿𝑖𝑗 - symbol of Kronekera. 

 

 
 

Figure 1. Schematic representation of the task. 

 

 

The load case task of a two-phase massif was supplemented with boundary conditions of 3D part (Robin). 

There are no displacements on the part of the boundary S1, and external loads are defined on another part 

of the boundary S2 (Figure 1): 

𝑢𝑖|𝑆1 = 0,   𝑡𝑖𝑗𝑢𝑗|𝑆2
= 𝑞𝑖,   i, j=1,2,3                                                                                                          (2) 

𝑡𝑖𝑗 = 𝜆𝑛𝑖𝜕𝑗 + (𝐺 + 𝑏𝑖𝛿𝑖𝑗)𝑛𝑗𝜕𝑖 + 𝐺𝛿𝑖𝑗𝑛𝑘𝜕𝑘, 

 

where, 𝑡𝑖𝑗 - stress tensor in the soil skeleton (II rang tensor). 

 

The load vector q and the normal vector n to the surface are given on the surface of the body. Here vector 

of load and the normal vector is shown in bold. For brevity, all vectors, tensors, and operators will be shown 

in bold throughout the text. The variational formulation of the task reduces mathematical constraints on the 

desired solution as much as possible, enabling the construct schemes for numerical realization of the 

solution. The transition from the variational task to the goal of integration Equations (1) under boundary 

conditions (2) is reduced to the task of the functional minimum. A functional is a scalar multiplication (Du, 

u') where u' is some solution in a class of functions. This class of functions is broader because the functional 

reaches its lower bound on it. The functional is obtained using the methodology of elasticity theory for the 

classical Lamé equations. The additional summands in the generalized Lamé Equations (1) are extracted 

by representing the operator D as the sum of three operators A, B, and C. Operator A represents the classical 

Lamé operator. Operator B is the second-order derivative. Operator C is a first order derivative. The sum 

of operators B+C distinguishes the generalized Lamé equations from the classical Lamé equations. Volume 

integrals were converted to surface integrals by Ostrogradsky's formula. The scalar product for the operator 

A (Lamé operator) is known by the formula (Mitrea, 2018): 

(−𝑨𝒖, 𝒖′) = −∫ 𝑢𝑖
′𝐴𝑖𝑗𝑢𝑖𝑑Ω = 2∫ 𝑊

𝐴(𝒖, 𝒖′)𝑑Ω −∫ 𝑢𝑖
′𝑙𝑖𝑗𝑢𝑗𝑑𝑆

𝑆
ΩΩ

 , 

𝑊𝐴(𝒖, 𝒖′) = 𝑊𝐴(𝒖′, 𝒖),     𝑙𝑖𝑗 = 𝜆𝑛𝑖𝜕𝑗 + 𝐺𝑛𝑗𝜕𝑖 + 𝐺𝛿𝑖𝑗𝑛𝑘𝜕𝑘 , 
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where, 𝑊𝐴(𝒖) - elastic potential for isotropic soil at 𝒖 = 𝒖′: 

𝑊𝐴(𝒖) =
1

2
(𝜆𝜃2 + 2𝐺𝜀𝑖𝑗𝜀𝑖𝑗),    𝜃 = 𝜀𝑖𝑗𝛿𝑖𝑗. 

 

The scalar multiplication for the new operators B and C have the formulas: 

(−𝑩𝒖,𝒖′) = −∫ 𝑢𝑖
′𝐵𝑖𝑗𝑢𝑗𝑑Ω == 2∫ 𝑊

𝐵(𝒖, 𝒖′)𝑑Ω −∫ 𝑏𝑖𝑢𝑖
′𝛿𝑖𝑗𝑛𝑗𝜕𝑖𝑢𝑗𝑑𝑆

𝑆
ΩΩ

 ,  

(−𝑪𝒖,𝒖′) = −∫ 𝑢𝑖
′𝐶𝑖𝑗𝑢𝑗𝑑ΩΩ

= ∫ 𝑊𝐶(𝒖, 𝒖′)𝑑Ω = −
1

2
∫ 𝑐𝑖𝑢𝑖

′𝛿𝑖𝑗𝑛𝑖𝑢𝑗𝑑𝑆𝑆Ω
                                           (3) 

𝑊𝐵(𝒖, 𝒖′) =
1

2
𝑏𝑖𝜀𝑖𝑖𝜀𝑖𝑖

′  ,        𝑊𝐵(𝒖, 𝒖′) = 𝑊𝐵(𝒖′, 𝒖), 

𝑊𝐶(𝒖, 𝒖′) = −𝑐𝑖𝜀𝑖𝑖𝑢𝑖
′ ,       𝑊𝐶(𝒖, 𝒖′) ≠ 𝑊𝐶(𝒖′, 𝒖). 

 

The bilinear form 𝑊𝐶(𝒖, 𝒖′) is not commutative (permutative with respect to the elements 𝒖 and 𝒖′). 
 

The piecewise smooth boundary S=S1+S2 of the finite region Ω represents a sphere of large radius and a 

half-plane. The directional cosines of the external normal are negative and at the same time do not turn to 

zero. At the volume integral of WC (u) in formula (3) is positive. Hence, the inequality (Du, u)>0 is achieved 

for the operator D=-(A+B+C). It will be further shown that the operator D is positively defined, and 

Equation (1) has at most one solution. The proof of the existence of a single solution to the generalized 

Equations (1) is based on Betti's three formulas. Let u' and u be two elastic displacement vectors, continuous 

and twice continuously differentiable functions in Ω. Let us compose the integral of the scalar multiplication 

∫ 𝒖′ ∙ 𝑫𝒖
Ω

𝑑Ω. 

