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Abstract 

Pneumonia is a respiratory lung contamination that ranges in severity from mild to lethal outcomes. The analysis of tomographic 

images is the most significant method of pneumonia detection. The image analysis requires expertise and proficiency to diagnose 

the disease correctly. The medical reports with multiple diseases have overlapping symptoms, which may lead to misdiagnosis and 

deferred identification. The misdiagnosis results in increased healthcare costs, worsened medical conditions, and legal implications. 

Centralized deep learning enhances the feature extraction process and optimally improves the prediction outcomes; however, these 

models have data privacy concerns due to centralized storage systems. The healthcare departments follow the Health Insurance 

Portability and Accountability Act. (HIPAA) to maintain the retaining of patient data and improve the portability and continuity of 

health insurance coverage. In the proposed work, federated learning has been utilized to enhance data privacy and deal with 

imbalanced and diverse data silos. This distributed privacy-preserved model has been employed with a pooled dataset curated from 

multiple sources in a 5-client architecture. The model was implemented with the FedAVG aggregation technique in independent 

and identically distributed (IID) and non-IID data distributions. The outcomes of the model exhibit 87.62% accuracy with IID and 

86.15% accuracy with non-IID distributions. The comparison of these outcomes with the existing studies shows that the proposed 

model outperforms by exhibiting better performance and resulting in the minimum loss of 0.4041 and 0.4139 with IID and non-

IID distributions, respectively. 

 

Keywords- Deep learning, InceptionV3, Distributed architecture, Federated learning, Pneumonia detection, Centralized learning. 

 

 

 

1. Introduction 
In 2019, the number of Covid-19 cases started to increase, resulting in a global health crisis and widespread 

transmission, hence WHO declaring it as a pandemic in March 2020 (Kafadar et al., 2022). It caused a rapid 

increase in mortality rates due to the unavailability of vaccines and medications. This pandemic directly 

impacted the patient care system and economic growth that limited medical resources and healthcare 

equipment’s worldwide (Holt et al., 2020). The sudden surge of Covid-19 cases and immediate shutdowns 

led to a decrease in the available healthcare assets and medicine supplies. Covid-19 affects the respiratory 

system and results in reducing surfactant secretion (Alipoor et al., 2020). The decrease in secretion causes 

the alveoli to collapse, resulting in pneumonia. In the past 20 years, the mortality cases caused by pediatric 

pneumonia have significantly decreased (Kanwal et al., 2024). However, these cases started to increase 

during the pandemic, when the available healthcare resources were insufficient for the treatment of Covid-

19. Pneumonia is respiratory lung contamination caused by bacteria and viruses and ranges from mild to 
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lethal outcomes (Adjei-Mensah et al., 2024). The advancement in pneumonia stages may affect other 

organs, such as the nervous system, heart, and lungs, along with blood vessels (Hatmi, 2021). The 

identification of pneumonia is challenging to the lower income countries due to the complex structure of 

the disease (Kundu et al., 2021). The other problem associated with this disease is its misdiagnosis due to 

the similar kinds of symptoms in tuberculosis, Covid-19, and lung cancer. As per the WHO report, 

pneumonia affects people over the age of 65 and patients with a weakened immune system the most 

(Pneumonia, n.d.). There are various other kinds of respiratory diseases, such as silicosis, chronic 

bronchitis, cystic fibrosis, asthma, lung cancer, and tuberculosis. The statistics presented in Goyal & Singh 

(2023), show that lung cancer has affected 8 million people to date; however, this patient count is less if 

compared to the 15-month cases of Covid-19 and pneumonia. Respiratory infections and diseases are 

detected using the tomography imaging process, specifically with X-ray scans; however, it requires 

expertise and proficiency to correctly diagnose the disease. Patients with multiple diseases may have 

overlapping symptoms in their reports, which creates complexity in accurately diagnosing the associated 

disease, and the obliviousness of the medical imaging process leads to misdiagnosis of the disease. The 

misdiagnosis of the disease may result in worse medical conditions, increased healthcare costs, 

psychological impact, and legal implications, along with lethal results. There are various existing studies 

that have used different kinds of artificial intelligence (AI) tools on medical images to accurately identify 

diseases. The deep learning (DL) models are also used for Alzheimer's, Parkinson’s, pneumonia, cancer, 

and Covid-19 disease detection (Hariri & Avşar, 2023; Kafadar et al., 2022; Kundu et al., 2021; Prakash et 

al., 2023b; Prakash et al., 2023c; Rahimzadeh & Attar, 2020). These models are highly efficient and optimal 

for providing improved performance of disease detection by performing proficient image processing and 

feature extraction. The Xception, InceptionV3, VGG16, VGG19, ResNet50, CNN, and ensemble models 

have been used by various researchers to predict pneumonia from lung CXRs (Alyasseri et al., 2022; Gulati 

et al., 2022; Hasan et al., 2021; Ieracitano et al., 2022; Jaiswal et al., 2019; Prakash et al., 2023a; Rehman 

et al., 2022). These models have hierarchical feature learning, robustness to variance, higher scalability, 

and capability due to the handling of millions of parameters to capture the image data with vast 

complexities. These models are trained with the centralized learning process, where the data processing and 

computational tasks are performed within the central server using the vast volume of the data. DL presents 

various efficient approaches for optimally analyzing the images, while it also poses significant challenges 

such as scalability issues, data privacy concerns, and high time complexity due to transferring the data to 

the centralized location. Hence, federated learning (FL) was introduced by Google in 2016 to enhance data 

privacy, improve scalability, increase bandwidth, and deal with diverse datasets (Khan & Alam, 2021; Nair 

et al., 2022). The base models used in the distributed FL are DL models. This framework contains various 

clients and a single server allowing local training at the client location by sending the initial model from 

the server to each client (Wahab et al., 2023). The clients further perform local training with the model and 

send the model updates to the server instead of sending the data (Zhang et al., 2024). The server then 

aggregates the local updates by using the averaging technique and creates a global model to perform global 

training. Though the communication overhead in the FL is higher while, it ensures that the patient’s data 

remains private and unshared with the other clients and servers participating in the architecture (Darzi et 

al., 2024; Hoyos et al., 2023; Wahab et al., 2023). 

