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Abstract 

This article is fully devoted to the numerical approximation of Cauchy-type integrals in the complex plane. A class of degree 

eight quadrature rules is formulated from a family of Gauss-type two-point rules based on the method of extrapolation. The basic 

rules are developed and then composite rules are constructed from the basic rules. The Error bounds for each rule are determined. 

The validity of the method has been demonstrated by the provision of numerical experiments and their results. 
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1. Introduction 
Cauchy principal value integrals are frequently encountered in research in applied mathematics, such as 

the theory of aerodynamics, scattering theory, the crack problem in plane elasticity, the singular eigen 

function method in neutron transport, and many other fields of science and engineering. They also occur 

in contour integration, which is considered an essential tool in mathematics, applied sciences, and 

engineering. The real CPV integral is given by, 

𝐾(𝑓) = 𝑃 ∫
𝜆+ℎ

𝜆−ℎ

𝑓(𝑥)

𝑥−𝜆
𝑑𝑥. 

 

The numerical evaluation of the aforementioned integral has been the subject of extensive investigation. 

Some of the illustrious researchers who have formulated quadrature rules for numerical integration of real 

Cauchy principal value integrals are: Piessens (1970), Chawla and Jayarajan (1975), Elliott and Paget 

(1979), Orsi (1990), Diethelm (1995), Criscuolo (1997) and Li and Chen (2007). 

 

Saff and Snider (2013) defined the complex Cauchy principal value integral in the following way.  

𝐼(𝑔) = 𝑃 ∫
𝑧0+ℎ

𝑧0−ℎ

𝑔(𝑧)

𝑧−𝑧0
𝑑𝑧                                                                                                                               (1) 

 

where, 𝑔(𝑧) is assumed to be an analytic in the disc,  
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𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|, 𝑟 > 1}. 
 

in the complex plane ℂ containing the directed line segment 𝐿 joining the points 𝑧0 − ℎ to 𝑧0 + ℎ. 

According to this definition 𝐼(𝑔) is given by the limit,  

lim
𝜖→0

∫𝐿𝜖′
𝑔(𝑧)

𝑧−𝑧0
𝑑𝑧. 

 

provided the limit exists where 𝐿𝜖
′  is the extended directed line segment with end points 𝑍0 ± ℎ and 

semicircular indentation of radius 𝜖 and centre 𝑧0. So far, very little work has been done to develop 

quadrature rules for complex CPV integrals. Milovanovic et al. (1984) have constructed an interpolatory 

type of rule for the approximate evaluation of the integral (1), which requires the evaluation of the first 

derivative of the function 𝑔(𝑧) at 𝑧 = 𝑧0. This rule is of precision at most eight and the precision, as well 

as the accuracy in approximation, diminishes if the 𝑔′(𝑧0) is replaced by an approximation formula. 

Further Das and Hota (2012) have developed a derivative-free, one-parameter quadrature rule for the 

numerical evaluation of the integral (1). They assert that their rule is the one that accurately integrates the 

complex CPV integral compared to rules that have been published in the past. Moreover, Bej et al. (2012) 

have developed a few additional rules of the algebraic degree of precision eight using fewer nodes from 

the rules of Das and Hota (2012). Chen (2013) employed special Hermite interpolation polynomia, while 

Keller and Wrobel (2016) used a typical adaptive quadrature, and Legua and Sanchez-Ruiz (2017) 

applied residue theory techniques to calculate CPV integrals. Hasegawa and Sugiura (2019) presented an 

approximation method of Clenshaw-Curits type to solve the CPV integrals where they used Chebyshev 

polynomials for interpolating the smooth function of the integral. Yun (2020) used coordinate 

transformation techniques to evaluate CPV integrals. To enhance the accuracy of the numerical 

integration method through the coordinate transformation, he presented simple rational functions, 

including parameters. Xu et al. (2022) evaluated a particular type of CPV integrals with oscillatory 

integrands by transforming two line integrals and then computing them using the Gauss quadrature rule.  

In their article, Saha et al. (2022) formulated non-classical quadrature schemes for the approximation of 

Cauchy-type oscillatory and singular integrals in the complex plane. Though these schemes have been 

developed for singular integrals with oscillatory kernels, Cauchy-type singular integrals can also be 

solved. However, to apply to an unknown integral, all these methods are not as simple and 

straightforward as standard quadrature rules meant for the numerical integration of definite integrals 

without having any kind of singularity. Some analytical methods are introduced by Gordon (2023) to 

solve complex CPV integrals. The Hilbert transform and Dirac delta function are used to encounter the 

problems. But the scope for applying these methods in the practical field is very limited. In this context, 

we have developed one and two parameter rules for the numerical approximations of complex CPV 

integrals of type (1). Here we have intended to formulate some progressive Gauss type and derivative-free 

quadrature rules for the numerical approximation of the complex CPV integral 𝐼(𝑔) involving all of their 

nodes on the line of integration. The proposed quadrature rules have many advantages over the other rules 

of this class. 

 

(i) It does not require additional function evaluations in later stages. 

(ii) There will be no further occurrence of any type of error like truncation errors, round-off errors, etc. 

due to the finite precision of the computing machine.  

(iii) Real CPV integrals, real definite integrals, and complex line integrals of analytical functions over a 

line segment without encountering any singularities can all be numerically integrated by these rules.  

(iv) Rules can be applied in compound form. 
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2. Formulation of Basic Rules 
First, a two-point rule, denoted as 𝑄𝑔(𝛼) of precision of at least two, involving a parameter 𝛼(0 < 𝛼 ≤

1) is derived for the approximate evaluation of the complex CPV integral given in (1).On the basis of this 

rule, a class of (two parameters 𝛼1 and 𝛼2 ) four-point rules of precision at least four, have been 

constructed and, subsequently rules of degree six and eight have been derived. 

 

2.1 Derivation of Two Point Rule 
The following theorem serves as the foundation for the one-parameter family of two-point rules.  

 

Theorem 1. If 𝑃(𝑧) is a complex polynomial of degree less than or equal to two, then  

𝐼1 = 𝑃∫
𝑧0+ℎ

𝑧0−ℎ

𝑃(𝑧)

𝑧−𝑧0
𝑑𝑧 = 𝑤0𝑃(𝑧0) + 𝑤1[𝑃(𝑧0 + 𝛼ℎ) − 𝑃(𝑧0 − 𝛼ℎ)]                                                         (2) 

 

where,  

𝑤0 = 0 𝑎𝑛𝑑 𝑤1 =
1

𝛼
                                                                                                                                    (3) 

 

Proof. Let  

𝐼1 = 𝑃∫
𝑧0+ℎ

𝑧0−ℎ

𝑃(𝑧)

𝑧−𝑧0
𝑑𝑧 = 𝑤0𝑃(𝑧0) + 𝑤1[𝑃(𝑧0 + 𝛼ℎ) − 𝑃(𝑧0 − 𝛼ℎ)]                                                         (4) 

 

If,  

𝑃(𝑧) = (𝑧 − 𝑧0)
𝑘 . 