 

Integrating by parts, we obtain the analog of Betti's formula I  

∫ 𝑢𝑖
′𝐷𝑖𝑗𝑢𝑗𝑑ΩΩ

= 2∫ (𝑊𝐴(𝒖, 𝒖′) +𝑊𝐵(𝒖, 𝒖′) +
1

2
𝑊𝐶(𝒖, 𝒖′)) 𝑑Ω

Ω
− ∫ 𝑢𝑖

′
𝑆

𝑡𝑖𝑗𝑢𝑗𝑑𝑆                                   (4) 

 

The expression 2𝑊𝐴(𝒖′, 𝒖) = ∑ (2𝐺 + 𝜆)𝜀𝑖𝑗(𝒖
′)𝜀𝑖𝑗(𝒖)

3
𝑖,𝑗=1  is the bilinear form of the strain components 

corresponding to the quadratic form when u'=u. The quadratic 2𝑊𝐴(𝒖) = ∑ (2𝐺 + 𝜆)𝜀𝑖𝑗(𝒖)𝜀𝑖𝑗(𝒖)
3
𝑖,𝑗=1  is 

the doubled potential energy density of the elastic deformation. It is known from the elasticity theory that 

the form 𝑊𝐴(𝒖) is positive-definite.  

 

In expression (4), we replace the displacement vector u' by the displacement vector u of the Betti formula: 

∫ 𝑢𝑖𝐷𝑖𝑗𝑢𝑗𝑑ΩΩ
=2∫ (𝑊𝐴(𝒖) +𝑊𝐵(𝒖) +

1

2
𝑊𝐶(𝒖))𝑑Ω − ∫ 𝑢𝑖𝑡𝑖𝑗𝑢𝑗𝑑𝑆𝑆Ω

                                                         (5) 

 

The operator D is not symmetric. The non-symmetry is related to the operator C. The summand 𝑊𝐶(𝒖)  is 
absent in the theory of elasticity.  

 

Subtracting from Equation (4) the expression in which the vectors u' and u swap places, we obtain the 

analog of Betti's formula III: 

∫ (𝑢𝑖′𝐷𝑖𝑗𝑢𝑗 − 𝑢𝑖𝐷𝑖𝑗𝑢𝑗′)𝑑Ω = ∫ (𝑊𝐶(𝒖, 𝒖′) −𝑊𝐶(𝒖′, 𝒖))𝑑Ω − −∫ (𝑢′𝑖𝑡𝑖𝑗𝑢𝑗 − 𝑢𝑖𝑡𝑖𝑗𝑢′𝑗)𝑑𝑆𝑆ΩΩ
           (6) 

The sum 𝑊𝐴(𝒖) +𝑊𝐵(𝒖) is a homogeneous function of degree two: 𝑊𝐴(𝒖, 𝒖′) +
𝑊𝐵(𝒖, 𝒖′)=𝑊𝐴(𝒖′, 𝒖) +𝑊𝐵(𝒖′, 𝒖). 
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Betti formula III shows that the generalized Lamé operator is not self-adjoint. The surface integral in (6) 

approaches zero in the case of a mixed boundary value problem with boundary conditions (2). 

 

Using Equations (1), let us write expression (5) as an analog of the Clapeyron formula, 

∫ 𝑢𝑖𝐾𝑖𝑑ΩΩ
+ ∫ 𝑢𝑖𝑞𝑖𝑑SS

=2∫ (𝑊𝐴(𝒖) +𝑊𝐵(𝒖) +
1

2
𝑊𝐶(𝒖))𝑑Ω

Ω
. 

 

The work of external volumetric and surface forces is used to transfer internal deformation energy to the 

two-phase body. When the load is removed from the body, the energy is converted into work, allowing the 

body to return to its initial state. According to formula (3), the volume integral of 𝑊𝐶(𝒖) is positive, and 

is a homogeneous function of the first degree with relation to linear deformations 𝜀𝑖𝑖.  
 

At absence of volumetric forces by Clapeyron's theorem for an elastic solid without considering pore water 

for comparison we have a homogeneous function 𝑊𝐴(𝒖) of the second degree 

2∫ 𝑊𝐴(𝒖)𝑑Ω = ∫ 𝑢𝑖𝑞𝑖𝑑SSΩ
. 

 

3. Methodology 
The operator D is defined on the set M of continuous functions u together with their derivatives up to and 

including second-order in Ω. The set M is a lineal. The vector-functions u conforms homogeneous boundary 

conditions. The set M is dense in the space  𝐿2(Ω). The positive definiteness of the operator D is 

demonstrated relative to the norm of the Sobolev vector space ( )1,2 ΩW . For the first two summands in the 

operator D: 𝐴𝑖𝑗 + 𝐵𝑖𝑗 = (𝐺 + 𝜆 + 𝑏𝑖𝛿𝑖𝑗)𝜕𝑖𝜕𝑗 + G𝛿𝑖𝑗𝜕𝑘𝜕𝑘 (the negative Lame operator in the case of 

anisotropy) and the vector-function ∀ u∈M complying with the homogeneous mixed conditions, Korn's 

inequality (Rectoris, 1985; Horgan, 1995) holds: 

𝐶1
2 ∫ 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝒖)𝜀𝑖𝑗(𝒖′)𝑑ΩΩ

≥ ∫ (∑ |𝑢𝑖|
23

𝑖=1 + ∑ (
𝜕𝑢𝑖

𝜕𝑥𝑗
)
2

3
𝑖,𝑗=1 )𝑑Ω

Ω
,  

 

where, 𝐶1
2 is a positive constant independent of the choice of 𝒖. The constant 𝐶1

2

 
depends on the domain 

size and mechanical constants. 