 

In the proposed work, the traditional DL-based InceptionV3 and distributed FL-based InceptionV3 model 

have been proposed for pneumonia detection. The FL was applied with two different distributions, namely 

IID and non-uniform data distribution, and the existence of pneumonia in CXRs was analyzed. 

 

The work contributes to the following objectives- 

● The proposed research work aims to implement a federated deep learning-based pneumonia detection 

model to affirm data privacy protection by utilizing a multi-client federated architecture. 
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● This work emphasizes the significance of distributed federated learning in healthcare applications and 

introduces a decentralized federated learning approach using an InceptionV3 model for enhancing 

privacy and dealing with data heterogeneity.  The dataset has been homogenously and heterogenously 

provided to the participating clients in the network.  

● The proposed model effectively addresses data privacy challenges by enabling decentralized model 

training and also ensures high performance across diverse and non-uniform datasets, making it suitable 

for sensitive healthcare applications in real-world scenarios. 

 

The remaining article contains Section 2, which discusses the existing models for disease detection. Section 

3 provides a description of the methodology and pneumonia dataset. The findings of distributed FL have 

been presented in Section 4. Finally, the major findings and conclusion of the work are presented in Section 

5. 

 

2. Literature Review on Federated Learning Techniques for Disease Detection 
In Sharma et al. (2025), the authors employed a FL-based MLP model for pneumonia prediction with IID 

data in 3 and 4 clients. The results show that the smaller number of clients show improved accuracy; 

however, the increase in client value decreases the performance and increases the computational time. The 

model proposed by Sharma & Guleria (2025) has been employed with IID and non-IID distributions in a 

5-client federated framework. The authors used FedAVG and FedProx techniques to aggregate the updates 

collected from each client. The outcomes show that the model improved when the aggregation was changed 

from FedAVG to FedProx. In Pan et al. (2024), the authors developed a FL model for pediatric pneumonia 

detection using FedAVG aggregation. The dataset was collected from online repositories containing 

pneumonia and normal CXRs of 5232 images. The base model for developing this framework was set to 

VGG11 with the pre-trained weight values of the mageNet dataset. In Alfiansyah et al. (2024), four variants 

of the CNN model are utilized for pneumonia identification in CXRs. These models were DenseNet, 

ResNet, Inception, and VGG, out of which the highest performance has been resulted by the DenseNet 

model. The image pre-processing technique called data balancing fully and partially was also applied, and 

it has been further implemented with the DenseNet model. In Shiri et al. (2024), the authors worked on 

covid-19 detection using a decentralized FL framework. The dataset contains 3055 cases which have been 

further distributed randomly to various clients involved in the FL framework. The DenseNet model has 

been trained to predict the presence of Covid-19, among which an accuracy of 75% has been identified. In 

Kandati & Gadekallu (2023), FL-based PSO algorithm has been developed for Covid-19 detection. To 

develop this model, the authors used a FedAVG aggregation method, where the 10 clients were used for 

the framework development. The hyperparameters such as learning rate of 0.020, epoch of 30, local model 

epoch of 5, and utilization of client have been set to 0.1, 0.2, 0.5, and 1. 

 

In Mabrouk et al. (2023), FL-based DL architecture has been introduced, which uses DenseNet121, 

Inceptionv3, Xception, MobileNetV2, ResNet50, VGG16, ResNet152v2, and DenseNet169 models for 

training the clients locally. Further, the best performing two models have been aggregated to develop an 

ensemble model to be applied as a global model. In the work proposed by Kareem et al. (2023), the authors 

used DenseNet, Alexnet, ResNet50, VGG19, and Inception in the FL-based distributed environment to 

predict pneumonia. The CXR dataset has been curated and contains 5956 images, which have been further 

used for the models' training and testing purposes. The comparison of all the base models has shown that 

ResNet50 outperformed all the others with the highest accuracy. In Malik et al. (2023), DenseNet169, 

VGG16, and VGG19 have been used with FL architecture for Covid-19 detection in CXRs. The model has 

been named DMFL_Net, which is applied to the dataset containing 17,301 images collected from different 

sources having classes, namely, TB, Covid-19, pneuTH, pneu, lung cancer, and normal. The work presented 

in Riedel et al. (2023) has been implemented using a FL framework with ResNetFed and ResNet50 models 

https://paperpile.com/c/tOlVg4/NO3q
https://paperpile.com/c/tOlVg4/8Fn3
https://paperpile.com/c/tOlVg4/HPMp
https://paperpile.com/c/tOlVg4/cYNY
https://paperpile.com/c/tOlVg4/z8d0Y
https://paperpile.com/c/tOlVg4/2x0XX
https://paperpile.com/c/tOlVg4/MZoJF
https://paperpile.com/c/tOlVg4/4LnYs
https://paperpile.com/c/tOlVg4/4oQzJ
https://paperpile.com/c/tOlVg4/1YwXg


Sharma & Guleria: A Distributed Privacy Preserved Federated Learning Approach for … 
 

 

1327 | Vol. 10, No. 5, 2025 

with 5-client architecture. The data was divided among the clients in a heterogeneous manner, where each 

client had a different sort and distribution of the data. The outcome of the model depicts that the highest 

performance has been achieved by the ResNetFed model with an overall accuracy of 82.82%. In 