 

then the formula given in 4 exactly integrates 𝐼1 for any even integer 𝑘 and for any value of the constants 

𝑤0, 𝑤1 and 𝛼. Therefore, to determine the constants 𝑤0 and 𝑤1 we make the assumption that 𝐼1 is exact 

for,  

𝑃(𝑧) = (𝑧 − 𝑧0)
𝑘;  𝑓𝑜𝑟 𝑘 = 0,1. 

 

This leads to the following set of equations, 

𝑤0 = 0 𝑎𝑛𝑑 𝑤1 =
1

𝛼
. 

 

From the linearity of the integrals, it follows that the formula (4) exactly integrates any complex 

polynomial of the form, 

𝑃(𝑧) = ∑2𝑘=0 𝑎𝑘(𝑧 − 𝑧0)
𝑘. 

 

which is of degree two or less. This finishes the proof of the theorem.  

 

2.2 Two Point Formula 
If 𝑃(𝑧) is supposed to be a polynomial that interpolates an analytic function 𝑔(𝑧) at the points, 

𝑧2 = 𝑧0 − 𝛼ℎ, 𝑧0 𝑎𝑛𝑑 𝑧1 = 𝑧0 + 𝛼ℎ. 

 

then we have,  

𝐼(𝑔) ≈ 𝑤0𝑔0 +𝑤1[𝑔1 − 𝑔2] = 𝑄𝑔(𝛼)                                                                                                       (5) 

 

where, 𝑤0 𝑎𝑛𝑑 𝑤1 are given in Equation (3) and, 

𝑃(𝑧𝑘) = 𝑔(𝑧𝑘) = (𝑧 − 𝑧0)
𝑘. 

for 𝑘 = 0,1,2. 
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The rule given in (5) is the desired one-parameter family of two-point quadrature rules (actually the rule 

𝑄𝑔(𝛼) is a three-point rule, but since the coefficient of 𝑔0 in the rule 𝑄𝑔(𝛼) i.e. 𝑤0 is zero, we say it as a 

family of two-point rules) of precision at least two for the approximate evaluation of the complex CPV 

integral 𝐼(𝑔) given in (1). 

 

2.3 Asymptotic Error Estimate of Two Point Rule 
The asymptotic error estimate of the one-parameter family of rules (Equation-(5)) for the numerical 

computation of a complex CPV integral of the type (1) is given in Theorem 2. Here it is supposed that the 

function 𝑔(𝑧) is analytic in the disc,  

𝐷 = {𝑧 ∈ 𝐶: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|;  𝑟 > 1}. 
 

Theorem 2. The truncation error 𝐸𝑄𝑔(𝛼) associated with the rule 𝑄𝑔(𝛼) is given by, 

|𝐸𝑄𝑔(𝛼)| ≈
2|ℎ|3

3(3!)
|1 − 3𝛼2||𝑔(3)(𝑧0)|                                                                                                         (6) 

 

for asymptotically small h. 

 

Proof. Let us assume that, the function 𝑔(𝑧) is analytic in the disc,  

𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|;  𝑟 > 1}. 
 

and the truncation error 𝐸𝑄𝑔(𝛼) associated with the rule 𝑄𝑔(𝛼) is given by,  

𝐸𝑄𝑔(𝛼) = 𝐼(𝑔) − 𝑄𝑔(𝛼)                                                                                                                             (7) 

 

Then,  

𝑔(𝑧) = ∑∞𝑛=0 𝑐𝑛(𝑧 − 𝑧0)
𝑛                                                                                                                          (8) 

 

where, 𝑐𝑛 =
𝑔(𝑛)(𝑧0)

(𝑛!)
; are the Taylor’s coefficients. As the above series is uniformly convergent in 𝐷, by 

integrating term by term of both sides of the series (8) we obtain, 

𝐼(𝑔) = 2ℎ𝑔′(𝑧0) +
2ℎ3

3(3!)
𝑔(3)(𝑧0) +

2ℎ5

5(5!)
𝑔(5)(𝑧0)

+
2ℎ7

7(7!)
𝑔(7)(𝑧0) +

2ℎ9

9(9!)
𝑔(9)(𝑧0)

+
2ℎ11

11(11!)
𝑔(11)(𝑧0) +

2ℎ13

13(13!)
𝑔(13)(𝑧0)+. . .

                                                                                   (9) 

 

Again, by expanding each term of the rule 𝑄𝑔(𝛼) given in equation (5) about the point 𝑧 = 𝑧0 in the disc 

𝐷 by Taylor’s expansion and then after simplification we obtain,  

𝑄𝑔(𝛼) = 2ℎ𝑔′(𝑧0) +
2𝛼2ℎ3

3(3!)
𝑔(3)(𝑧0) +

2𝛼4ℎ5

5(5!)
𝑔(5)(𝑧0) +

2𝛼6ℎ7

7(7!)
𝑔(7)(𝑧0)+. ..                                           (10) 

 

Therefore, from Equation (7), we get,  

𝐸𝑄𝑔(𝛼) =
2ℎ3

3(3!)
(1 − 3𝛼2)𝑔(3)(𝑧0) +

2ℎ5

5(5!)
(1 − 5𝛼4)𝑔(5)(𝑧0)+. ..                                                           (11) 

 

Hence,  

|𝐸𝑄𝑔(𝛼)| ≈
2|ℎ|3

3(3!)
|1 − 3𝛼2||𝑔(3)(𝑧0)|. 
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for asymptotically small ℎ.  

 

The rules of higher precisions will be formulated from the above two point formula with the help of the 

following theorem.  

 

Theorem 3. If the rules  

𝑆1(𝑔) = ∑
𝑚
𝑖=0 𝐴𝑖[𝑔(𝑧0 + 𝛼𝑖ℎ) − 𝑔(𝑧0 − 𝛼𝑖ℎ)];  0 < 𝛼𝑖 ≤ 1. 

 

and  

𝑆2(𝑔) = ∑
𝑛
𝑗=0 𝐵𝑗[𝑔(𝑧0 + 𝛽𝑗ℎ) − 𝑔(𝑧0 − 𝛽𝑗ℎ)];  0 < 𝛽𝑗 ≤ 1. 

 

are of same precession 𝑑(> 0) and each of which numerically integrates the complex CPV integral 𝐼(𝑔) 
(given in Equation (1)) then, there exist a quadrature rule,  

𝑆(𝑔) =
1

𝐿+𝑀
[𝐿𝑆1(𝑔) + 𝑀𝑆2(𝑔)]. 

