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Abstract 

Cardiovascular disease (CVD) risk prediction plays a significant role in clinical research since it is the key to primary prevention. 

As family health units follow up on a specific group of patients, particularly in the middle-aged and elderly groups, CVD risk 

prediction has additional importance for them. In a retrospectively collected data set from a family health unit in Turkey in 2018, 

we evaluated the CVD risk levels of patients based on SCORE-Turkey. By identifying additional CVD risk factors for SCORE-

Turkey and grouping the study patients into 3-classes "low risk," "moderate risk," and "high risk" patients, we proposed a 

machine learning implemented early warning system for CVD risk prediction in family health units. Body mass index, diastolic 

blood pressures, serum glucose, creatinine, urea, uric acid levels, and HbA1c were significant additional CVD risk factors to 

SCORE-Turkey. All of the five implemented algorithms, k-nearest neighbour (KNN), random forest (RF), decision tree (DT), 

logistic regression (LR), and support vector machines (SVM), had high prediction performances for both the K4 and K5 

partitioning protocols. With 89.7% and 92.1% accuracies for K4 and K5 protocols, KNN outperformed the other algorithms. For 

the five ML algorithms, while for the "low risk" category, precision and recall measures varied between 95% to 100%, "moderate 

risk," and "high risk" categories, these measures varied between 60% to 92%. Machine learning-based algorithms can be used in 

CVD risk prediction by enhancing prediction performances and combining various risk factors having complex relationships.  

 

Keywords- Cardiovascular diseases, Machine learning, Risk prediction, Family health units, SCORE-Turkey. 

 

 

1. Introduction  
Cardiovascular diseases (CVDs) are currently the primary cause of morbidity and mortality worldwide. In 

2017, 17.79 million deaths took place globally from cardiovascular diseases (GBD, 2017), and 160,409 
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deaths were in Turkey (TSI, 2021). These numbers represented 31.77% of all global deaths (GBD, 2017) 

and 36.8% of deaths in Turkey (TSI, 2021). Since CVDs are the leading and most common causes of 

death, identifying the main factors increasing cardiovascular risks and predicting patients' risk levels has 

received growing attention in medicine and multidisciplinary research. There exist several determined 

systems for CVD risk assessment, such as the American College of Cardiology/American Heart 

Association (ACC/AHA) scales (Goff et al., 2014), the Framingham scales (D’Agostino et al., 2008), 

Reynolds (Ridker et al., 2007), QRISK (Hippisley-Cox et al., 2007), QRISK2 (Hippisley-Cox et al., 

2008), and SCORE (Conroy et al., 2003). Hypertension, cholesterol, age, and smoking are the most 

common CVD risk factors identified by these scales. 

 

Although these scales effectively reference clinicians, they have various weaknesses and limited 

prediction powers due to the increased complexity and randomness of CVD patient profiles (Damen et al., 

2016; Obermeyer and Emanuel, 2016). Standard CVD risk assessment scales assume that identified risk 

factors are related to CVD risk outcomes, and thus they oversimplify complex nonlinear relations. 

Improved approaches that combine various risk factors with linear or nonlinear results are required. On 

the other hand, since researchers have been presenting new CVD risk factors (Ahmad et al., 2018; Lee et 

al., 2016; Parrinello et al., 2015), the continuous growth of these factors is another reason for a more 

precise CVD prediction model requirement. 

 

As a leading emerging technology, machine learning (ML) presents a comprehensive approach to these 

established CVD risk assessment scales to handle current limitations. ML technologies have become 

popular in the various contexts of medical literature (Haug and Drazen, 2023; Hu et al., 2023; Sidey-

Gibbons and Sidey-Gibbons, 2019). Many researchers and practitioners benefit from the power of these 

technologies in the COVID-19 context (Ibrahim et al., 2023; Kamalov et al., 2023; Sariyer et al., 2023a; 

Sariyer et al., 2023b; Solayman et al., 2023; Sozen et al., 2022). While implementation of these 

technologies in emergency departments’ operations is widely studied in the literature (Ataman et al., 2023; 

Ataman and Sariyer, 2021; Sariyer and Ataman, 2021; Sariyer and Ocal Tasar, 2020), these technologies 

have also been well adopted in cardiology research (Liu et al., 2023; Avram, 2023; Huang et al., 2022; 

Jamthikar et al., 2022; Kanagarathinam et al., 2022; Cho et al., 2021; Dey et al., 2019). 