Subashchandrabose et al. (2023), the authors used neural networks in FL architecture to detect lung cancer 

in CT scan images. The client value has been set to 5, 10, 20, 40, 80, and 160, and the aggregation technique 

has been set to FedAVG. In Farkaş et al. (2023), the VGG16 model has been implemented for pneumonia 

detection, where the FL architecture is applied in 10 client’s architecture. The dataset curated from Kaggle 

contained 5863 images, divided into 10 shards for each client. The images have been resized into 150X150, 

which is not the accurate and correct input dimension to the VGG16 model, hence may result in optimally 

for pneumonia detection in the CXRs. In Makkar & Santosh (2023), the authors developed a SecureFed 

model using an FL-based framework, where the client is kept as 10, 20, 30, 50, and 100. The dataset utilized 

contains 4200 images, which have been distributed in different ratios to each client. 

 

Table 1 tabulates the techniques, dataset, hyperparameters, summary, and research gaps of the existing 

studies used for disease detection using FL architecture. 

 
Table 1. A discussion on existing disease detection models implemented using federated learning-based 

architecture. 
 

References Techniques Images Hyperparameters Summary Research gaps Disease 

Sharma et al. 

(2025) 
MLP 

Pooled 

dataset of 

10,440 
CXRs  

Learning rate: 
0.0001, 

Epoch: 10, 

Batch Size: 32, 
Clients: 3 and 4, 

Rounds: 100 

The FL-based model has 

been implemented with a 

pooled dataset 
containing higher class 

imbalance, distributed 

among 3 and 4 clients in 
an IID manner.   

The model has been 

employed for IID 
distribution; however, 

non-IID data can be 

explored.  

Pneumonia 

Sharma & 

Guleria 
(2025) 

EfficientNetB

3 
4000 CXRs 

Learning rate: 

0.001, 
Epoch: 5, 

Batch Size: 32, 

Clients: 5, 
Rounds: 15 

The FL-EfficientNetB3 

model has been 

implemented in IID and 
non-IID distributions, 

where the aggregation 

strategies have been 
changed to FedAVG and 

FedProx.  

The authors have 

achieved good results 

with FedAVG and 
FedProx aggregations; 

however, future 

research may explore 
other aggregation 

strategies. 

Pneumonia 

Pan et al. 

(2024) 
VGG11 

5,232 

images 

Learning rate: NM, 

Epoch: NM, 

Batch Size: NM, 
Clients: 10, 

Rounds: 100 

The model has been 

proposed for pediatric 
pneumonia detection in 

CXRs using FL, where 

the base model was 
configured to VGG11.  

As per the images used 

for the implementation, 

the number of clients 

has been set to too high 
value, which may 

result in the 

undertraining of the 
model of the client 

receiving a lesser 

number of images. 

Pediatric 

pneumonia 

Alfiansyah et 

al. (2024) 

Inception, 
DenseNet, 

VGG, 

ResNet 

RSNA- 

15863 
images 

Mendeley- 

5856 
images 

Not Mentioned 

The dataset to be used 

for the implementation 

was collected from two 
sources, Mendeley and 

RSNA. The prediction 

outcomes have 

identified that the 

DenseNet model 

outperforms by 
achieving the highest 

accuracy. 

There is a lack of 

information on the 
hyperparameter 

configuration, which 

makes it difficult for 

other researchers to 

develop a similar type 

of model for disease 
detection. 

Pneumonia 
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Table 1 continued… 
 

Shiri et al. 
(2024) 

DenseNet 
3055 
images 

Learning rate: 
0.00001, 

Epoch: 300, 

Batch Size: NM 
Clients: NM 

The DenseNet model is 

utilized for covid-19 

prediction, where the 
accuracy of 75% and 

76% have been 

identified with the FL 
and centralized 

DenseNet model, 

respectively. 

The dataset used by the 
authors is small, which 

may provide 

overfitting concerns in 
the results.  

Covid-19 

Kandati & 

Gadekallu 

(2023) 

PSO Dataset1: 

317 images, 

Dataset2: 
5856 

images, 

Dataset3:  

Clients: 10, 

Aggregation 

technique: 
FedAVG and FPS, 

Epoch: 30, 

Batch size: 10 
 

The PSO model has been 

utilized for covid-19 

disease detection using a 
decentralized FL-based 

framework.  

The dataset used for the 

covid-19 detection is 

small for the model 
implementation as the 

authors have created an 

architecture containing 
10 clients, which 

depicts that if the client 

utilization has been set 
to 1, each client will get 

a small dataset for 

training the local 
model. 

Covid-19 

Mabrouk et 

al. (2023) 

DenseNet121,  

Inceptionv3, 

Xception, 

Mobilenetv2, 

resnet50, 
Vgg16, 

Resnet152v2 

densenet169 

5856 

images 

Learning rate: 

0.00001, 

Epoch: 20, 

Batch size: 16,  

Optimizer: Adam 

The authors developed a 

federated ensemble 

model for pneumonia 

detection using the 

combination of the two 
pre-trained models. 

The configuration of 

the learning rate has 

been set to a small 

value of 0.00001, 

which may result in 
slow convergence and 

precision issues and 

may get stuck in local 
minima.  

Pneumonia 

Kareem et al. 

(2023) 

DenseNet, 

Alexnet, 

ResNet50, 
VGG19, 

Inception 

5856 

images 

Epoch: 20 The authors utilized five 

pre-trained models for 

FL-based framework 
development, among 

which the ResNet50 has 

resulted as the best-
performing model for 

pneumonia detection. 

The dataset used for the 

model implementation 

is 5856 images; 
however, the data 

balancing is a major 

concern, which may 
result in model bias, 

overfitting, and 

increased model 

complexity. 