 

of precession 𝑑 + 2 numerically, also integrates the integral 𝐼(𝑔) for suitable 𝐿 and 𝑀.  

 

Proof. Let, 𝑔(𝑧) is analytic in  

𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|; 𝑟 > 1}. 
 

Then,  

𝑔(𝑧) = ∑∞𝑘=0 𝑐𝑘(𝑧 − 𝑧0)
𝑘                                                                                                                         (12) 

 

where, 𝑐𝑘 =
𝑔(𝑘)(𝑧0)

𝑘!
; for 𝑘 = 0,1,2… are the Taylor’s coefficients. 

 

Since, the series in (12) is uniformly convergent, thus integrating both sides of the series term by term we 

obtain,  

𝐼(𝑔) = ∑∞𝜇=0
2𝑐2𝜇+1

2𝜇+1
ℎ2𝜇+1. 

 

Further, expanding each term of the rules 𝑄(𝑔) and 𝑅(𝑔) by Taylor’s expansion about 𝑧 = 𝑧0; we get, 

𝑆1(𝑔) = ∑
∞
𝜇=0 ∑

𝑚
𝑖=0 2𝑈𝑖𝛼𝑖

2𝜇+1𝑐2𝜇+1ℎ
2𝜇+1. 

 

and,  

𝑆2(𝑔) = ∑
∞
𝜇=0 ∑

𝑛
𝑗=0 2𝑉𝑗𝛽𝑗

2𝜇+1𝑐2𝜇+1ℎ
2𝜇+1. 

 

Denoting 𝐸𝑆1(𝑔) and 𝐸𝑆2(𝑔) are the truncation errors associated with the quadrature rules 𝑆1(𝑔) and 

𝑆2(𝑔) meant for the approximate evaluation of complex CPV integral 𝐼(𝑔) respectively we obtain,  

𝐸𝑆1(𝑔) ≈ 𝑂(|ℎ|
𝑑+1). 

 

𝐸𝑆2(𝑔) ≈ 𝑂(|ℎ|
𝑑+1). 

 

Since, 𝑆1(𝑔) and 𝑆2(𝑔) are of precision 𝑑 > 0(𝑑 is even). 

 

Now, assuming the function 𝑔(𝑧) is analytic on 𝐷 it can be shown that,  
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𝐼(𝑔) = 𝑆1(𝑔) + 2𝑈𝑐𝑑+1ℎ
𝑑+1

+∑∞
𝜇=

𝑑

2
+1
2𝑐2𝜇+1ℎ

2𝜇+1 [
1

2𝜇+1
− ∑𝑚𝑖=0 𝑈𝑖𝛼𝑖

2𝜇+1]
                                                                         (13) 

 

and  

𝐼(𝑔) = 𝑆2(𝑔) + 2𝑉𝑐𝑑+1ℎ
𝑑+1

+∑∞
𝜇=

𝑑

2
+1
2𝑐2𝜇+1ℎ

2𝜇+1 [
1

2𝜇+1
− ∑𝑛𝑗=0 𝑉𝑗𝛽𝑗

2𝜇+1]
                                                                         (14) 

 

by the help of Taylor’s theorem where,  

𝑐𝑘 =
𝑔(𝑘)(𝑧0)

𝑘!
;  𝑓𝑜𝑟𝑘 = 0,1,2…

𝑈 = [
1

𝑑 + 1
−∑

𝑚

𝑖=0

𝑈𝑖𝛼𝑖
𝑑+1] .

 

 

and,  

𝑉 = [
1

𝑑+1
− ∑𝑛𝑖=0 𝑉𝑗𝛽𝑗

𝑑+1]. 

 

Multiplying 𝑉 in equation (13) and −𝑈 in Equation (14), then adding their results with subsequent 

simplifications, we obtain, 

𝐼(𝑔) =
1

𝑉 − 𝑈
[𝑉𝑆1(𝑔) − 𝑈𝑆2(𝑔)] +

𝑐𝑑+3
𝑑 + 3

2ℎ𝑑+3

−
1

𝑉 − 𝑈
[𝑉∑

𝑚

𝑖=0

𝑈𝑖𝛼𝑖
𝑑+3 −𝑈∑

𝑛

𝑗=0

𝑉𝑗𝛽𝑗
𝑑+3]+. . . ……

 

 

Substituting, 𝑉 = 𝐿 and 𝑈 = −𝑀; the first term of above expression becomes,  

𝑆(𝑔) =
1

𝐿+𝑀
[𝐿𝑆1(𝑔) + 𝑀𝑆2(𝑔)]. 

 

It is the required generalized quadrature rule intended for the numerical integration of (1) and the 

corresponding truncation error is,  

𝐸𝑆(𝑔) =
1

𝐿+𝑀
[𝐿𝐸𝑆1(𝑔) + 𝑀𝐸𝑆2(𝑔)]. 

 

This proves the theorem.  

 

Here, we say the rules 𝑆1(𝑔) and 𝑆2(𝑔) are Basic rules whereas the rule 𝑆(𝑔) constructed by following 

the process of extrapolation is the Composite rule. 

 

Based on the above theorem, we have constructed one rule of precision ten, three rules of precision eight 

and three more rules of precision six as composite rules from the basic two point rule as formulated 

below. 

 

2.4 Derivation of Four Point Rules  
Denoting 𝐸𝑄𝑔(𝛼1) and 𝐸𝑄𝑔(𝛼2) as the truncation errors in approximating the integral 𝐼(𝑔) by the rules 
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𝑄𝑔(𝛼1) and 𝑄𝑔(𝛼2), we have, 

𝐼(𝑔) = 𝑄𝑔(𝛼1) + 𝐸𝑄𝑔(𝛼1)                                                                                                                        (15) 

 

and,  

𝐼(𝑔) = 𝑄𝑔(𝛼2) + 𝐸𝑄𝑔(𝛼2)                                                                                                                        (16) 

 

Now assuming the function 𝑔(𝑧) is analytic in the disc 𝐷 the error terms 𝐸𝑄𝑔(𝛼𝑖);  𝑓𝑜𝑟 𝑖 = 1,2 can be 

written as,  

𝐸𝑄𝑔(𝛼𝑖) = ∑
∞
𝑘=1 𝐴2𝑘+1𝑔

(2𝑘+1)(𝑧0)                                                                                                         (17) 

 

where, 

{
 
 

 
 

𝐴2𝑘+1 = 𝜂2𝑘+1𝜉(𝛼𝑖);

𝜂2𝑘+1 =
2ℎ2𝑘+1

(2𝑘 + 1)!
;

𝑎𝑛𝑑 𝜉2𝑘+1(𝛼𝑖) =
1

2𝑘 + 1
− 𝛼𝑖

2𝑘.