 

As a subset of artificial intelligence, ML is characterized by the ability of software to learn from data and 

generate predictions without explicit prior programming. ML techniques and technologies depend on the 

computer to understand all complicated nonlinear relationships between variables and develop an efficient 

model to estimate the model target given the values of independent features.  

 

There exist studies presenting the implementation of these ML technologies to predict the CVD risk 

levels of patients. While some of these studies used ACC/AHA guidelines as a baseline risk prediction 

model for evaluating CVD risk (Quesada et al., 2019; Kakadiaris et al., 2018; Weng et al., 2017), others 

used Framingham scores (Du et al., 2020; Narain et al., 2016). There exist other studies using QRISK 

(Cho et al., 2021; Georga et al., 2019), Reynolds (Han et al., 2020), and SCORE (Dimopoulos et al., 2018; 

Quesada et al., 2019) scales as baseline models. However, these studies defined CVD risk level as a 

binary outcome variable: low risk and high risk. Although an increasing number of categories in outcome 

variables makes it harder for ML algorithms to learn and thus may reduce the prediction performance, it is 

more valuable from the clinical viewpoint (Sariyer and Ataman, 2022; Ataman and Sariyer, 2021; Sariyer 

et al., 2019). A higher number of outcome variable categories in these models classifies patients into more 

homogenous and smaller groups, ensuring more detailed and applicable predictions. 

 



Sozen et al.: Machine Learning Implementations for Multi-class Cardiovascular Risk… 
 

 

1173 | Vol. 8, No. 6, 2023 

On the other hand, existing studies applied ML technologies for CVD risk prediction to data sets received 

from second- and third-level health services, such as public and private hospitals. However, although 

first-level health services are designed to offer the most basic services to patients, this level is critical for 

the early diagnosis of patients at risk of different diseases. First-level health services have more 

significance in Turkey since the elderly population regularly visits family health units (Eser et al., 2019; 

Akman et al., 2017). Although first-level health services may fail to treat such risky patients when they 

are early diagnosed, responsible doctors may direct and transfer them to second- and third-level hospitals. 

 

Therefore, we aimed to develop a CVD risk prediction model that may be used in first-level services. 

Thus, we believe this study contributes to the literature by 1) developing a multi-class CVD risk 

prediction model and 2) ensuring early diagnosis of CVD risk groups in first-level health services/family 

health units.  

 

This study is organized as follows: section 2 describes the materials and methods by presenting the 

dataset and the methodology of the research. In section 3, we summarize the background information on 

the implemented ML algorithms. In section 4, we present the findings of the study. In section 5, we 

highlight the discussions and critical differences between the proposed model of this study and existing 

studies and demonstrate this study's contributions to the literature. Finally, we present the concluding 

remarks in section 6.  

 

2. Materials and Methods 
We present the study design of this paper in Figure 1. We first collected the data set and transformed it 

into a structured data set by accomplishing the required pre-processing tasks. Then, we applied statistical 

analysis to select input variables for the proposed CVD risk model for family health units. We validated 

the feature selection process by presenting the Pearson correlation coefficients between selected factors 

and CVD risk levels. We divided the data set into train and test data sets using the train-test split. 

Learning was done by different machine learning algorithms in the train data set. We evaluated and 

compared the prediction performances of implemented algorithms in test sets and decided on the best-

performing algorithm. Finally, we presented the CVD risk prediction model for family health units (FHU) 

based on the selected input variables and the best-performing ML algorithm. 

 

  
 

Figure 1. Flow chart of proposed ML-implemented system for CVD risk prediction in FHUs. 
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2.1 Data Source 
We received the data for this study from the family health unit with number 1002009 in Balıkesir City, 

Turkey. Data on all patients arriving at this unit during 2018 were extracted from this health system's 

electronic databases. Since the middle-aged and elderly constitute the main age profile of health units and 

SCORE-Turkey evaluates the risk levels starting with age 40, we eliminated patients below 40. 

 

2.2 Risk Factor Variables 
We used SCORE-Turkey as a standard guideline for predicting current CVD risk levels of family health 

unit patients to catch early warnings and direct the risky patients to higher health services. Thus, we 

started forming our data set with five core variables (gender, age, smoking behavior, total cholesterol, and 

systolic blood pressure) defined in SCORE-Turkey. We defined additional variables which may affect 

CVD based on their inclusion in published CVD risk algorithms and within the literature on other 

potential CVD risk factors. However, our main limitation in this study was due to the variable definition. 