Pneumonia 

Malik et al. 

(2023) 

DenseNet169, 

VGG16, 
VGG19 

17,301 

images 

Epoch: 100, 

Clients: 3 

Three models, namely, 

DenseNet169, VGG19, 
and VGG16 have been 

applied in FL for 

multiclass classification 
of TB, PneuPH, Pneu, 

covid-19, and lung 

cancer. 

The work lacks 

detailed information on 
hyperparameter 

configuration. 

Tuberculosis,  

Covid-19, 
Pneumonia, 

lung cancer. 

Riedel et al. 

(2023) 

ResNet50, 

ResNetFed 

1411 

images 

Clients: 5, 

Aggregation 

technique: 
FedAVG, 

Epoch: 100, 

Batch size: 6, 

Optimizer: 

SGD+momentum, 

Momentum: 0.1, 
Learning rate: 

0.0005 

The model was built for 

pneumonia detection in 

centralized and 
decentralized 

frameworks. 

A small dataset has 

been provided to five 

clients in a 
heterogeneous 

configuration; 

however, the dataset 

contains fewer images. 

The dataset is also 

imbalanced, which 
may result in 

misleading metrics. 

Pneumonia 
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Table 1 continued… 
 

Subashchand

rabose et al. 

(2023) 

Neural 

networks 

206 images Aggregation 

technique: 

FedAVG, 
Clients: 5, 10, 20, 

40, 80, and 160 

The model is 

implemented for cancer 

detection in lung CT 
scan images using FL 

approach.  

In this work, the details 

about the data 

distribution among the 
clients have not been 

provided. Further, the 

lack of information 
regarding 

hyperparameter 

configuration also 

limits the work. 

Lung cancer 

Farkaş et al. 

(2023) 

VGG16 5863 

images 

Clients: 10, 

Optimizer: SGD 

The VGG16 base model is 

utilized in 10 clients' FL 
frameworks for 

pneumonia detection.  

The authors have used 

only IID distribution of 
the data among clients; 

however, this is a 

challenge in real-life 
scenarios as different 

hospitals have different 

sorts of datasets with 
different ratios.  

Pneumonia 

Makkar & 

Santosh 

(2023) 

FedSecure 4200 

images 

Clients: 10, 20, 

30, 50, and 100, 

Aggregation 
technique: 

FedAVG, 

FedMGDA+, and 

FedRAD, 

Optimizer: SGD 

The pneumonia detection 

model has been developed 

by using a FL framework, 
where the data 

distribution is kept as 

heterogeneous.  

The authors have 

divided the dataset into 

five different 
scenarios, where each 

scenario is client-

based. The authors 

used a segment of the 

dataset containing 200, 
400, 600, 1000, and 

2000 for 10, 20, 30, 50, 

and 100 client 
architecture, 

respectively. This 

distribution may result 
in-optimally due to less 

number of images in 

each client-based 
scenario. 

Covid-19, 

pneumonia, 

and normal 

 

 

3. Material and Methods 
A detailed explanation of the utilized dataset and the proposed InceptionV3 in a centralized DL and 

decentralized FL has been presented in this section. 

 

A. Dataset 
The proposed model utilizes two pneumonia detection datasets curated from Kaggle (Mooney, 2018; Patel, 

2020). The dataset in Patel (2020) possesses 6431 images of normal, pneumonia, and Covid-19 classes, 

whereas the dataset presented in Mooney (2018) has 5856 images of pneumonia and normal lungs. The 

class distribution in each dataset was not balanced; hence, two datasets were pooled, and balancing was 

performed. The outcome of pre-processing contains 4296 images with an equal number of pneumonia and 

normal CXRs in train and test folders. 

 

B. Proposed methodology for pneumonia detection 
This work implements the InceptionV3 model in a centralized DL and distributed FL with IID and non-

uniform distributions. The InceptionV3 is a contemporary neural network architecture that has a high level 

of accuracy in image recognition and classification tasks. In the initial phase of the model development, an 

Inception model was developed, which is contained within a GoogleNet model (Sharma et al., 2023). It is 

https://paperpile.com/c/tOlVg4/drX1U
https://paperpile.com/c/tOlVg4/drX1U
https://paperpile.com/c/tOlVg4/drX1U
https://paperpile.com/c/tOlVg4/Ute5Y
https://paperpile.com/c/tOlVg4/Ute5Y
https://paperpile.com/c/tOlVg4/sspKd
https://paperpile.com/c/tOlVg4/sspKd
https://paperpile.com/c/tOlVg4/sspKd
https://paperpile.com/c/tOlVg4/7dujy
https://paperpile.com/c/tOlVg4/ylnLM
https://paperpile.com/c/tOlVg4/ylnLM
https://paperpile.com/c/tOlVg4/7dujy
https://paperpile.com/c/tOlVg4/ylnLM
https://paperpile.com/c/tOlVg4/TDDb8


Sharma & Guleria: A Distributed Privacy Preserved Federated Learning Approach for … 
 

 

1330 | Vol. 10, No. 5, 2025 

the series of the model that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 

2014. Inception models are efficient due to the availability of the resources to make the calculations and 

computations in real-time and also involve fewer parameters in the learning process. The convolutional 

layers in the model are flexibly designed so that a threshold operation can act as an activation function to 

reduce operations (Wang et al., 2019). This increases the performance of the model as well as efficacy by 

taking less computations. The InceptionV3 diminishes the size of the receptive field by making different 

sizes of filters, such as (3x3 followed by 1x3 or 3x1) instead of large sizes of 5x5, unlike a typical 

convolutional neuron layer. The InceptionV3 model is also efficient and faster in terms of converging time; 

there is an alteration in the training procedure with the addition of auxiliary classifiers (Joshi et al., 2020). 