 

for 𝑖 = 1,2 and 𝑘 = 1,2, . . .. 
 

Now multiplying Equation (15) and (16) by 𝜉3(𝛼2) and −𝜉3(𝛼1) respectively and then adding the results 

we obtain,  

𝐼(𝑔) =
1

3(𝛼1
2−𝛼2

2)
[(1 − 3𝛼2

2)𝑅𝑔(𝛼1) − (1 − 3𝛼2
2)𝑅𝑔(𝛼2)]

+
1

3(𝛼1
2−𝛼2

2)
[(1 − 3𝛼2

2)𝐸𝑔(𝛼1) − (1 − 3𝛼2
2)𝐸𝑔(𝛼2)]

                                                                    (18) 

 

writing  

𝑘1 =
1−3𝛼2

2

3(𝛼1
2−𝛼2

2)
 and 𝑘2 =

3𝛼1
2−1

3(𝛼1
2−𝛼2

2)
                                                                                                             (19) 

 

in Equation (18) we have,  

𝐼(𝑔) ≈ 𝑘1𝑄𝑔(𝛼1) + 𝑘2𝑄𝑔(𝛼2) = 𝑄𝑔(𝛼1, 𝛼2)                                                                                          (20) 

 

associated with the truncation error,  

𝐸𝑄𝑔(𝛼1, 𝛼2) = 𝑘1𝐸𝑄𝑔(𝛼1) + 𝑘2𝐸𝑄𝑔(𝛼2)                                                                                                  (21) 

 

The rule given in Equation (20) is the desired family of two parameter four point rules. 

 

2.5 Asymptotic Error Estimate of Four Point Rule 
The asymptotic error estimates of the four point two parametric quadrature rule 𝑄𝑔(𝛼1, 𝛼2) for the 

approximate evaluation of a complex CPV integral as formulated above are given in the following 

Theorem 4. Here, we assume that the function 𝑔(𝑧) is analytic in the disc,  

𝐷 = {𝑧 ∈ 𝐶: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|;  𝑟 > 1}. 
 

 

Theorem 4. The truncation error 𝐸𝑄𝑔(𝛼1, 𝛼2) associated with the four point quadrature rule 𝑄𝑔(𝛼1, 𝛼2) 

is given by,  
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|𝐸𝑄𝑔(𝛼1, 𝛼2)| ≈
2|ℎ|5

15(5!)
|(15𝛼1

2 − 5)𝛼2
2 + 3 − 5𝛼1

2||𝑔(5)(𝑧0)|                                                                  (22) 

 

for asymptotically small ℎ.  

  

Proof. The truncation error 𝐸𝑄𝑔(𝛼1, 𝛼2) associated with the rule 𝑄𝑔(𝛼1, 𝛼2) is given by,  

𝐸𝑄𝑔(𝛼1, 𝛼2) = 𝐼(𝑔) − 𝑄𝑔(𝛼1, 𝛼2)                                                                                                            (23) 

 

Now, by substituting 𝛼 = 𝛼1, 𝛼2 successively in Equation (8) and subsequently making simplifications 

with the help of Equations (20) and (19) we obtain, 

𝑄𝑔(𝛼1, 𝛼2) = 2ℎ𝑔′(𝑧0) +
2ℎ3

3(3!)
𝑔(3)(𝑧0) +

2ℎ5

3(5!)
(𝛼1

2 + 𝛼2
2 − 3𝛼1

2𝛼2
2)𝑔(5)(𝑧0)

+
2ℎ7

3(7!)
(𝛼1

4 + 𝛼2
4 + 𝛼1

2𝛼2
2 − 3𝛼1

4𝛼2
2 − 3𝛼1

2𝛼2
4)𝑔(7)(𝑧0)+. . . .

                                      (24) 

 

Therefore, from Equation (9), we have,  

𝐸𝑄𝑔(𝛼1, 𝛼2) =
2ℎ5

15(5!)
[(15𝛼1

2 − 5)𝛼2
2 + 3 − 5𝛼1

2)]𝑔(5)(𝑧0)

+
2ℎ7

21(7!)
[3 − 7(𝛼1

4 + 𝛼2
4 + 𝛼1

2𝛼2
2) + 21𝛼1

2𝛼2
2(𝛼1

2 + 𝛼2
2)]𝑔(7)(𝑧0)+. . . .

                           (25) 

 

Hence,  

|𝐸𝑄𝑔(𝛼1, 𝛼2)| ≈
2|ℎ|5

15(5!)
|(15𝛼1

2 − 5)𝛼2
2 + 3 − 5𝛼1

2||𝑔(5)(𝑧0)|. 

 

for asymptotically small ℎ. This establishes the theorem.  

 

2.6 Rules of Precision Six 
Now, by choosing suitable values of the parameters 𝛼1 and 𝛼2; we derive here some specific rules of 

precision six as special cases of (20). For instance, by taking 𝛼1 = 1 in (25) and then equating the 

coefficient of 𝑔(5)(𝑧0) to zero, we obtain the value of 𝛼2 =
1

√5
. Now, with these values of 𝛼1 and 𝛼2 the 

coefficients of the four point two parametric rule 𝑄𝑔(𝛼1, 𝛼2) are obtained as,  

𝑘1 =
1

6
 𝑎𝑛𝑑 𝑘2 =

5

6
. 

 

Thus, the rule 𝑄𝑔(𝛼1, 𝛼2) boils down to  

𝑄1(𝑔) =
1

6
[𝑄𝑔(1) + 5𝑄𝑔 (

1

√5
)]                                                                                                                (26) 

 

which is the desired four point rule of precision six, meant for the numerical integration of complex CPV 

integral of the type (1) in the complex plane ℂ. 

 

Now, without repeating the technique that we adopted in the formulation of the four point degree six rule 

𝑄1(𝑔) here, we simply state few more rules belonging to this class of rules as, 

𝑄2(𝑔) =
1

129
[49𝑄𝑔 (√

5

7
) + 80𝑄𝑔 (

1

√10
)]                                                                                                (27) 

 

and,  
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𝑄3(𝑔) =
1

14
[5𝑄𝑔 (√

11

15
) + 9𝑄𝑔 (

1

3
)]                                                                                                        (28) 

 

The first leading term of the error expressions corresponding to each of the four point rules 𝑄1(𝑔), 𝑄2(𝑔) 
and 𝑄3(𝑔) is obtained as, 

(i) 𝐸𝑄1(𝑔) ≈ 0.061
|ℎ|7

(7!)
|𝑔(7)(𝑧0)|; 

(ii) 𝐸𝑄2(𝑔) ≈ 0.008
|ℎ|7

(7!)
|𝑔(7)(𝑧0)|; 

and,  

(iii) 𝐸𝑄3(𝑔) ≈ 0.002
|ℎ|7

(7!)
|𝑔(7)(𝑧0)|. 