 

The use of Korn's inequality implies restrictions on the elastic properties (homogeneity, anisotropy) and the 

geometry of the region (requiring regularity and smooth boundaries). Specifically, in Flamand (Boussinesq) 

type problems, this region will be a semi-cylinder (hemisphere) of finite radius. This methodology will not 

be effective if these restrictions are not met. The article did not address the formulating the conditions to 

ensure the stability and accuracy of the variational method in a multidimensional irregular domain which 

requires additional research. 

 

According to Korn's inequality, the operator −(𝑨 + 𝑩) is symmetric and positively defined in the Hilbert 

space 𝑾1,2(Ω): 

(−(𝑨 + 𝑩)𝒖, 𝒖) ≥ 𝐶2‖𝒖‖𝑾1,2(Ω)
2 ,    𝐶2 =

1

𝐶1
2. 

 

For the third summand of the operator D:𝐶𝑖𝑗 = 𝑐𝑖𝛿𝑖𝑗𝜕𝑗 the scalar product after integration by parts is written: 

(−𝑪𝒖,𝒖′) = ∫ ∑ 𝑐𝑖
𝜕𝑢′𝑖

𝜕𝑥𝑖
𝑢𝑖𝑑Ω − ∫ ∑ 𝑐𝑖𝑢𝑖𝑢′𝑖𝑐𝑜𝑠(𝒏, 𝑥𝑖)𝑑𝑆

3
𝑖=1𝑆

3
𝑖=1Ω

. 
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The operator (-𝑪) is asymmetric: 

(−𝑪𝒖,𝒖′) − (𝒖,−𝑪𝒖′)=2∫ ∑ 𝑐𝑖
𝜕𝑢𝑖

′

𝜕𝑥𝑖
𝑢𝑖𝑑Ω − ∫ ∑ 𝑐𝑖𝑢𝑖𝑢′𝑖𝑐𝑜𝑠(𝒏, 𝑥𝑖)𝑑𝑆

3
𝑖=1𝑆

3
𝑖=1Ω

, 

 

because the volume integral is generally different from zero. The surface integral is zero. 

 

At equality of elements 𝒖′ = 𝒖, homogeneous boundary conditions and restrictions on the geometry of the 

region, the scalar product (−𝑪𝒖,𝒖) = −
1

2
∫ 𝑐𝑖𝑢𝑖

2𝑐𝑜𝑠(𝒏, 𝑥𝑖)𝑑𝑆 ,𝑆
− 1 ≤ 𝑐𝑜𝑠(𝒏, 𝑥𝑖) ≤ 0  is positive. For 

example, in the Flaman (Boussinesq) problems, the domain represents a half-cylinder (hemisphere) of finite 

radius. The axes Оx1 and Оx2 are in the day plane. An external load is applied to the day plane. The axis 

Ox3 is directed inside the body, the directional cosine negative 𝑐𝑜𝑠(𝒏, 𝑥3) = −1. 

 

Therefore, the positive definiteness of the operator D for the case of homogeneous mixed boundary 

conditions with respect to the norm in the space 𝑾1,2(Ω) follows from the inequality: 

(𝑫𝒖, 𝒖) ≥ 𝛾2‖𝒖‖𝑾1,2(Ω)
2 . 

 

For vector 𝒖 we apply Friedrichs' inequality, 

‖𝒖‖𝐿2(Ω)
2 ≤ 𝑚1‖𝒖‖𝑾1,2(Ω)

2 . 

 

The operator D is positively defined in the space 𝐿2(Ω): 

(𝑫𝒖, 𝒖) ≥ 𝛾2‖𝒖‖𝑾1,2(Ω)
2 ≥

𝛾2

𝑚1
‖𝒖‖𝐿2(Ω)

2 . 

 

As a generalized (weak) solution of the considered mixed problem (1) - (2), we consider a function 𝒗 ∈ 𝑉 

satisfying the variational problem: 

(𝑫𝒖, 𝒗) = (𝑲, 𝒗), ∀𝒗 ∈ 𝑉,    𝑲 ∈ 𝐿2(Ω),    (𝑲, 𝒗) ∈ 𝑉
∗,   𝑉 = 𝑾1,2(Ω). 

Condition 𝒗|𝑆1 = 0 let us denote by 𝒗° ∈ 𝑾°1,2(Ω) ( )1,2 Ωv W . The space 𝑉∗ is conjugate to the space V. 

Let us apply the formula of integration by parts. The required smoothness of admissible functions will 

decrease. As a result, we obtain the Galerkin form 

𝑎(𝒖, 𝒗)+c(𝒖, 𝒗)=(𝑲, 𝒗) + ∫ 𝒗 ∙ 𝒕(𝜈)
𝑆2

(𝒖)𝑑𝑆                                                                                                  (7) 

 

where, 

𝑎(𝒖, 𝒗) = −∫ ((𝐺 + 𝜆)𝜃
𝜕𝑣𝑖

𝜕𝑥𝑖
+ 𝐺

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝑏𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖

𝜕𝑣𝑖

𝜕𝑥𝑖
)𝑑Ω

Ω
 ,  

𝑐(𝒖, 𝒗) = −∫ 𝑐𝑖
𝜕𝑢𝑖

𝜕𝑥𝑖
𝑣𝑖𝑑ΩΩ

. 

Let us formulate the properties of the form 𝑑(𝒖, 𝒗) = 𝑎(𝒖, 𝒗) + 𝑐(𝒖, 𝒗) and the form 𝑐(𝒖, 𝒗) as Lemma 1 

and Lemma 2. 

 

Lemma 1: If the region Ω is bounded, then the form 𝑑(𝒖, 𝒗) is a bilinear continuous form on 𝑉 ×V. 