Since health units are restricted by some basic tests and treatments and cannot make detailed diagnostic 

tests, some of those previously documented risk factors were not available in our data set. Thus, based on 

the existence of these factors, we identified the risk factors of our model. The defined factors were further 

reviewed by practicing clinicians.  

 

The final data set included 21 factors. Two of them (gender and smoking behavior) were binary 

categorical variables. The remaining factors (age, diastolic blood pressure, body mass index, total 

cholesterol, ALP, ALT, AST, serum iron, serum glucose, HbA1c, HDL cholesterol, serum Ca, serum 

creatinine, serum potassium, serum Na, serum urea, serum uric acid, and vitamin B12) were continuous 

variables. 

 

2.3 Outcome 
FHU's databases do not include detailed data on patients' histories, such as whether they have had any 

heart conditions before. Therefore, we could not define our outcome of interest based on the 

cardiovascular disease status of patients. Consistent with the study objective, we expressed the outcome 

variable as the potential CVD risk levels of patients and calculated it using the baseline SCORE-Turkey 

model. Initially, SCORE-Turkey had seven different classes based on risk calculations. However, since 

learning a model with such a large number of different categories is complicated, mainly when we are 

limited in sample size and have to define some risk factors, we decided to reduce the number of types 

appropriately. By interpreting these original categories with the help of clinicians, we decided to describe 

the outcome variable (potential CVD risk level) in three categories: "low risk", "moderate risk", and "high 

risk" patients. Table 1 presents the transformation of SCORE-Turkey risk groups and the defined outcome 

categories. 

 
Table 1. CVD risk level 3-class definition based on SCORE-Turkey. 

 

Class # Class label Used SCORE-Turkey classes 
1 low-risk patients 0% & 1% & 2% & 3-4% 
2 moderate-risk patients 5-9% & 10-14% 
3 high-risk patients 15% and above 
 

 

2.4 Statistical Analysis 
We present the main properties of the patients for each of the outcome classes as mean ± SD (standard 

deviation) for continuous variables and number (%) for categorical variables. The significance of 

differences between low-risk, moderate-risk, and high-risk patient groups are analyzed by one-way 
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ANOVA for categorical variables and the Chi-square test for categorical variables. We used two-tailed 

tests and 95% confidence intervals (p-values ≤0.05 were noted as significant differences). We used IBM 

SPSS statistics version 22.0 (IBM, Armonk, NY, USA) in the statistical analysis.  

 

To evaluate and compare the prediction powers of ML algorithms, we used accuracy, precision, and recall 

as the primary decision criteria. Accuracy showed the percentage of correctly classified instances 

compared to the total instances in the test data set. Precision and recall present detailed information on the 

prediction powers of the ML algorithms for each class of the outcome variable.  

 

2.5 Feature Selection 
In statistics and ML, feature selection is used to select the important factors or input variables of the 

proposed models. To efficiently integrate the model, explain model findings, avoid the curse of 

dimensionality, have computing advantages, decrease overfitting, and improve prediction accuracy, data 

scientists use feature selection tasks as a pre-stage in modelling. Various techniques for feature selection 

are used in the literature, such as principal component analysis, logistic regression, Fisher's discriminant 

ratio, mutual information, Pearson correlation, and ANOVA. We used ANOVA to select significant 

factors in our model. 

 

2.6 Data Pre-processing 
The data set included missing information in at least one too many input variables for some patients' 

records. In addition, there exist redundant entries. Both of them were excluded from the data set. Patients 

below 40 were excluded from the analysis to have more meaningful and applicable interpretations for 

family health units in Turkey. 

 

For defining the outcome variable, a transformation process was accomplished. Binary variables were 

coded with 0's and 1's. Females were coded with 0's, and males were coded with 1's. For smoking 

behavior, "not smoking" ones were coded with 0's and smoking with 1's. 

 

2.7 Data Partitioning 
Data partitioning was integrated into ML models to divide the study data set into the train and 

test/validation data sets. Different partitioning protocols have been well documented in the literature. 

Based on our data set's sample size limitation, we used the K5 protocol to increase the learning ability of 

the implemented ML algorithms. In this protocol, a randomly chosen 80% of the data sets are used for 

learning (the training data set), and the remaining 20% are used for validation. We presented the results of 

the K4 protocol, in which 75% of the data set is used for training and 25% for validation. We repeated 

this protocol 20 times for different random partitions, calculated the prediction power in each trial's 

validation tests, and reported the average accuracy. 
 