 

The above expressions reveal that all the four point rules 𝑄1(𝑔), 𝑄2(𝑔)and 𝑄3(𝑔) are of degree of 

precision six. From their asymptotic error estimates, it is evident that the rule 𝑄3(𝑔) will provide more 

accurate result among them. The result of the numerical integration of the integrals shown in Table 3 to 

Table 9 clearly illustrates this fact. 

 

2.7 Error Bounds of Four Point Degree Six Rules 
The error bounds of the four point degree six quadrature rules 𝑄1(𝑔),  𝑄2(𝑔) and 𝑄3(𝑔) constructed in 

this section are obtained by following the technique by Lether (1971). Since the derivation of error bound 

is similar in each of the three rules, we have derived the error bound of the rule 𝑄1(𝑔) only in Theorem 5. 

Also, the error bounds of other two rules 𝑄2(𝑔) and 𝑄3(𝑔) are only stated in the same Theorem 5 without 

their detailed derivations, as their derivations will be merely a repetition.  

 

Theorem 5. If 𝑔(𝑧) is analytic in an open disc  

𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|;  𝑟 > 1}. 
then,  
(𝑖) |𝐸𝑄1(𝑔)| ≤ 2𝑀𝑒𝑄1(𝑟);

(𝑖𝑖) |𝐸𝑄2(𝑔)| ≤ 2𝑀𝑒𝑄2(𝑟);

(𝑖𝑖𝑖) |𝐸𝑄3(𝑔)| ≤ 2𝑀𝑒𝑄3(𝑟).

 

 

where,  

𝑀 = 𝑀𝑎𝑥
|𝑧|=𝜌

|𝑔(𝑧)|;

𝑒𝑄1(𝑟) = |𝑙𝑛 (
𝑟+1

𝑟−1
) − {

30𝑟3−26𝑟

15𝑟4−18𝑟2+3
}| ;

𝑒𝑄2(𝑟) = |𝑙𝑛 (
𝑟+1

𝑟−1
) − {

18060𝑟3−8686𝑟

9030𝑟4−7353𝑟2+645
}|

  

and,  

𝑒𝑄3(𝑟) = |𝑙𝑛 (
𝑟+1

𝑟−1
) − {

1890𝑟3−966𝑟

945𝑟4−798𝑟2+77
}|. 

 

Each of which → 0 as 𝑟 → ∞. The quantities 𝑒𝑄𝑘(𝑟);  𝑘 = 1, 2 𝑎𝑛𝑑 3 are called error constants by Lether 

(1971).  

 

Proof. Let, 𝐸𝑄1(𝑔) represents the truncation error of the degree six rule 𝑄1(𝑔). Then,  
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𝐸𝑄1(𝑔) = ∑
∞
𝜇=3 𝑐2𝜇+1ℎ

2𝜇+1𝐸𝑄1[(𝑧 − 𝑧0)
2𝜇+1)]. 

 

By the help of Taylor’s theorem, where 𝑐𝑘 is the Taylor’s coefficient. Now, putting 𝑧 = 𝑧0 + ℎ𝑡;  𝑡 ∈
[−1,1], we get,  

𝐸𝑄1(𝑔) = ∑
∞
𝜇=3 𝑐2𝜇+1ℎ

2𝜇+1𝐸𝑄1(𝑡
2𝜇+1)                                                                                                  (29) 

 

and subsequently it implies,  

𝐸𝑄1(𝑔) = ∑
∞
𝜇=3 2𝑐2𝜇+1ℎ

2𝜇+1𝜒𝑄1(𝜇)                                                                                                       (30) 

 

where,  

𝜒𝑄1(𝜇) =
1

2𝜇+1
−
1

6
− (

5

6
) (

1

5𝜇
) <

1

2𝜇+1
−
1

6
< 0;  𝑓𝑜𝑟 𝜇 > 3. 

  

However, for 𝜇 = 3;  

𝜒𝑄1(3) =
−1

42
−

1

150
< 0. 

 

Therefore, using Cauchy-inequality we obtain,  

|𝐸𝑄1(𝑔)| ≤ 2𝑀∑∞𝜇=3
1

𝑟2𝜇+1
|𝐸𝑄1(𝑡

2𝜇+1)| = 2𝑀𝑒𝑄1(𝑟)                                                                            (31) 

 

where,  

𝑒𝑄1(𝑟) = |𝐸𝑄1 [(1 −
𝑡

𝑟
)
−1
]| = |𝑙𝑛 (

𝑟+1

𝑟−1
) − {

30𝑟3−26𝑟

15𝑟4−18𝑟2+3
}|                                                                     (32) 

 

Therefore, from Equations (31) and (32) we obtain, 

|𝐸𝑄1(𝑔)| ≤ 2𝑀𝑒𝑄1(𝑟). 

 

This completes the proof of part (𝑖) of Theorem 5. The rest part of the theorem can be established in the 

same way as it is done in case of Part (𝑖). Hence, this proves the theorem.  

 

The numerical evaluation of the error constants 𝑒𝑄𝑛
(𝑟);  𝑛 = 1,2,3 for 𝑟 > 1 are shown in Table 1. It is 

established from the table that the numerical evaluation of the integral (1) can be done more accurately by 

the rule 𝑄3(𝑔) than the other rules in its class constructed in this article. The numerical values of the error 

constants 𝑒𝑄𝑛
(𝑟);  𝑛 = 1, 2, 3 provided in Table 1 and the graphs drawn in Figure 1, clearly support this 

claim. 

 
Table 1. Error constants of rules 𝑄1, 𝑄2, 𝑄3. 

  
Rules with precision six 

r 𝑒𝑄1(𝑟) 𝑒𝑄2(𝑟) 𝑒𝑄3(𝑟) 

1.1 0.5166908264 0.1296190617 0.1091564892 

2.1 0.0005405799 0.0000891442 0.0000800958 

3.1 0.0000271392 0.0000038743 0.0000015442 

4.1 0.0000035069 0.0000004736 0.0000001691 

5.1 0.0000007305 0.0000000960 0.0000000323 

6.1 0.0000002040 0.0000000264 0.0000000085 

7.1 0.0000000696 0.0000000089 0.0000000028 

8.1 0.0000000274 0.0000000035 0.0000000011 

9.1 0.0000000121 0.0000000015 0.0000000005 
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Figure 1. Graphs of error constants 𝑒𝑄1(𝑟), 𝑒𝑄2(𝑟) and 𝑒𝑄3(𝑟) for 𝑟 > 1. 