These classifiers exert an effect on hidden levels of the model because each node of the layer weighs 

additional amounts of gradients. The stride convolutions are used together with the stride pooling 

component to obtain detailed features. The grouping samples are used to reduce the information loss during 

the computation. Since the model contains an increased number of neurons, the hidden layers are more 

complex. Batch normalization is one of the most popular forms of regularization, followed by InceptionV3, 

which can train the model fast and achieve better results by decreasing the covariate shift. InceptionV3 is 

the successor to the Inception model that refines the inception modules. The block has two units of 

Inception's network, with each containing several types of convolution layers. This structure makes the 

model generalize the information of a wide range of scales, which makes the model approximate the true 

level. Improved factorization using convolutions and asymmetric convolutions in the module design 

captures complex features and patterns in the images, resulting in optimal performance and ideal model 

development. In the proposed work, centralized DL and distributed FL have been implemented for 

pneumonia detection. 

 

• Centralized deep learning-based InceptionV3 

Figure 1 illustrates the proposed centralized deep learning-based InceptionV3 for pneumonia detection. 

The InceptionV3 model has been implemented in a centralized framework, where the dataset has been 

collected at the central server to implement the model. This model has been configured with the key 

hyperparameters, namely, batch size, optimizer, epochs, and learning rate as 64, Adam, 10, and 0.001, 

respectively. The collected images were of different sizes, which were resized to a uniform and standard 

input image size of 299x299. The centralized DL requires extensive data collected at a centralized location, 

which creates a concern due to privacy issues in collecting medical data of the patients. The proposed 

methodology for centralized InceptionV3 model implementation has been provided in Figure 1. 

 

• Distributed federated learning-based InceptionV3 

Figure 2 illustrates the proposed distributed federated learning-based InceptionV3 model for IID and non-

IID data distribution in 5 clients. The problem associated with the traditional DL model is that it works with 

the centralized framework, which needs a large volume of data to predict pneumonia optimally. However, 

the collection of the healthcare dataset is a challenging task, as it contains the patient’s sensitive 

information, which is not allowed to be shared outside the hospital due to strict regulations provided by the 

HIPAA Act in 1996. On the other hand, the advancements in the traditional DL models have led to the 

development of distributed FL, which does not store the dataset in a centralized location; instead, it creates 

the model at the server and sends it to each hospital for computation, which then results in the updated 

model parameter in return to the centralized location. In this way, the FL framework doesn’t exploit the 

patient’s privacy, which also results in optimal model development. In the IID distribution, individual 

clients have been assigned the same distribution of the data, and the data itself remains different. In the non-

IID distribution, the complete data has been independently distributed to the clients with varying ratios and 

different sets of CXRs. This framework has utilized the complete number of clients participating in the 

process. The configured key hyperparameters are tabulated in Table 2. 
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Figure 1. Centralized InceptionV3 model for pneumonia detection. 

 

 

 
Table 2. Key hyperparameters configurations for the FL-based InceptionV3 model development. 

 

Hyperparameters Value Hyperparameters Value 

Clients 5 Client Utilization 100% 

Batch Size 32 Train: Test Ratio 80:20 

Local: Global Epochs 1:1 Optimizer Adam 

Learning Rate 0.001 Loss Metric Sparse categorical cross-entropy 

Rounds 25 Classes 2 

Input Image Size 299X299 Data Distribution IID and Non-IID 

Seed 123 Aggregation Technique FedAVG 

Dense Activation ReLU Prediction Activation SoftMax 

 

 

 
 

Figure 2. Distributed federated learning-based InceptionV3 model for pneumonia detection. 
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4. Results and Discussion 
This section discusses the proposed centralized and distribution federated learning results when 

implemented with the InceptionV3 model. 

 

A. Results of the centralized deep learning-based InceptionV3 model 
This section provides the findings of the InceptionV3 model when implemented with centralized deep 

learning. The results show the performance outcomes in terms of accuracy, loss, precision, recall, and F1-

score. 

 

Figure 3 represents the accuracy of the centralized deep learning InceptionV3 model. This graph depicts 

the highest training accuracy of 90.68% at epoch 9, whereas the highest accuracy in testing has been 

achieved at 90.49% at epoch 10. 

 

 
 

Figure 3. Accuracy of the centralized deep learning InceptionV3 model. 

 

 

 

 
 

Figure 4. Loss of the centralized deep learning InceptionV3 model. 
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Figure 4 shows the loss of the centralized DL InceptionV3 model at the training and testing phases. The 

highest training loss and testing loss of 0.9405 at epoch 1 and 0.9363 at epoch 6, respectively, whereas the 

lowest training loss of 0.2253 and testing loss of 0.221 have been analyzed at epochs 9 and 10, respectively. 

Figure 5 depicts the precision of the centralized DL InceptionV3 model. The highest precision at training 

and testing are 0.9086 and 1 at epochs 8 and 1, whereas the lowest precision values have been found as 

0.7497 and 0.9135 at epoch 1 for both the train and test phases. 

 

 
 

Figure 5. Precision of the centralized deep learning InceptionV3 model. 

 

 

Figure 6 represents the recall of the centralized DL InceptionV3 model. The highest recall of 0.9057 and 

0.8474 have been found at epochs 9 and 10, whereas the lowest recall of 0.7141 and 0.2488 have been 

found at epochs 1 and 6 in the training and testing phases, respectively.  
 

 

 
 

Figure 6. Recall of the centralized deep learning InceptionV3 model. 
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Figure 7. F1-score of the centralized deep learning InceptionV3 model. 

 

 

 
 

Figure 8. Computational time of the centralized deep learning InceptionV3 model at each epoch. 