 

Proof: Let 𝒖, 𝒗 ∈ 𝑉, and the coefficients of the form are bounded 

𝑚𝑎𝑥(𝐺, 𝜆, 𝑏𝑖) ≤ 𝑚1,     𝜕𝑖𝑢𝑖 ∈ 𝐿2(Ω), 𝑣𝑖 ∈ 𝐿2(Ω),   𝜕𝑖 =
𝜕

𝜕𝑥𝑖
,    𝑖 = 1,2,3. 
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The estimation of the form 𝑎(𝒖, 𝒗) was done using the Cauchy-Bunyakovsky inequality 

𝑎(𝒖, 𝒗) ≤ 𝑚1 |∫ 𝜕𝑖𝑢𝑖𝜕𝑗𝑣𝑗𝑑ΩΩ
| ≤ 𝑚1 (∫ |𝜕𝑖𝑢𝑖|

2𝑑
Ω

Ω)

1

2
(∫ |𝜕𝑖𝑣|

2𝑑
Ω

Ω)

1

2
≤ 𝑚1‖𝒖‖𝑉‖𝒗‖𝑉, 

 

where, ‖𝒖‖𝑉 = (∫ |𝜕𝑖𝑢𝑖|
2𝑑

Ω
Ω)

1

2
 is the norm in the Sobolev vector space 𝑾1,2(Ω). In the space 𝑾1,2(Ω) 

all partial derivatives of the first-order belong to the space 𝐿2(Ω). 
 

We also apply the Cauchy-Bunyakovsky inequality to the second summand of the form. The first 

derivatives of the product of function 𝜕𝑖𝑢𝑖𝑣𝑖 belong to 𝐿1(Ω). 

|∫ 𝑐𝑖𝜕𝑖𝑢𝑖𝑣𝑖𝑑Ω
Ω| ≤ 𝑐|𝜕𝑖𝑢𝑖|𝐿2(Ω)|𝑣𝑖|𝐿2(Ω),   𝑐 = 𝑚𝑎𝑥(𝑐1, 𝑐2, 𝑐3). 

 

By S. L. Sobolev's embedding theorem (Rectoris, 1985): |𝒖|𝐿2(Ω) ≤ 𝜇(Ω)‖𝒖‖𝑉 form 𝑐(𝒖, 𝒗) is defined and 

satisfies the inequality: 
|𝑐(𝒖, 𝒗)| ≤ 𝑚‖𝒖‖𝑉‖𝒗‖𝑉,       𝑚 = 𝑐𝜇(Ω). 

 

The result is an inequality: 
|𝑑(𝒖, 𝒗)| ≤ (𝑚1 +𝑚)‖𝒖‖𝑉‖𝒗‖𝑉. 

 

The form 𝑑(𝒖, 𝒗) is bilinear and continuous, which was required to prove. 

 

Lemma 2: For any open region Ω and  𝑆1 ≠ 𝑆 we have 

𝑐(𝒖, 𝒖) = −
1

2
∫ 𝑐𝑖𝑢𝑖

2𝑐𝑜𝑠(𝒏, 𝒙)𝑑𝑆
𝑆2

,  ∀𝒖 ∈ 𝑉                                                                                                   (8) 

𝑐(𝒖, 𝒗) = −𝑐(𝒗, 𝒖) − ∫ 𝑐𝑖𝑢𝑖𝑣𝑖𝑐𝑜𝑠(𝒏, 𝒙)𝑑𝑆,𝑆2
         ∀𝒖, 𝒗 ∈ 𝑉                                                                          (9) 

 

Proof: Formula (9) follows from formula (8) by replacing the function 𝒖 by the expression 𝒖 + 𝒗 in formula 

(9). Let us prove formula (8).  

𝑐(𝒖, 𝒖) = −∫ 𝑐𝑖𝜕𝑖𝑢𝑖𝑢𝑖𝑑ΩΩ
= −

1

2
∫ 𝑐𝑖𝜕𝑖(𝑢𝑖)

2𝑑Ω = −
1

2
∫ 𝑐𝑖𝑢𝑖

2𝑐𝑜𝑠(𝑣, 𝑥)𝑑𝑆
𝑆Ω

, 

 

which is exactly what we needed to prove. 

 

Theorem 1: Let Ω be a bounded region in 𝑅3 и K - be a given element, 𝑲 ∈ 𝐿2(Ω). Then problem (1) has 

a single solution 𝒖 ∈ 𝑉. 
 

Proof: We substitute the equality 𝒗 = 𝒖. into the Galerkin form (1). Based on the positive definiteness of 

the operator D with respect to the norm of the space 𝑾1,2(Ω), we have an estimate from below of the 

Galerkin form: 

𝑎(𝒖, 𝒖) + 𝑐(𝒖, 𝒖) ≥ 𝛾2‖𝒖‖𝑉
2 . 

 

Let us give a projection theorem (Themam, 1981, p.28): «Let W - be a separable real Hilbert space (with 

norm ‖∙‖𝑾), and let 𝑎(𝒖, 𝒗) be a continuous bilinear form on 𝑾×𝑾 that is coercive, that is, there exists 

𝛼 > 0 such that 𝑎(𝒖, 𝒖) ≥ 𝛼‖𝒖‖𝑊
2 ,∀𝒖 ∈ 𝑾. Then for each 𝑙 of 𝑾∗- space conjugate to 𝑾, there exists one 

and only one element 𝒖 ∈ 𝑾 such that 𝑎(𝒖, 𝒗) =< 𝑙, 𝒗 >, ∀𝒗 ∈ 𝑾». 
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Let us apply the projection theorem to equality (7). The space W in our case is the space V with norm in the 

Sobolev space. Let us introduce the notations: 𝑎(𝒖, 𝒗) = 𝑑(𝒖, 𝒗)и < 𝑙, 𝒗 >= (𝑲, 𝒗). The form (𝑲, 𝒗) is 

linear and continuous on V. The space V is separable as a closed subspace of the separable space 𝑾1,2(Ω). 
 