 

2.8 Rules of Precision Eight 
In this subsection some quadrature rules have been formulated from the rules 𝑄1(𝑔), 𝑄2(𝑔) and 

𝑄3(𝑔) (given in Equations (26) to (28)) by following the method of extrapolation. Rules derived are of 

precision eight meant for the approximate evaluation of complex CPV integrals of the type (1). For the 

construction of rules by extrapolation, we have assumed here that the function 𝑔(𝑧) is sufficiently 

differentiable in,  

𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|; 𝑟 > 1}. 
 

Further, since 𝐸𝑄𝑛(𝑔) are the truncation errors associated with the quadrature rules 𝑄𝑛(𝑔); i.e., 

𝐸𝑄𝑛(𝑔) = 𝐼(𝑔) − 𝑄𝑛(𝑔);  𝑓𝑜𝑟 𝑛 = 1,2,3                                                                                                 (33) 

 

then it is easy to show that,  

𝐸𝑄𝑛(𝑔) =

{
 
 

 
 
2ℎ7

7!
(
−16

525
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
−64

1125
)𝑔(9)(𝑧0)+. . .  𝑓𝑜𝑟 𝑛 = 1

2ℎ7

7!
(
2

525
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
671

55125
)𝑔(9)(𝑧0)+. . .  𝑓𝑜𝑟 𝑛 = 2

2ℎ7

7!
(

16

14175
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
704

91125
)𝑔(9)(𝑧0)+. . .  𝑓𝑜𝑟 𝑛 = 3.

                                    (34) 

and,  

𝐼(𝑔) = 𝑄1(𝑔) +
2ℎ7

7!
(
−16

525
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
−64

1125
)𝑔(9)(𝑧0) + ⋯                                                              (35) 

𝐼(𝑔) = 𝑄2(𝑔) +
2ℎ7

7!
(
2

525
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
671

55125
)𝑔(9)(𝑧0) +⋯                                                             (36) 

𝐼(𝑔) = 𝑄3(𝑔) +
2ℎ7

7!
(

16

14175
)𝑔(7)(𝑧0) +

2ℎ9

9!
(
704

91125
)𝑔(9)(𝑧0) + ⋯                                                          (37) 

 

which are obtained by integrating the Taylor’s series expansion of 𝑔(𝑧) given in Equation (12) and 

expansions of function at the nodes of the quadrature rule 𝑄𝑔(𝛼1, 𝛼2) given in Equation (24) for,  
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(𝛼1, 𝛼2) = (1,
1

√5
) ; (√

5

7
,
1

√10
) and (√

11

15
,
1

3
) respectively. 

 

Now, by suitably combining any two of the three quadrature rules 𝑄1(𝑔), 𝑄2(𝑔) and 𝑄3(𝑔) by the help of 

Equations (35), (36) and (37) we get, 

𝐼(𝑔) =
1

19
[27𝑄3(𝑔) − 8𝑄2(𝑔)] + (

968

165375
) (

2ℎ9

9!
)𝑔(9)(𝑧0)+. ..                                                               (38) 

  

𝐼(𝑔) =
1

28
[𝑄1(𝑔) + 27𝑄3(𝑔)] + (

128

23625
) (

2ℎ9

9!
)𝑔(9)(𝑧0)+. ..                                                                   (39) 

 

and  

𝐼(𝑔) =
1

9
[𝑄1(𝑔) + 8𝑄2(𝑔)] + (

248

55125
) (

2ℎ9

9!
)𝑔(9)(𝑧0)+. ..                                                                       (40) 

 

We denote the first term on the right hand side of the Equation (38) by 𝑄32(𝑔), i.e.,  

𝑄32(𝑔) =
1

19
[27𝑄3(𝑔) − 8𝑄2(𝑔)]                                                                                                            (41) 

 

and claim it as the required quadrature rule of precision eight obtained from the rules 𝑄2(𝑔) and 𝑄3(𝑔) 
by extrapolation for numerical integration of complex CPV integrals of type (1). Again, the corresponding 

truncation error (denoted by 𝐸𝑄32(𝑔) ) associated with the rule 𝑄32(𝑔) is obtained as,  

𝐸𝑄32(𝑔) = 𝐼(𝑔) − 𝑄32(𝑔)

=
1

19
[27𝐸𝑄3(𝑔) − 8𝐸𝑄2(𝑔)]

                                                                                                    (42) 

  

Similarly, two more quadrature rules,  

𝑄13(𝑔) =
1

28
[𝑄1(𝑔) + 27𝑄3(𝑔)]                                                                                                             (43) 

 

and,  

𝑄12(𝑔) =
1

9
[𝑄1(𝑔) + 8𝑄2(𝑔)]                                                                                                                 (44) 

 

Each of precision eight are obtained from rules 𝑄1(𝑔) ,𝑄2(𝑔). The truncation errors associated with these 

two rules are given by,  
𝐸𝑄13(𝑔) = 𝐼(𝑔) − 𝑄13(𝑔)

=
1

28
[𝐸𝑄1(𝑔) + 27𝐸𝑄3(𝑔)]

                                                                                                      (45) 

 

and,  
𝐸𝑄12(𝑔) = 𝐼(𝑔) − 𝑄12(𝑔)

=
1

9
[𝐸𝑄1(𝑔) + 8𝐸𝑄2(𝑔)]

                                                                                                          (46) 

 

respectively, for the numerical computation of complex CPV integrals of type (1). This method may be 

continued for the formulation of quite a large number of quadrature rules of a higher degree of precision 

involving more points. Again, it is observed from Equations (41), (43) and (44) that, no additional 

evaluation of functions at any of the nodes is required when a complex CPV integral (1) is numerically 

approximated by each of these rules 𝑄32 ,𝑄13 and 𝑄12. This is due to the fact that each of these rules are a 

weighted mean of two rules from the set of three quadrature rules 𝑄1 ,𝑄2 and 𝑄3. As a result, the 
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numerical approximations of an integral obtained by the application of each of the rules 𝑄32 ,𝑄13 and 𝑄12 

or any rule, belonging to this class of rules are not affected by any type of additional errors like truncation 

error, round-off error or machine error, usually occuring due to the finite precision of digital computing 

machine. It is also worth mentioning that all the quadrature rules 𝑄32 ,𝑄13 and 𝑄12 given in Equations 

(41), (43) and (44) being of precision eight, approximate the integrals of type (1) more accurately than the 

rules 𝑄1 ,𝑄2 and 𝑄3. This fact has been vividly seen in the approximate values obtained by numerical 

approximations of some standard test integrals whose exact values are otherwise known. Also, these 

quadrature rules have been successfully applied for the numerical computation of line integrals of analytic 

functions in the complex plane, real CPV integrals as well as real definite integrals without having any 

kind of singularities. The results of numerical integrations are depicted in Section-3. It is appropriate to 

state here that the rules 𝑄1, 𝑄2 and 𝑄3 may be termed as Basic rules and the rules derived from them (i.e., 

𝑄32, 𝑄13 and 𝑄12 ) by extrapolation be termed as Composite rules. 