3. Used ML Algorithms 

3.1 Decision Trees (DT) 
The decision tree is one of the most commonly used and easily interpretable ML algorithms in the 

medical literature. This algorithm is tree-structured (Quinlan, 1986). This is a supervised learning 

technique. This algorithm produces a regression tree for a continuous-type outcome variable and a 

classification tree for a categorical outcome variable. For both regression and classification-type models, 

any measurement scale of the input variables is allowed. The resulting flowchart-like tree has inner nodes 

defining a test on the attribute. Each branch of this tree displays output from the test, and each leaf node 

has a class label. Frequently, a top-down approach is used in which the input variable space is attempted 

to be converted to the highest purity in the leaves. 
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3.2 Random Forest (RF) 
This algorithm was proposed by Breiman (2001). This is a widely known ensemble technique combining 

multiple decision trees. These trees are generated based on the best split point found in a random subset of 

features rather than all (Ayyoubzadeh et al., 2020). The main parameters of this algorithm are the number 

of features in the random subset and the number of trees in the forest (Krauss et al., 2017). 

 

3.3 Support Vector Machines (SVM) 
In the SVM algorithm, samples constituting the boundaries of the classes are obtained, and based on these 

samples, the most appropriate linear decision boundary is calculated to distinguish these classes. 

Boundary samples are labelled as support vectors. Linear classification methods attempt to partition data 

by creating a hypersurface. This algorithm, which is one of the linear classification methods, finds the 

best hypersurface separating the class samples with the maximum margin (Han et al., 2023). It is essential 

to convert nominal variables to numeric ones when running this algorithm. 

 

3.4 Logistic Regression (LR) 
LR is a supervised learning technique for a categorical outcome variable with input variables (discrete or 

continuous). This algorithm predicts the probability of outcome 2 being in any category based on the 

model inputs. It also measures the relationships between outcome and input variables by defining a logit 

function and estimating the probability of this function. 

 

3.5 K Nearest Neighbour 
K nearest neighbour classification is an algorithm in instance-based learning. The nearest neighbour 

method is to find a pre-determined number of training samples closest in distance to a new point and 

predict the label from these instances. The number of samples can be user-defined based on the local 

density of the point. The training sample data points are assigned weights according to their distances 

from the sample data point. This technique is straightforward to implement. 

 

4. Results 

4.1 Data Set Characteristics 
After pre-processing, we formed the structured data set for this study. This set included a total of 501 

patient records. While 351 (70.06%) of these patients were female, 150 (29.94%) were male. The mean 

and deviation statistics of the age variable for all these patients were 57.82 ± 10.50. While 468 (86.43%) 

of these patients were not smoking, 68 of them (13.57%) of them were smoking. 

 

According to CVD risk level estimations, 224 (44.71%) of these patients were labelled as "low-risk" 

patients with 0% to 5% risk estimations based on SCORE-Turkey. While 182 (36.33%) of these patients 

were labelled as "moderate-risk" patients (5% to 15% estimates), the remaining 95 (18.96%) of them 

were labelled as "high-risk" patients with at least 15% risk estimations based on SCORE-Turkey. 

 

We present the patient's demographic and clinical characteristics for each risk group definition separately 

in Table 2.  

 

Table 2 showed that the average age, body mass index, systolic and diastolic blood pressures, total 

cholesterol, glucose level, HbA1C, ALT, serum creatinine, serum calcium, serum potassium, serum urea, 

serum uric acid, B12, and percentages of males and smokers were increasing with increasing CVD risk 

levels. 
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Table 2. CVD risk level 3-class definition based on SCORE-Turkey. 
 

Risk factor variables Low-risk (n=224) Moderate-risk (n=182) High-risk (n=95) p-value 