The variational method has some advantage over the grid method in the case of multidimensional problem, 

particularly when difference approximation of derivatives can lead to significant errors. However, the 

application of the variational method requires investigation the stability of the approximate solution and its 

convergence to the solution of problem (1) with boundary conditions (2). Ritz specified a direct method for 

solving the variational problem, which involves finding the minimum of the strain energy functional, 

𝐹(𝒖) = 𝑎(𝒖, 𝒗)+c(𝒖, 𝒗) − (𝑲, 𝒗) − ∫ 𝒗 ∙ 𝒕(𝜈)
𝑆2

(𝒖)𝑑𝑆 

 

is carried out not in the space 𝐻𝐷, but in its n – dimensional subspace spanned by elements (linearly 

independent coordinates) 𝜑1, 𝜑2, … , 𝜑𝑛. The solution of the variational problem is represented by a linear 

combination of these elements: 

𝒖𝑛 = ∑ 𝑎𝑘𝜑𝑘
𝑛
𝑘=1 , 

 

where, 𝑎𝑘 are constant unknowns and are found from the minimum condition of the function of n variables 

𝐹(𝒖𝑛). 
 

The Ritz method has much in common with the displacement finite element method (FEM). It is most 

widely used in the mechanics of deformable solids. The difference between the traditional scheme of the 

Ritz method and the FEM lies in the choice of the system of approximating functions. In the Ritz method 

the approximation of displacements is performed in the entire domain of their definition, whereas in the 

FEM, the approximation is performed for each finite element (triangle or rectangle), allowing for the use 

of approximating functions of a simpler form. The FEM is applicable to the two-phase equilibrium problem 

considered in this article.  

 

To demonstrate the convergence of the numerical solution to the analytical solution, we give a general 

convergence theorem (Themam, 1981). 

 

Let V be a Hilbert space, 𝑏(𝒖, 𝒗) be a coercive continuous bilinear form on VxV: 

𝑏(𝒖, 𝒖) ≥ 𝛼‖𝒖‖𝑉
2 , ∀𝒖 ∈ 𝑉                                                                                                                        (10) 

 

and l is a linear continuous form on V. We denote by u, the only solution in V equation, 

𝑏(𝒖, 𝒖) = 〈𝑙, 𝒖〉,       ∀𝒖 ∈ 𝑉                                                                                                                              (11) 

 

To approximate an element 𝒖, we define an arbitrary outer stable and convergent approximation of the 

space V {𝑉ℎ𝑝ℎ𝑟ℎ}ℎ∈𝑁. 𝑉ℎ  is an increasing sequence of finite-dimensional subspaces of V. ⋃𝑉ℎ  is dense in 

V; 𝒑ℎ:  𝑉ℎ → 𝐿2(Ω) is a continuation operator; 𝒓ℎ: 𝑉 → 𝑉ℎ  is a continuation operator. For ∀ℎ ∈ 𝑁, we 

define a continuous bilinear form 𝑏ℎ(𝒖ℎ, 𝒗ℎ) on 𝑉ℎ × 𝑉ℎ. The form 𝑏ℎ(𝒖ℎ, 𝒗ℎ) is coercive and satisfies the 

condition: ∃ 𝛼0 > 0 and is independent of ℎ, that  
 

𝑏ℎ(𝒖ℎ , 𝒖ℎ) ≥ 𝛼0‖𝒖𝒉‖ℎ
2 ,   ∀𝒖𝒉 ∈ 𝑉ℎ                                                                                                                   (12) 

 

Let there be a continuous linear form 𝑙ℎ on the set of subspaces  𝑉ℎ such that  
‖𝑙ℎ‖∗ℎ ≤ 𝛽                                                                                                                                                        (13) 
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𝛽 does not depend on h. For a fixed h we construct a sequence of elements 𝒖ℎ ∈ 𝑉ℎ such that 

𝑏ℎ(𝒖ℎ , 𝒖ℎ) = 〈𝑙ℎ , 𝒖ℎ〉,     ∀𝒖ℎ ∈ 𝑉ℎ                                                                                                                   (14) 

 

Let's introduce the terms: 

 

If the family 𝒗ℎ
𝑤𝑒𝑎𝑘𝑙𝑦

ℎ→0
→ 𝒗 and family 𝒘ℎ

𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦

ℎ→0
→ 𝒘, then  

lim
ℎ→0

𝑏ℎ (𝒗ℎ , 𝒘ℎ) = 𝑏(𝒗,𝒘),        lim
ℎ→0

𝑏ℎ (𝒘ℎ, 𝒗ℎ) = 𝑏(𝒘, 𝒗)                                                                     (15) 

 

If the family 𝒖ℎ
𝑤𝑒𝑎𝑘𝑙𝑦

ℎ→0
→ 𝒖, then 

lim
ℎ→0

〈𝑙ℎ, 𝒖ℎ〉 = 〈𝑙, 𝒖〉                                                                                                                                           (16) 

 

General convergence theorem (Themam, 1981) is: «Theorem 2: If conditions (10), (12), (13), (15), and 

(16) are compiled the solution 𝒖ℎ of Equation (14) converges strongly to the solution 𝒖 of Equation (11) 

with ℎ → 0». 

 

Let us apply this theorem and show the convergence of the numerical solution obtained by FEM. 