 

 

Figure 7 represents the F1-score of the centralized DL InceptionV3 model. The highest value of the F1-

score is identified as 0.9059 and 0.8991 at epochs 9 and 10, whereas the lowest recall of 0.7315 and 0.3985 

have been found at epochs 1 and 6 in the training and testing phases, respectively. Figure 8 depicts the 

communication time of the centralized deep learning InceptionV3 model at each epoch. The highest 

communication time was taken by epoch 1, which was reduced in epochs 2-10.  
 

B. Results of the distributed federated learning-based InceptionV3 model 
This section provides the results of the InceptionV3 model when implemented with distributed FL with 

respect to IID and non-IID data distribution. 

 

• Results of the distributed federated learning with the InceptionV3 model with respect to IID data 

distribution 

This section represents the findings of the proposed distributed FL model while applied with the uniform 

distribution of the data. The clients participating in this framework contain a similar ratio of data; however, 

the data within the client itself is different from the data at another client. 
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Figure 9. Accuracy of distributed federated learning-based InceptionV3 model with IID data distribution. 

 

 

Figure 9 depicts the accuracy of the distributed FL model with IID data distribution, where the highest 

accuracy has been identified as 87.62% at round 23, whereas the least accuracy value was resulted as 

63.81% at round 1. 

 

Figure 10 represents the loss of the distributed FL InceptionV3 model with IID data distribution. The 

highest loss and lowest loss of 8.7924 and 0.4041 were identified at rounds 1 and 23, respectively. Figure 

11 depicts the recall of the distributed FL model with IID data distribution. The highest recall and lowest 

recall of 0.8635 and 0.6141 were achieved in rounds 23 and 1, respectively. 

 

Figure 12 illustrates the precision value of the proposed distributed FL model with uniform data distribution 

in 5 clients' architecture. The highest precision of 0.8821 and lowest of 0.6364 have been identified at 

rounds 23 and 1, respectively. 

 

 
 

Figure 10. Loss of distributed federated learning-based InceptionV3 model with IID data distribution. 
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Figure 11. Recall of distributed federated learning-based InceptionV3 model with IID data distribution. 

 

 

 
 

Figure 12. Precision of distributed federated learning-based InceptionV3 model with IID data distribution. 

 

 

Figure 13 shows the F1-score value of the proposed distributed FL model with uniform data distribution 

in 5 clients' architecture. The highest precision of 0.8727 and lowest of 0.6251 have been achieved at rounds 

23 and 1, respectively. 

 

Table 3 tabulates the performance outcomes of the distributed FL model with IID data distribution. The 

summary of the outcomes has been tabulated in terms of client-wise recall, accuracy, lowest computational 

time, precision, highest computational times, etc. 
 

Figure 14 shows the client-wise accuracy of the proposed distributed FL-based InceptionV3 model with 

the IID data distribution. This illustrates that client 2 achieves the highest accuracy of 90.44% at round 23, 

whereas clients 1, 3, 4, and 5 shows 88.24%, 87.13%, 86.95%, and 88.10%, respectively. 
 

Figure 15 shows the client-wise loss of the proposed distributed FL model with the IID data distribution 

with respect to increasing rounds. The highest loss of 10.0784 has been identified by client 2, whereas the 

lowest loss of 0.2812 has also resulted by client 2.  
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Figure 13. F1-score of distributed federated learning-based InceptionV3 model with IID data distribution. 

 

 

Table 3. Performance outcomes of the distributed federated learning-based InceptionV3 model with IID data 

distribution. 
 

Client/Performance Client 1 Client 2 Client 3 Client 4 Client 5 

Round 21 23 24 20 13 

Highest accuracy 88.24% 90.44% 87.13% 86.95% 88.10% 

Round 1 1 1 1 1 

Highest loss 9.6251 10.0784 8.8882 8.0746 7.2959 

Round 23 23 24 21 23 

Lowest loss 0.3383 0.2812 0.4089 0.4397 0.3833 

Round  19 22 22 22 22 

Highest precision 0.8813 0.8984 0.8740 0.8622 0.8947 

Round  19 22 16 20 9 

Highest recall 0.8750 0.8984 0.8473 0.8726 0.8806 

Round 22 22 18 20 8 

Highest F1-score 0.8727 0.8984 0.8450 0.8726 0.8806 

Round 1 1 1 1 1 

Highest computational time 113 seconds 59 seconds 61 seconds 66 seconds 47 seconds 

Round 
4, 5, 14, 15, 16, 

19, 21, 22 
12, 13, 19, 20, 21, 

23, 24 
15, 17, 18, 19, 20, 

21, 23, 24 

4, 5, 14, 15, 16, 

19, 21, 22, 23, 
24, 25 

1, 8, 11, 12, 14, 

16, 19, 20, 21, 
22, 23, 24, 25 

Lowest Computational Time 10 Seconds 13 Seconds 16 Seconds 19 Seconds 22 Seconds 

 

 

Figure 16 depicts the client-wise recall values of the proposed distributed FL model with the IID data 

distribution. The highest recall value of 0.8984 has been identified by client 2 at round 22. Figure 17 shows 

the client-wise precision values of the proposed distributed FL model with the IID data distribution. The 

highest precision value of 0.8984 has been identified by client 2 at round 22. 

 

Figure 18 depicts the client-wise F1-score values of the proposed distributed FL model with the IID data 

distribution. The highest F1-score value of 0.8984 has been identified by client 2 at round 22. 

 

Figure 19 shows the client-wise computational time of the proposed distributed FL model with the IID data 

distribution. The highest and lowest computational time of 113 seconds has been taken by client 1, whereas 

the lowest computational time has also been taken by client 1 at rounds 4, 5, 14, 15, 16, 19, 21, and 22. 
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Figure 14. Client-wise accuracy of the distributed FL InceptionV3 model with the IID data distribution. 