Age 47.38 (6.00) 65.63 (3.66) 67.47 (1.94) <0.001 

Body mass index 27.41 (10.38) 29.93 (24.05) 30.23 (20.39) <0.001 

Systolic blood pressure 123.85 (18.80) 142.39 (22.73) 152.76 (17.69) <0.001 

Diastolic blood pressure 77.35 (10.73) 80.99 (7.50) 83.14 (8.56) <0.001 

Total cholesterol 193.05 (36.50) 205.62 (37.51) 211.22 (39.50) 0.048 

HDL Cholestrol 66.55 (17.82) 65.28 (19.06) 63.95 (17.72) 0.436 

Glucose level 93.45 (16.67) 104.57 (25.15) 114.12 (25.37) <0.001 

HbA1C 5.31 (0.95) 5.63 (0.95) 6.23 (1.54) <0.001 

ALP 66.23 (21.74) 75.65 (27.58) 71.40 (19.14) 0.696 

ALT 18.09 (11.92) 18.30 (15.18) 16.80 (10.22) 0.926 

AST 16.65 (8.85) 18.50 (11.80) 16.46 (4.98) 0.402 

Serum creatinine 0.88 (0.18) 1.03 (0.26) 1.08 (0.29) <0.001 

Serum iron 81.27 (35.73) 87.54 (40.30) 79.91 (27.91) 0.971 

Serum calcium 8.96 (0.66) 9.14 (0.67) 9.22 (0.75) 0.145 

Serum potassium 4.09 (0.47) 4.19 (0.44) 4.23 (0.47) 0.100 

Serum sodium 139.60 (2.95) 140.24 (3.16) 139.76 (3.09) 0.261 

Serum urea 26.99 (8.42) 35.20 (11.08) 38.27 (11.80) <0.001 

Serum uric acid 4.33 (1.45) 5.34 (1.67) 5.47 (1.44) 0.019 

B12 382.82 (163.19) 401.05 (160.09) 409.58 (152.56) 0.128 

Female* (%) 80.36 75.14 70.53 <0.001 

Smoking* (%) 13.39 19.04 28.42 <0.001 

 

The three risk level categories had significant differences based on age, body mass index, systolic and 

diastolic blood pressure, total cholesterol, glucose level, HbA1C, serum creatinine, serum urea, and serum 

uric acid. We also observed that gender and smoking behavior distributions had statistically significant 

differences in defined risk level categories. By excluding the remaining nine variables (HDL cholesterol, 

ALP, ALT, AST, serum iron, serum calcium, serum potassium, serum sodium, and B12), which have 

insignificant differences between the risk group categories, we selected 12 input variables for CVD risk 

modelling. 

 

 
 

Figure 2. Pearson correlation coefficients between the study variables. 
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Thus, the structured data set included 12 input features (age, body mass index, systolic and diastolic blood 

pressures, total cholesterol, glucose level, HbA1C, serum creatinine, serum urea, serum uric acid, gender, 

smoking behavior), and a 3-class CVD risk level outcome variable for 501 patients.  

 

In Figure 2, we present the Pearson correlation coefficients between these 13 variables of our data set in a 

heat-map form.  

 

Based on the Pearson correlation coefficients shown in Figure 2 between the input variables and the CVD 

risk level, we observed that age has the highest degree of correlation with the CVD risk level. Systolic 

blood pressure, serum urea, body mass index, serum glucose, serum creatinine, serum uric acid, and 

HbA1C were moderately correlated with the CVD risk. The remaining four features (diastolic blood 

pressure, total cholesterol, gender, and smoking behavior) have lower degrees of relation to the CVD risk 

level. 

 

4.2 Performance Evaluation 
In Figure 3, we present the accuracy levels (percentage of correctly classified instances) of five 

implemented ML algorithms for K4 and K5 data partitioning protocols. 

 

Based on Figure 3, we observed that for the K4 partitioning protocol, the first four algorithms (KNN, RF, 

DT, LR) had accuracy levels ranging from 85% to 90%, and SVM had a slightly lower performance of 

around 82%. While a similar result holds for the K5 protocol since the learning abilities of the algorithms 

improved with the increased percentage of the train data set, the accuracy levels of all algorithms 

increased. For the K5 protocol, while SVM achieves an accuracy level of 85%, the DT and LR algorithms 

reached approximately 90%. KNN had the highest accuracy level (92%) and RF had a very similar 

performance (91%).  

 

 
 

Figure 3. Prediction accuracies of ML algorithms for K4 and K5 protocols. 

 

Figure 4 shows precision statistics of the implemented ML algorithms for each risk level category for K4 

and K5 protocols. For the "low-risk" category, all algorithms had superior performances varying between 

95% to 100% for both K4 and K5 protocols. Thus, among the patients predicted as "low-risk," almost all 

of them were actually "low-risk," and they were correctly predicted.  
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Figure 4. Precision levels of ML algorithms for K4 and K5 protocols. 

 

The algorithms' "moderate-risk" category prediction performances varied between 76% to 83% for the K4 

protocol and 80% to 87% for the K5 protocol. Finally, precision levels for "high-risk" varied between 58 

to 76 for the K4 protocol and between 60% to 81% for the K5 protocol. The SVM algorithm obtained the 

lowest precision levels, and the highest ones were observed in KNN. By the implementation of KNN, 

among the patients predicted as “moderate-risk”, 83% and 87% of them were also actually labelled as 

“moderate risk” for the K4 and K5 protocols, respectively. Similarly, within the "high-risk" predictions, 

while 76% of them were actually "high-risk" in the K4 protocol, 81% of them were actually "high-risk" in 

the K5 protocol. 