 

Let Ω - be an open bounded region in the space 𝑅2. By ℑℎ we denote a regular triangulation Ω, a collection 

of two-dimensional simplexes that meet the condition 

𝜎(ℎ) ≤ 𝛼,   𝜌(ℎ) → 0                                                                                                                                  (17) 

 

where, 

𝜌(ℎ) = 𝑠𝑢𝑝𝜌𝙹⏟  
𝙹∈ℑℎ

,                       𝜌′(ℎ) = 𝑖𝑛𝑓𝜌𝙹
′

⏟  
𝙹∈ℑℎ

  ,          𝜎(ℎ) = 𝑠𝑢𝑝(𝜌𝙹/𝜌𝙹
′ )⏟        

𝙹∈ℑℎ

 , 

 

where, 𝜌 = 𝜌𝙹 is the diameter of the smallest ball containing 𝙹 (two-dimensional simplex, in particular 

triangle, rectangle); 𝜌′ = 𝜌𝙹
′  is the diameter of the largest ball contained in 𝙹. 

 

If 𝙹 is a triangle, then the inequality it is known (Themam, 1981): 
1

𝑡𝑔
𝜃

2

≤
𝜌𝙹

𝜌𝙹
′ ≤

2

𝑠𝑖𝑛𝜃
, 

 

where, 𝜃 is the smallest angle of the two-dimensional simplex 𝙹. Condition (17) means that the smallest 

angle for all triangles 𝙹 ∈ ℑℎ s bounded from below: 𝜃 ≥ 𝜃0 > 0.  
 

Proposition: If 𝜌(ℎ) → 0 and 𝜎(ℎ) < 𝛼, then the solution 𝒖ℎ of task (14) converges to the solution 𝒖 of 

task (11). 

 

The proof follows from positive definiteness of the continuous bilinear form 𝑑(𝒖, 𝒗) and fulfillment of the 

conditions of the convergence theorem (10), (12), (13), (15), and (16). 

 

The variational problem is solved by methods of finding functions that give the minimum value to a given 

functional. Some boundary conditions (kinematic) must be considered precisely when choosing the 

coordinate functions of the numerical solution. Natural (static) boundary conditions are approximated 

automatically when solving the variational problem. It is not necessary to take into account the natural 

boundary conditions when selecting the coordinate functions. Thus, variational methods (Ritz method), 
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projection methods of Bubnov-Galerkin type and the finite element method (Ern and Guermond, 2004) 

based on them are applicable for finding the solution of the generalized Lamé Equations (1) with boundary 

conditions (2). 

 

4. Results and Discussion 
According to FEM, the matrix form for Equation (7) was obtained. The flat region occupied by the two-

phase medium was divided into triangular finite elements (the case of plane deformation). The 

displacements of the 𝑖𝑗𝑚 triangle vertices were expressed by the displacement vector 𝛿 =

{𝑢1
𝑖  𝑢2

𝑖  𝑢1
𝑗
 𝑢2
𝑗
 𝑢1
𝑚 𝑢2

𝑚 }, which is unknown. 

 

In the triangular element 𝑖𝑗𝑚 we define as coordinate functions: 

𝑢1 = 𝛼1 + 𝛼2𝑥1 + 𝛼3𝑥2 ,                  𝑢2 = 𝛼4 + 𝛼5𝑥1 + 𝛼6𝑥2, 
 

where, 𝛼1, … , 𝛼6  are unknown constant coefficients. The coefficients 𝛼1, … , 𝛼6 are determined from the 

system of linear algebraic equations. Let us give the final formulas for displacements: 

𝑢1 =
1

2∆
[(𝑝𝑖 + 𝑑𝑖𝑥1 + 𝑛𝑖𝑥2)𝑢1

𝑖 + (𝑝𝑗 + 𝑑𝑗𝑥1 + 𝑛𝑗𝑥2)𝑢1
𝑗
+ (𝑝𝑚 + 𝑑𝑚𝑥1 + 𝑛𝑚𝑥2)𝑢1

𝑚], 

𝑢2 =
1

2∆
[(𝑝𝑖 + 𝑑𝑖𝑥1 + 𝑛𝑖𝑥2)𝑢2

𝑖 + (𝑝𝑗 + 𝑑𝑗𝑥1 + 𝑛𝑗𝑥2)𝑢2
𝑗
+ (𝑝𝑚 + 𝑑𝑚𝑥1 + 𝑛𝑚𝑥2)𝑢2

𝑚], 

𝑝𝑖 = 𝑥1
𝑗
𝑥2
𝑚 − 𝑥1

𝑚𝑥2
𝑗
,   𝑛𝑖 = 𝑥1

𝑚𝑥1
𝑗
,        𝑑𝑖 = 𝑥2

𝑗
− 𝑥2

𝑚 ,        2∆= |

1 𝑥1
𝑖 𝑥2

𝑖

1 𝑥1
𝑗

𝑥2
𝑗

1 𝑥1
𝑚 𝑥2

𝑚

|. 

 

The coefficients 𝑝, 𝑛, 𝑑 with other indices are obtained by cyclic permutation. From the vector of unknown 

displacements by means of the Cauchy equations we pass to the vector of relative deformations: 
{𝜀} = [𝑁]{𝛿}                                                                                                               (18) 

 

where, 

[𝑁] =
1

2∆
(
𝑑𝑖
0
𝑛𝑖

0
𝑛𝑖
𝑑𝑖

𝑑𝑗
0
𝑛𝑗

0
𝑛𝑗
𝑑𝑗

𝑑𝑚
0
𝑛𝑚

0
𝑛𝑚
𝑑𝑚

). 