 

 

 
 

Figure 15. Client-wise loss of the distributed FL InceptionV3 model with the IID data distribution. 

 

 

 
 

Figure 16. Client-wise recall of the distributed FL InceptionV3 model with the IID data distribution. 
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Figure 17. Client-wise precision of the distributed FL InceptionV3 model with the IID data distribution. 

 

 

 
 

Figure 18. Client-wise F1-Score of the distributed FL InceptionV3 model with the IID data distribution. 

 

 

 
 

Figure 19. Client-wise computational time taken by the distributed FL InceptionV3 model with the IID data 

distribution. 
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• Results of the distributed federated learning-based InceptionV3 model with respect to non-IID data 

distribution 

This section discusses the findings of the proposed distributed FL model while applied with a non-uniform 

distribution of the data. The data for each client has been provided in different distributions, and the data 

itself is different at each client. 

 

Figure 20 shows the accuracy of the distributed federated learning with the InceptionV3 model with respect 

to non-IID data distribution. The highest accuracy of 86.15% and lowest accuracy of 65.84% were 

identified in rounds 23 and 1, respectively. Figure 21 depicts the loss value of the proposed FL InceptionV3 

technique implemented in non-IID data distribution. The highest loss of 8.0069 and lowest loss of 0.4139 

were identified in rounds 1 and 23, respectively. 

 

Figure 22 illustrates the recall value of the proposed InceptionV3 model implemented in non-IID data 

distribution using FL. The highest and lowest recalls of 0.8483 and 0.6335 have been identified at rounds 

23 and 1, respectively. Figure 23 illustrates the precision values achieved using the FL-based InceptionV3 

model implemented in non-IID data distribution. The highest precision of 0.8670 and lowest precision of 

0.6593 were identified in rounds 23 and 1, respectively. 

 

Figure 24 depicts the F1-score of the proposed InceptionV3 model implemented in non-IID data 

distribution using FL. Rounds 23 and 1 show the highest and lowest F1-score values of 0.8576 and 0.6461, 

respectively. 

 

Table 4 depicts the performance outcomes of the distributed FL model with non-IID data distribution. The 

summary of the outcomes has been tabulated in terms of client-wise recall, accuracy, lowest computational 

time, precision, highest computational times, etc. 

 

Figure 25 shows the client-wise accuracy of the proposed FL-based InceptionV3 model implemented with 

non-IID data distribution. The highest accuracy was achieved by client 3 as 88.79%, whereas client 1, client 

2, client 4, and client 5 identified 86.03%, 87.87%, 86.03%, and 88.28%, respectively. 

 

 

 
 

Figure 20. Accuracy of distributed FL InceptionV3 model with non-IID data distribution. 
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Figure 21. Loss of distributed FL InceptionV3 model with non-IID data distribution. 
 

 

 
 

Figure 22. Recall of distributed FL InceptionV3 model with non-IID data distribution. 

 

 

 
 

Figure 23. Precision of distributed FL InceptionV3 model with non-IID data distribution. 
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Figure 24. F1-score of distributed FL InceptionV3 model with non-IID data distribution. 
 
 

Table 4. Performance outcomes of the distributed FL InceptionV3 model with non-uniform data distribution. 
 

Client/Performance Client 1 Client 2 Client 3 Client 4 Client 5 

Round 22 21 24 6 23 

Highest accuracy 86.03% 87.87% 88.79% 86.03% 88.28% 

Round 1 1 1 1 1 

Highest loss 10.5232 5.9728 9.0291 9.2973 5.2121 

Round 25 23 24 20 20 

Lowest loss 0.3623 0.2793 0.353 0.3663 0.3514 

Round  23 22 23 14 22 

Highest precision 0.8605 0.904 0.8880 0.8725 0.8977 

Round  24 22 23 19 22 

Highest recall 0.8533 0.8828 0.8629 0.8726 0.8803 

Round 23 23 23 19 9 

Highest F1-score 0.8674 0.8882 0.8655 0.8544 0.8847 

Round 1 1 1 1 1 

Highest computational time 122 seconds 70 seconds 72 seconds 75 seconds 52 seconds 

Round 3 8 7 3 5 

Lowest Computational Time 9 Seconds 12 Seconds 15 Seconds 18 Seconds 20 Seconds 

 

 

 
 

Figure 25. Client-wise accuracy of the distributed FL InceptionV3 model with the non-IID data distribution. 
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Figure 26 illustrates the client-wise loss of the proposed FL-based InceptionV3 model implemented with 

non-IID data distribution. The highest loss was identified by client 1 as 10.5232, whereas the lowest loss 

value was identified by client 2 as 0.2793 at round 23. Figure 27 depicts the client-wise recall of the model 

with the non-IID data distribution. The highest and lowest recall values of 0.8828 and 0.8533 were obtained 

by clients 2 and 1, respectively. 

 

Figure 28 shows the client-wise precision of the proposed FL-based InceptionV3 model with the non-IID 

data distribution. The highest and lowest precisions were for clients 2 and 1, which were 0.904 and 0.8605, 

respectively. Figure 29 illustrates the client-wise F1-score of the proposed model with the non-uniform 

data distribution. The highest and lowest F1 scores were for clients 2 and 4, which were 0.8882 and 0.8544, 

respectively. 

 

 
 

Figure 26. Client-wise loss of the distributed FL InceptionV3 model with the non-IID data distribution. 

 

 

 
 

Figure 27. Client-wise recall of the distributed FL InceptionV3 model with the non-IID data distribution. 
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Figure 28. Client-wise precision of the distributed FL InceptionV3 model with the non-IID data distribution. 