 

For each outcome category, we also present recall statistics in Figure 5. 

 

 
 

Figure 5. Recall levels of ML algorithms for K4 and K5 protocols. 
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We observed that for the patients who were actually "low-risk", all algorithms had perfect performances 

in classifying them as "low-risk" patients (except SVM for the K5 protocol). Except for the SVM 

algorithm, all the others had high performances while correctly predicting the patients at the "moderate-

risk" level. However, the algorithms performed relatively poorly and incorrectly predicted the "high-risk" 

patients. The best-performing algorithm, KNN, correctly predicted 67% of patients for the K4 protocol 

and 72% for the K5 protocol. 

 

We showed detailed statistics on precision and recall measures for each combination of actual and 

predicted CVD risk levels as a final analysis. Although all incorrect classifications are costly in prediction 

models, some errors can have higher costs. In our model, the worst situations are predicted as "low risk," 

where the actual risk levels are moderate risk or high risk." If a patient is predicted to be "low risk", the 

responsible doctor in family health units will not direct him to a higher level of health services. So, these 

cases can be deemed to have the worst or highest cost in our analysis. 

 

On the other hand, if a patient is actually "high-risk" but the model predicts it as "moderate-risk", the cost 

of this error is lower in our model, as patients predicted as "moderate-risk" and "high-risk" will be 

referred to higher-level services for detailed diagnosis. Based on this logic, we showed the detailed 

statistics (percentage of incorrectly classified instances for each actual and predicted value combination) 

on precision and recall measures in Tables 3 and 4.  

 
Table 3. Detailed statistics (in %) on precision measure. 

 

Cost of error Actual Predicted 
 ML algorithms 

protocol KNN RF DT LR SVM 

Lower costs of 
error 

low-risk moderate-risk 
K4 0 0 0 0 0 

K5 0 0 0 0 2.86 

high-risk moderate- risk 
K4 16.67 19.15 21.28 23.53 23.81 

K5 12.82 13.16 19.05 19.05 17.14 

low-risk high risk 
K4 0 0 0 0 0 

K5 0 0 0 0 0 

moderate-risk high-risk 
K4 32.81 31.82 33.33 25 41.67 

K5 18.75 23.53 23.08 23.08 40 

Higher costs 
of error 

moderate-risk low-risk 
K4 0 0 1.72 3.39 5 

K5 0 0 0 0 2.17 

high-risk low-risk 
K4 0 0 0 0 0 

K5 0 0 0 0 0 

 

 
Table 4. Detailed statistics (in %) on recall measure. 

 

Cost of error Actual Predicted  ML algorithms 

protocol KNN RF DT LR SVM 

Lower costs 
of error 

low-risk moderate-risk 
K4 0 0 0 0 0 

K5 0 0 0 0 2.18 

low-risk high-risk 
K4 0 0 0 0 0 

K5 0 0 0 0 0 

moderate- 
risk 

high-risk 
K4 11.11 15.56 15.55 8.89 22.22 

K5 8.11 10.82 8.11 8.11 21.62 

high-risk moderate-risk 
K4 33.33 37.5 41.67 50 41.67 

K5 27.77 27.78 44.44 44.44 33.33 

Higher costs 
of error 

moderate- 

risk 
low-risk 

K4 0 0 2.22 4.44 6.67 

K5 0 0 0 0 2.7 

high-risk low-risk 
K4 0 0 0 0 0 

K5 0 0 0 0 0 
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Based on Tables 3 and 4, we mainly observed that for the two combinations having the higher error cost, 

incorrect prediction percentages were 0 for KNN and RF and were precisely or very close to 0 for the 

other ML algorithms' K4 and K5 protocols. Thus, although average recall and precision measures were 

relatively higher in some of the ML algorithms, we concluded that, for the higher costs of error situations, 

our ML-implemented system had almost perfect prediction performances.  

 

5. Discussion 
By taking the established SCORE-Turkey protocol as a baseline model for CVD risk prediction for family 

health units, we found that machine learning algorithms had high performance for classifying patients 

based on their CVD risk levels. Besides, these ML technologies have the power to integrate many factors 

with complex nonlinear relations. Thus, unlike established protocols, models integrating ML algorithms 

were not limited to a small set of risk factors and incorporated more pre-existing medical conditions. In 

addition to the five risk factors (gender, age, smoking behavior, total cholesterol, and systolic blood 

pressure) defined in SCORE-Turkey, we identified additional seven factors (body mass index, serum 

glucose, HbA1c, serum creatinine, serum urea, serum uric acid, and diastolic blood pressure) that had 

significant differences in the defined CVD risk level groups. When all these factors were integrated into 

the proposed CVD risk prediction model for FHU, 85% to 92% accuracies were obtained for the K5 

protocol in different ML algorithms. 