 

2.9 Error Bound of Degree Eight Rules 
We have established the error bounds of the degree eight quadrature rules 𝑄32 and 𝑄13 in Theorem 6 

using the method credited to Lether(1971). However, by following the same procedure the error bound of 

another degree eight quadrature rule 𝑄12 can’t be obtained as it is done for both of the rules 𝑄32 and 𝑄13 

for the reasons explained below. Since,  

𝐼(𝑔) = 𝑄12(𝑔) + 𝐸𝑄12(𝑔)                                                                                                                         (47) 

 

and 𝐸𝑄12(𝑔) is a linear operator thus, by using the transformation,  

𝑧 = 𝑧0 + ℎ𝑡; 𝑓𝑜𝑟 𝑡 ∈ [−1,1]. 
 

we obtain 

𝐸𝑄12(𝑔) = ∑
∞
𝜈=4 2𝑎2𝜈+1ℎ

2𝜈+1𝐸𝑄12(𝑡
2𝜈+1). 

 

which in turn boils down to 

𝐸𝑄12(𝑔) = ∑
∞
𝜈=4 2𝑎2𝜈+1ℎ

2𝜈+1𝜓𝑄12(𝜈)                                                                                                    (48) 

 

where,  

𝜓𝑄12(𝜈) =
1

2𝜈+1
−

1

54
{1 +

1

5𝜈−1
} −

8

1161
{49 (

5

7
)
𝜈
+

8

10𝜈−1
}. 

 

is not of one sign for 𝜈 ≥ 4. 

 

However, the asymptotic error estimate of the rule 𝑄12 has been given in Table 1. Next, we determine the 

error bounds of other two-degree eight quadrature rules 𝑄32 and 𝑄13, as given in the following theorem. 

  

Theorem 6. If 𝑔(𝑧) is analytic in a open disc  

𝐷 = {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜌 = 𝑟|ℎ|;  𝑟 > 1}. 
then,  

|𝐸𝑄𝑖𝑗(𝑔)| ≤ 2𝑀𝑒𝑄𝑖𝑗(𝑟);  𝑖𝑗 = 32,13 

where,  

𝑀 = 𝑀𝑎𝑥
|𝑧|=𝜌

|𝑔(𝑧)|. 

 

𝑒𝑄32(𝑟) = |𝑙𝑛 (
𝑟+1

𝑟−1
) − {

56700𝑟7−75150𝑟5+27648𝑟3−2006𝑟

28350𝑟8−47025𝑟6+23829𝑟4−3591𝑟2+165
}|. 
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and,  

𝑒𝑄13(𝑟) = |𝑙𝑛 (
𝑟+1

𝑟−1
) − {

28350𝑟7−48510𝑟5+23058𝑟3−2866𝑟

14175𝑟8−28980𝑟6+18354𝑟4−3780𝑟2+231
}|. 

 

Each of which → 0 as 𝑟 → ∞. The quantities 𝑒𝑄𝑖𝑗(𝑟), for 𝑖𝑗 = 32,13 are defined as error constants due to 

Lether (1971).  

 

Proof. Proceeding in the same vein as it is done in the case of the Theorem 5, it can be shown here that,  

𝐸𝑄𝑖𝑗(𝑔) = ∑
∞
𝜇=4 2𝑎2𝜇+1ℎ

2𝜇+1𝜓𝑖𝑗(𝜇). 

 

where for 𝜇 ≥ 4,  

𝜓𝑖𝑗(𝜇) = {

1

2𝜇+1
−
135

266
(
11

15
)
𝜇
+

1

14
(

1

9𝜇−1
) +

392

2451
(
5

7
)
𝜇
+

3920

16641
(
1

10
)
𝜇
≥ 0;  𝑓𝑜𝑟 𝑖𝑗 = 32

1

2𝜇+1
−

1

168
{1 + (

1

5𝜇−1
)} −

27

392
{5 (

11

15
)
𝜇
+ (

1

9𝜇−1
)} ≥ 0;  𝑓𝑜𝑟 𝑖𝑗 = 13.

                  (49) 

 

 

As a result, 𝐸𝑄𝑖𝑗(𝑔); for 𝑖𝑗 = 32,13 are of one sign. Therefore these error bounds can be obtained in the 

same way as it is done in Theorem 5; for which we have omitted the proof here.  

 

2.10 Comparative Analysis 
Here, we have made a modest attempt to make a comparative analysis as well as to discuss some common 

features of all the rules (𝑄1, 𝑄2,  𝑄3, 𝑄32, and  𝑄12) derived in this section. The important characteristics 

of these rules are described in the following points.  

 

(i) The rules 𝑄1, 𝑄2 and  𝑄3 are four point rules where the number of functional evaluation required in 

case of rules 𝑄32,  𝑄13, and  𝑄12 is eight. 

(ii) All these rules referred here have their nodes lying on the line of integration. This preserves a basic 

characteristic of integration of a function on a line segment in ℝ or ℂ analytically. 

(iii) All the weights associated with these rules are real numbers. So the rules can be employed for the real 

defnite integrals. 

(iv) The first leading term of the error expressions associated with each of these six rules are given in the 

following table in order of their increasing accuracy. 

 

 
Table 2. Leading term of the error expressions of the rules. 

 

Rules Leading term of the error expressions 

𝑄1 
−0.061

ℎ7

7!
𝑔(7)(𝑧0) 

𝑄2 
0.0076

ℎ7

7!
𝑔(7)(𝑧0) 

 𝑄3 
0.002

ℎ7

7!
𝑔(7)(𝑧0) 

𝑄32 
0.0059

ℎ9

9!
𝑔(9)(𝑧0) 

 𝑄13 
0.0054

ℎ9

9!
𝑔(9)(𝑧0) 

 𝑄12 
0.0045

ℎ9

9!
𝑔(9)(𝑧0) 
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From the asymptotic error estimates, as tabulated in the second column of Table 2, it is self-explanatory 

that the rule  𝑄3 shall provide better results in numerical integration as compared to the rules 𝑄1 and  𝑄2. 

However, the rule  𝑄12 shall provide better accuracy among all of these rules considered. This fact is very 

much observed during the numerical approximation of the integrals considered in Section 3. 

 

3. Numerical Experiments 
In this section, we present the result of numerical experiments obtained using the proposed schemes. The 

Quadrature rules (𝑄1, 𝑄2,  𝑄3, 𝑄32,  𝑄13,  𝑄12) developed in Section 2 are meant for the numerical 

evaluation of complex CPV integrals of type (1). However, these rules are also applicable to evaluate 

other types of integrals. 