 
 

 
 

Figure 29. Client-wise F1-Score of the distributed FL InceptionV3 model with the non-IID data distribution. 

 

 

 
 

Figure 30. Client-wise computational time taken by the distributed FL InceptionV3 model with the non-IID data 

distribution. 
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Figure 30 illustrates the client-wise computational time to perform the implementation at each round by 

the proposed model with the non-IID data distribution. The highest computational time was taken by round 

1 at each client, whereas the lowest computational time was taken by client 1 at round 3 at 9 seconds. 

 

C. Discussion on the performance outcomes achieved by centralized deep learning and 

distributed federated learning-based InceptionV3 model 
This section delves into the discussion of the results identified by the centralized DL-based InceptionV3 

and distributed FL-based InceptionV3 model.  

 

Table 5 tabulates the results comparison of centralized DL-based InceptionV3 and distributed FL model. 

 

 
Table 5. Results comparison of centralized DL-based InceptionV3 and distributed FL-based InceptionV3 model. 

 

Performance/ Framework Centralized FL-InceptionV3 

Parameters DL-InceptionV3 IID Non-IID 

Accuracy 90.49% 87.62% 86.15% 

Lowest Loss  0.221 0.4041 0.4139 

Precision 0.9086 0.8821 0.8670 

Recall 0.8474 0.8635 0.8483 

F1-score 0.8991 0.8727 0.8576 

 

 

The highest accuracy among centralized DL and FL has resulted in the DL-based InceptionV3 model; 

however, the DL models have data centralization risks such as less bandwidth efficiency, inability to work 

with data diversity and privacy concerns. The DL models are incapable of providing optimal performance 

if the data is not centralized, whereas the FL models work in a distributed manner and send the models to 

individual hospitals rather than collecting the data at a central location. The strict rules documented by 

HIPAA are followed in hospitals and health insurance companies that don’t allow to share the patient’s 

data. This Act. protects patient privacy, and improves the portability and continuity of health insurance 

coverage. Hence, centralized DL is not suitable to be used in the medical field. On the other side, the FL 

framework is developed using DL models, where the distributed architecture is used for disease prediction. 

The use of FL for medical image analysis is secured and protected. Though the proposed FL-based 

InceptionV3 provides less accuracy than the centralized model, nevertheless, the variation among these 

accuracies is small and doesn’t depict the worst impact as the model provides extra assistance to the 

clinicians, and the final decision of the pneumonia detection is confirmed by the doctors. 

 

In addition, the FL-based InceptionV3 is implemented in both IID and non-uniform data distribution 

scenarios. The performance of the FL-based InceptionV3 model in IID distribution is better than that of 

non-IID data distribution. However, in real-world scenarios, the hospitals contain different sorts of data, 

which is applicable to FL-based models implemented with non-IID data distribution. Hence, the proposed 

model was deployed with the non-uniform data distribution.  

 

In the proposed work, the performance of the IID distribution-based model is better than the non-IID data 

distribution because the similar distribution of the data made the model more efficient statistically and 

provided better convergence and stability, whereas, in non-IID data distribution, the data is statistically 

heterogeneous, and also has the challenges of learning complexity, data segregation issues, and increased 

risk of model drift. 
 

 



Sharma & Guleria: A Distributed Privacy Preserved Federated Learning Approach for … 
 

 

1346 | Vol. 10, No. 5, 2025 

D. Performance comparisons of the proposed distributed FL-based InceptionV3 model with 

the existing federated learning-based models 
This section contrasts the results of the proposed distributed FL-based InceptionV3 model with the existing 

FL-based models. 

 

Figure 31 illustrates the performance contrast of the proposed model with the existing FL models. The 

work presented in Shiri et al. (2024) has used a DenseNet model where the outcomes have been achieved 

with 75% accuracy. The model presented in Riedel et al. (2023), also obtained an accuracy of 82.82%, 

which is less in comparison to the proposed distributed FL model implemented with IID and non-uniform 

data distributions. 

 
 

 
 

Figure 31. Performance comparisons of the proposed distributed FL InceptionV3 model with the existing FL-based 

models. 

 
 

5. Conclusion 
The increase in Covid-19 cases has resulted in limited medical resources. The advanced stages of this 

pandemic decrease the secretion, causing the alveoli to collapse, turning into pneumonia. The report 

provided by WHO revealed that pneumonia affects the most to people over the age of 65 and patients with 

a weakened immune system. The traditional methods used for pneumonia detection require high expertise 

and proficiency. The misdiagnosis of the disease results in delayed treatment, worsening the health 

condition and increasing the mortality rates. In the proposed work, centralized deep learning and distributed 

federated learning have been implemented using a pre-trained and fine-tuned InceptionV3 model. The 

centralized deep learning model has been configured with the key hyperparameters, namely, batch size, 

optimizer, epochs, and learning rate as 64, Adam, 10, and 0.001, respectively, whereas the distributed FL-

based InceptionV3 has been configured with 5, 32, 0.001, 25, 123, Adam, 100%, and FedAVG for clients, 

batch size, learning rate, rounds, seed, optimizer, client utilization, and aggregation technique, respectively. 

The distributed FL-based InceptionV3 model results in an accuracy of 87.62% and 86.15% and a loss of 
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0.4041 and 0.4139 for IID and non-IID data, respectively. The results of the centralized DL-based 

InceptionV3 show that the highest accuracy of 90.49% has been achieved; however, this model is highly 

sensitive to patients' data as it collects the information at the centralized location. Therefore, the FL-based 

InceptionV3 model can be used to reduce data centralization risks, provide high bandwidth, and work with 

diverse datasets. In the future, the FL-based InceptionV3 model can be enhanced by increasing the number 

of local and global epochs and augmenting the existing datasets to achieve optimal result. 
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