 

Although all of these algorithms have high levels of accuracy, KNN outperforms the other four 

algorithms in this data set by having higher accuracy, precision, and recall measures. Besides, for the 

worse situation in which "moderate-risk" and "high-risk" patients were actually classified as "low-risk", 

the KNN model had perfect performance and did not have any incorrect classification. 
 

5.1 Key Difference Between the Proposed ML-based System and Existing Studies 
First-level health services follow up with a specific group of patients, particularly in the middle-aged and 

elderly groups, at regular intervals. Thus, family health units play a crucial role in health systems since 

receiving early signals can identify the CVD risk of patients and direct them to higher-level health 

services for early diagnosis and treatment, which may save their lives. Although family health units have 

an early warning function in health systems, existing studies for CVD risk evaluations have not given 

enough attention to these services. This is the first study to present a CVD risk prediction model 

specifically for family health units. To fulfil this gap in the literature, proposing an emerging ML 

technologies-based prediction system is the other strength of this study. 

 

Additionally, existing research uses patients' electronic records received from higher-level health services 

(second- or third-level health services, such as different types of hospitals). These higher-level health 

services are responsible for the diagnosis and treatment of patients. These data sets do not include 

information about patients' CVD status, such as if a patient's history has included myocardial infarction, 

heart attack, stroke, angina pectoris, hyperlipidemia, or any related diseases in a defined period (as in the 

past ten years). Thus, existing researchers attempt to present binary classification models where the 

outcome of interest (CVD risk) is labelled as fatal or non-fatal, low risk or high risk, etc. Due to the 

structure of family health units, our data set does not include this information. However, in family health 

units, the CVD risk levels of patients are evaluated based on pre-established protocols categorizing 

patients into more than one risk level. Thus, the multi-class CVD risk prediction system proposed in this 

study is another essential contribution to the literature. 

 

Existing studies presenting CVD risk prediction systems for second- and third-level health services use 

established protocols as a baseline model to show the superiority of implemented ML algorithms. Using 
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routine clinical data, Weng et al. (2017) showed that four applied ML algorithms outperformed the 

established ACC/AHA protocol by 1.7% to 3.6% in prediction accuracy. By comparing the prediction 

powers of the Framingham risk score and logistic regression, Kennedy et al. (2013) showed that with the 

same predictors, logistic regression had a 2% higher accuracy compared to the Framingham score, and 

further accuracies (increasing +7%) were obtained when additional parameters were used in the model. 

Using SCORE as a baseline model, Quesada et al. (2019) tested the performance of 15 ML algorithms. 

They observed that seven of those algorithms had better accuracies, achieving +7% s compared to the 

baseline protocol. Besides comparing the performances of the ML algorithms, Navarini et al. (2020) 

compared the implementations of different protocols such as SCORE, QRISK, etc. They concluded that 

all the compared protocols had poor prediction abilities except for SCORE, which was adequately 

performed. They also showed that ML algorithms improved prediction abilities. Dimopoulos et al. (2018) 

used SCORE as a baseline model and implemented KNN, decision tree, and random forest as ML 

algorithms. They showed that while accuracy, sensitivity, and specificity values of the SCORE baseline 

model were the highest since ML algorithm results were close to them, the authors concluded that the 

advantages of ML algorithms should be taken into consideration. Narain et al. (2016) proposed a neural 

network-based ML system and concluded that this system's prediction power was higher than the 

established Framingham protocol. 

 

Similarly, Han et al. (2020) concluded that the ML-based prediction system had around 10% 

improvement compared to traditional Framingham scores. While showing that ML algorithms 

significantly surpassed standard risk scales, Du et al. (2020) also showed that nonlinear models had 

higher accuracy than linear models. There exist some other studies using these baseline protocols only for 

ML-based systems' input identification that do not present the prediction powers of these protocols (Kim 

et al., 2017). Compared to these existing studies, we used an established SCORE-Turkey protocol for risk 

factor identification or performance comparison and for identifying CVD risk levels in family health unit 

patients. 