 

Then, based on Hooke's law and the physical equation of state for pore water (hypothesis 2) and using 

Lagrange's principle, the final formulas were written down: 
 

([𝑁]𝑇[𝐷][𝑁] + [𝑀]𝑇[𝐷𝑙][𝑁]){𝛿} = {𝐾}                                                                                                  (19) 

 

The matrices [𝐷] and [𝐷𝑙] describe the mechanical properties of the soil skeleton and pore water, 

respectively. Matrices [𝐷𝑙], [𝑀] are new and correspond to operator 𝑪 in Equation (1): 
 

[𝐷𝑙] = (
𝑐1 0 0
0 𝑐2 0
0 0 0

),    [𝑀] =
1

2∆
(
𝜉𝑖
∗

0
0

0
𝜉𝑖
∗

0

𝜉𝑗
∗

0
0

0
𝜉𝑗
∗

0

𝜉𝑚
∗

0
0

0
𝜉𝑚
∗

0
), 

 

where, 𝜉𝑘
∗ = 𝑝𝑘 + 𝑑𝑘𝑥1 + 𝑛𝑘𝑥2,  (𝑘 = 𝑖, 𝑗, 𝑚).  

 

The upper index Т denotes the transpose operation of the matrix. The expression in brackets of formula (19) 

[𝑁]𝑇[𝐷][𝑁] + [𝑀]𝑇[𝐷𝑙][𝑁] is the stiffness matrix for a triangular two-phase element. It is independent of 
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the loads acting on the element and can be calculated for each element separately. Physically, the 

components of this matrix represent the coefficients of the displacement method equations for calculating 

a single element. A global stiffness matrix is obtained for a set of elements. To increase the order of 

approximation, rectangular elements were also considered. These results are not presented in the article. 

 

The Flaman test problem of loading a half-plane by a vertical load 𝑄 is considered. An analytical solution 

is known for this problem. A two-phase body of unit thickness is bounded from above by a semi-cylinder 

of small radius 𝜌 and a day surface, and from below by a semi-cylinder of large radius 𝑅. The region is 

divided into triangular elements. Volumetric forces are absent. The parameters of the problem are taken 

from laboratory experiments of A.V. Nabokov (Maltseva et al., 2024): 𝐸𝑠 = 8.1 𝑀𝑃𝑎, 𝐸𝑙 = 3.3 𝑀𝑃𝑎, 𝜈 =
0.3, ℵ = 0.52, ℎ = 1 𝑚, 𝑄 = 0.077 𝑀𝑁/𝑚.  

 

 
 

Figure 2. Comparison of horizontal displacements, 𝑥1 = 0 (grid 10 × 10). 
 

 

Figure 6 shows the comparison of vertical displacements of the day surface of the half-space on different 

grids of the domain partitioning. The grid dimensionality affects the error of the numerical solution. The 

best result is obtained with 25x25 cm triangulation. Figure 7 shows the variation of vertical displacements 

𝑢2 along the depth of the compressible layer in the section located at a distance of 1.5m from the vertical 

axis of symmetry of the half-space. 
 

The calculations showed that the numerical solution agrees quite well with the analytical one. The 

maximum discrepancy was no more than 22 %. 
 

 
 

Figure 3. Comparison of horizontal displacements, 𝑥1 = 0 (grid 15 × 15). 
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Figure 4. Comparison of horizontal displacements, 𝑥1 = 0 (grid 20 × 2.0). 
 

 

 
 

Figure 5. Comparison of horizontal displacements, 𝑥1 = 0 (grid 25 × 25). 
 

 

As can be seen from the graphs shown in Figures 2-5, the analytical solution agrees quite well with the 

solution obtained by FEM, especially on a 0.2 m grid 20x20.  

 

 
 

Figure 6. Comparison of vertical displacements on different grids, 𝑥2 = 0. 



Maltseva et al.: Approximation of the Generalized Lame Equations by the Strain Energy … 
 

 

1316 | Vol. 10, No. 5, 2025 

 
 

Figure 7. Vertical displacements on different grids, 𝑥1 = 1.5 m. 
 

 

To test this methodology, a real problem of loading a heterogeneous water-saturated soil base was solved. 

To compare the solution of this problem with the results of the natural experiment by Bugrov et al. (1997), 

all input parameters were set as in the experiment. The soil base was multilayered (Figure 8) and subjected 

to a uniformly distributed load of 𝑞 = 0.054 𝑀𝑃𝑎 at a distance of 𝑎 = 5 𝑚 from the symmetry axis.  

 

The stress-strain state of each layer is described using a system of differential Equations (1) with different 

constant coefficients G, 𝜆, 𝑏𝑖, 𝑐𝑖 for each soil layer and boundary conditions (2). The mechanical parameters 

of the problem for each layer are summarized in Table 1. The Poisson's ratio 𝜈 = 0.3 was one averaged 

value for all layers. 

 
 

Figure 8. Schematic diagram of the soil foundation. 

 

 

Table 1. Mechanical characteristics of soil layers. 
 

Layer number Layer thickness, m El, MPa Es, MPa ℵ 

layer 1 0.7 0.035 0.956 0.38 

layer 2 1.7 0.468 1.955 0.5 

layer 3 0.9 0.065 5.662 0.09 

layer 4 4 0.294 2.941 0.5 

layer 5 1.8 0.192 3.425 0.43 
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On the symmetry axis Ox2 and boundary S1 there are no horizontal displacements of soil particles, while on 

boundary S2 there are no displacements at all. The finite element method (FEM) was applied to solve the 

problem. The novelty of this approach is in the construction of a new stiffness matrix corresponding to the 

generalized Lame operator for each layer of the soil foundation. The domain was discretized using 

rectangular elements.  

 

Figure 9 and Figure 10 show the results of numerical solutions of vertical displacements of the soil skeleton 

and pore water at the layer boundaries. The displacements of pore water particles decrease with increasing 

the depth as the pore water is clamped by mineral soil particles.  

 

 
 

Figure 9. Vertical displacements of soil particles at the depth 3.3 m. 

 

 

 
 

Figure 10. Vertical displacements of soil particles at the depth 7.3 m. 

 

 

At a distance of 3.3 m from the day surface, the vertical displacements were 0.001 m. The farther the layer 

is from the day surface, the smaller the displacements of soil particles and pore water. 

 

Closer to the day surface (at a distance of 2.5 m) the maximum displacements of the soil skeleton amounted 

to 0.06 m. For the layer located at a distance of 7.3 m from the day surface, vertical displacements of the 

soil skeleton are equal to 0.001 m. 
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Figures 11-13 show the horizontal displacements of soil skeleton particles and pore water for different 

vertical cross sections. 

 

The vertical displacements decrease by an order of magnitude when moving away from the line of action 

of the external load for different layers. 

 

Figures 14 and 15 show a comparison of the obtained solution to the problem with the data of a natural 

experiment. Figure 14 shows graphs of vertical displacements of points on the daytime surface of a water-

saturated soil base, obtained by FEM and from experimental data in the section 𝑥2 = 0 𝑚. The discrepancy 

ranged from 5% to 10% under load at a distance of more than 7 m from the axis of symmetry. The maximum 

settlement according to the experimental data was 0.46 m, while according to FEM the settlement was 0.44 

m at a distance of 3.8 m from the axis of symmetry. Figure 15 shows the graphs of horizontal displacements 

obtained by FEM and experimentally in the section 𝑥1 = 1 𝑚. The maximum discrepancy on the daylight 

surface was 16.2%. At the boundary of the first layer, the displacements coincided with the experimental 

ones, at the boundary of the second layer, the discrepancy was 11%, at the boundary of the third layer, the 

discrepancy was 7%, and at the boundary of the fourth layer, the maximum discrepancy was 26%. The 

numerical solution of the problem agrees quite well with the experimental data. The computational 

efficiency is shown on a finer 25x25 grid. The maximum discrepancies between the experimental data and 

the numerical solution for horizontal displacements of soil particles were 10%, for pore pressures there are 

6% (Figures 15-16). The approach considered will be applicable for large-scale projects. In case of a 

shortage of available computing resources, cloud computing can be used. 

 

 
 

Figure 11. Horizontal displacements (𝑥1 = 2 𝑚). 
 

 

 
 

Figure 12. Horizontal displacements (𝑥1 = 5 𝑚). 
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Figure 13. Horizontal movements (𝑥1 = 8 𝑚). 

 

 

 
 

Figure 14. Vertical displacements of the soil skeleton on the daytime surface (𝑥2 = 0 𝑚). 

 

 

 
 

Figure 15. Horizontal displacements of the soil skeleton for a vertical section (𝑥1 = 1 𝑚). 
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Figure 16. Residual pore pressure. 

 

Figure 16 shows the change in residual pore pressure with depth. The maximum discrepancy between the 

numerical solution and the experimental data was 20% (10x10 grid) and there are 6% (25x25 grid). 

 

5. Conclusion 
The paper considers the generalized differential Lamé operator. It is shown that the operator is positively 

definite on the set of twice continuously differentiable functions and is not symmetric like the Lamé 

operator. The applicability of variational methods to the solution of the mixed boundary value problem is 

demonstrated. The existence and uniqueness of a generalized solution of the problem of equilibrium of a 

two-phase body are proved. 

 

The analogs of three Betti formulas are obtained, and one of them shows the asymmetry of the operator. To 

approximate the system of generalized Lame equations, an energy functional (analog of the Clapeyron 

formula) is constructed. The deformation energy is represented by three components: the sum of the first 

two summands is a quadratic functional, and the third summand is a bilinear functional that describes the 

effect of pore water on the soil skeleton. 

 

The model was calibrated on a Flamand-type test problem. The finite element method was used to solve a 

real problem of loading a non-uniform soil foundation with a distributed load from a structure. The 

numerical solution agrees quite well with the experimental data. The maximum discrepancy was no more 

than 10% on a 25x25 grid. 

 

The results of this study have implications for soil mechanics and applied mathematics. They will lead to 

additional studies and applications to various applied problems within the framework of the generalized 

Lame operator model. 

 

The model presented here is based on small-deformation assumptions and excludes soil creep to first 

describe soil behavior through elasticity theory, with subsequent extension to viscoelasticity theory. The 

viscoelastic formulation accounts for soil creep, though this extension is not addressed in the current article. 

 

One of the causes of soil deformation is soil creep (Nguyen, 2012). The influence of creep deformation of 

soft soil on engineering construction cannot be ignored (Yuan et al., 2023). The change in the modulus of 
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linear deformation of the soil over time within the framework of the model considered by the authors of the 

article will enable solving problems that account for the simultaneous influence of pore water on the soil 

skeleton and the viscoelastic properties of the soil skeleton on the stress-strain state of the soil foundation 

(Maltseva et al., 2024). In the work of Yin et al. (2022) & Chen et al. (2024) a general simple method is 

considered that is suitable for calculating settlements during compaction of layered viscous clay soils 

without vertical drainage holes or with them under complex loading conditions with good accuracy. This 

is the first aspect. Secondly, the further prospects of this study include justifying  the use of design solutions  

such as vertical reinforcement in road construction, the use of sand-reinforced pads and piles in low-rise 

construction to enhance the bearing capacity of viscoelastic water-saturated soil foundations. Studying the 

influence of the viscoelastic properties of the skeleton of water-saturated soil will significantly expand the 

field of geotechnical design, using more accurate and efficient methods for calculating soil foundations. 
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