 

The sample size, or the number of patients included in the study, is the other point that distinguishes our 

analysis from the literature. By using second- or third-level health services data or population health 

survey results, a large body of literature was able to validate their model in medium- to large-scale data 

sets with 2,000 to 90,000 patients (Du et al., 2020; Quesada et al., 2019; Dimopoulos et al., 2018; Weng 

et al., 2017; Kim et al., 2017; Kennedy et al., 2013), which increased the learning abilities of their model. 

Although our sample size was smaller (501), compared to these studies, by achieving around 90% 

accuracy, our ML-based system reached a prediction power exceeding or at least competing with the 

systems presented in the literature. In addition, while literature studies achieved performances ranging 

between 75% and 95% for binary class (fatal/non-fatal or low-risk/high-risk) prediction models, our 

system achieved such accuracy levels for a multi-class CVD risk prediction system (low-risk, moderate-

risk, and high-risk). 

 

When different ML algorithms were compared, we observed that a large body of literature either just 

applied neural networks (Kakadiaris et al., 2018; Kim et al., 2017; Narain et al., 2016; Bandyopadhyay et 

al., 2015; Dybowski et al., 1996) or showed that neural networks were outperforming the other algorithms 

(Weng et al., 2017). While some other studies used linear models (Kennedy et al., 2013), some of the 

other studies showed that nonlinear models such as KNN and RF outperformed the others (Du et al., 

2020). In this study, by applying DT, LR, SVM, KNN, and RF, we showed that KNN outperformed the 

others. 
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5.2 Limitations and Future Research Directions 
The limitations of this study are that it includes a single institution setting, and the findings may not be 

generalizable to other settings. These findings may be validated by future multi-center studies applying 

the proposed early warning ML-based CVD risk assessment model. Another main limitation of this study 

is its sample size. Since the subject of this study is the FHUs and the numbers of patients are not as high 

in these services as in the second- or third-level health services, the sample size is limited. The definition 

of the study variables is the other limitation. Since FHUs are restricted by some basic tests and treatments, 

some of the previously documented CVD risk factors are not available in our data set. 

 

For future research directions, neural and deep belief networks should be implemented. Explainable 

artificial intelligence techniques may also be adapted to present a detailed understanding of the impact of 

all model parameters. In addition, a multicenter study can be designed and the number of patients can be 

increased with data collected from more than one center for future studies. This will increase the 

generalizability and reliability of the study. 

 
6. Conclusion 
In this study, we proposed an ML-implemented early warning system for multi-class CVD risk prediction 

in family health units. This model mainly contributes to the literature in two folds; by developing a multi-

class CVD risk prediction model and by ensuring early diagnosis of CVD risk groups in first-level health 

services, or FHUs. 

 

By taking the established SCORE-Turkey protocol as a baseline model for CVD risk prediction for FHUs, 

we found that ML algorithms had high performance for classifying patients based on their CVD risk 

levels. The accuracy levels of the implemented ML algorithms varied between 80% to 89% according to 

the K4 protocol and 85% to 92% according to the K5 protocol. In addition to the five risk factors (gender, 

age, smoking behavior, total cholesterol, and systolic blood pressure) defined in SCORE-Turkey, we 

identified additional seven factors (body mass index, serum glucose, HbA1c, serum creatinine, serum 

urea, serum uric acid, and diastolic blood pressure) that had significant differences in the defined CVD 

risk level groups. Although all of these algorithms have high levels of accuracy, KNN outperforms the 

other four algorithms (DT, SVM, RF, and LR) in this data set by having higher accuracy, precision, and 

recall measures. 

 

By integrating various risk factors with nonlinear relationships with CVD risk classes and obtaining high 

prediction accuracies, we concluded that ML-implemented systems are helpful in clinical practices. We 

labelled this system an "early warning system," since by detecting signals of CVD risks, responsible 

doctors in family health units will be able to direct risky patients to higher-level health services for early 

diagnosis and treatment. 

 

The proposed ML-implemented early warning system for multi-class CVD risk prediction in family 

health units can be integrated as a decision support system (DSS) in this first-level health service. 

Therefore, by entering the values of the identified 12 input factors of the patients into this DSS, 

responsible doctors can evaluate the CVD risk levels of patients. When the obtained value of CVD risk is 

"moderate risk" or "high risk," the responsible doctor can direct and transfer these patients to higher-level 

health services for detailed evaluations. We also concluded that by having the additional characteristics of 

combining various risk factors with complex relationships and superior prediction performances, ML-

based emerging technologies could be quickly adopted in clinical decision-making. 
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