 

 

3.1 Evaluation of Complex CPV Integrals 
Here, we consider the following integrals: 

𝐼1 = 𝑃∫
𝑖

−𝑖

𝑒𝑧

𝑧
𝑑𝑧, 𝐼2 = 𝑃∫

𝑖

−𝑖

(1 + 𝑧)𝑒𝑧

𝑧
𝑑𝑧,

𝐼3 = 𝑃∫
𝑖

−𝑖

(1 + 𝑧𝑐𝑜𝑠𝑧)

𝑧
𝑑𝑧, 𝐼4 = 𝑃∫

−1+𝑖
4

1−𝑖
4

𝑡𝑎𝑛−1𝑧

𝑧
𝑑𝑧,

𝐼5 = 𝑃∫

3(1+𝑖)
2

1+𝑖
2

𝑠𝑖𝑛𝑧

𝑧 − (1 + 𝑖)
𝑑𝑧.

 

 

 

The exact values of these integrals correct to fifteen decimal places, computed by using the data available 

in Abramowitz and Stegun (1964) are found to be the following:  

 
𝐼1 = 1.892166140734366𝑖, 𝐼2 = 3.575108110350159𝑖,
𝐼3 = 2.350402387287603𝑖, 𝐼4 = −0.506613635510659 + 0.492764356203114𝑖,

 

𝐼5 = 1.817558673962320 − 0.205725120888008𝑖. 
 

The complex CPV integrals 𝐼1, 𝐼2, 𝐼3, 𝐼4 and 𝐼5 have been evaluated by the rules developed in section 2. 

The computed values of the five integrals and the absolute errors have been appended in the following 

five tables.  

 

 
Table 3. Numerical evaluation of complex principal value integrals. 

 

Rules  Approximate Value of 𝑰𝟏 Abs. Error  Approximate Value of 𝑰𝟐 Abs. Error   

 𝑄1(𝑔) 1.892154356768595𝑖 1.2 × 10−5 3.575014450641384𝑖 9.4 × 10−5 

 𝑄2(𝑔) 1.892167586370264𝑖 1.4 × 10−6 3.575119545275700𝑖 1.1 × 10−5 

 𝑄3(𝑔) 1.892166546822965𝑖 4.1 × 10−7 3.575111276895897𝑖 3.2 × 10−6 

 𝑄32(𝑔) 1.892166109118838𝑖 3.2 × 10−8 3.575107795472823𝑖 3.1 × 10−7 

 𝑄13(𝑔) 1.892166111463880𝑖 2.9 × 10−8 3.575107818815379𝑖 2.9 × 10−7 

 𝑄12(𝑔) 1.892166116414523𝑖 2.4 × 10−8 3.575107868094110𝑖 2.4 × 10−7 

Exact Value  𝟏. 𝟖𝟗𝟐𝟏𝟔𝟔𝟏𝟒𝟎𝟕𝟑𝟒𝟑𝟔𝟔𝒊   𝟑. 𝟓𝟕𝟓𝟏𝟎𝟖𝟏𝟏𝟎𝟑𝟓𝟎𝟏𝟓𝟗𝒊   
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Table 4. Numerical evaluation of complex principal value integrals. 
 

Rules Approximate Value of 𝑰𝟑 Abs. Error 

𝑄1(𝑔) 2.350489907519472𝑖 8.7 × 10−5 

𝑄2(𝑔) 2.350391190203891𝑖 1.1 × 10−5 

𝑄3(𝑔) 2.350398860218264𝑖 3.5 × 10−6 

𝑄32(𝑔) 2.350402089697999𝑖 3.0 × 10−7 

𝑄13(𝑔) 2.350402111907592𝑖 2.7 × 10−7 

𝑄12(𝑔) 2.350402158794511𝑖 2.3 × 10−7 

Exact Value 𝟐. 𝟑𝟓𝟎𝟒𝟎𝟐𝟑𝟖𝟕𝟐𝟖𝟕𝟔𝟎𝟑𝒊  

 
 

Table 5. Numerical evaluation of complex principal value integrals. 
 

Rules Approx. Value of 𝑰𝟒 Abs. Error 

𝑄1(𝑔) −0.506610246316862 + 0.492769262629850𝑖 6.0 × 10−6 

𝑄2(𝑔) −0.506613978055818 + 0.492763691116544𝑖 7.5× 10−7 

𝑄3(𝑔) −0.506613670666537 + 0.492764117647976𝑖 2.4 × 10−7 

𝑄32(𝑔) −0.506613541239472 + 0.492764297240158𝑖 1.1 × 10−7 

𝑄13(𝑔) −0.506613548368334 + 0.492764301397329𝑖 1.0 × 10−7 

𝑄12(𝑔) −0.506613563418156 + 0.492764310173578𝑖 8.5 × 10−8 

Exact Value −𝟎. 𝟓𝟎𝟔𝟔𝟏𝟑𝟔𝟑𝟓𝟓𝟏𝟎𝟔𝟓𝟗+ 𝟎. 𝟒𝟗𝟐𝟕𝟔𝟒𝟑𝟓𝟔𝟐𝟎𝟑𝟏𝟏𝟒𝒊  

 

 

Table 6. Numerical evaluation of complex principal value integrals. 
 

Rules Approx. Value of 𝑰𝟓 Abs. Error 

𝑄1(𝑔) 1.817558809095785 − 0.205723744869242𝑖 1.3 × 10−6 

𝑄2(𝑔) 1.817558655483211 − 0.205725292739725𝑖 1.7× 10−7 

𝑄3(𝑔) 1.817558667195166 − 0.205725171683909𝑖 5.1 × 10−8 

𝑄32(𝑔) 1.817558672126516 − 0.205725120713039𝑖 1.8 × 10−9 

𝑄13(𝑔) 1.817558672263045 − 0.205725120726242𝑖 1.7 × 10−9 

𝑄12(𝑔) 1.817558672551274 − 0.205725120754116𝑖 1.4 × 10−9 

Exact Value 𝟏. 𝟖𝟏𝟕𝟓𝟓𝟖𝟔𝟕𝟑𝟗𝟔𝟐𝟑𝟐𝟎− 𝟎. 𝟐𝟎𝟓𝟕𝟐𝟓𝟏𝟐𝟎𝟖𝟖𝟖𝟎𝟎𝟖𝒊  

 
 

We have evaluated the integrals using a series of quadrature rules: 𝑄1, 𝑄2,  𝑄3, 𝑄32,  𝑄13,  𝑄12. The 

numerical results in the tables show that the values produced by applying the series of increasingly 

precise rules, converge to a value that is equal to the exact value of the corresponding integrals, which is 

accurate up to eight decimal point. 

 

3.2 Evaluation of Line Integrals of Analytic Functions 
In this subsection, we have considered the following line integrals. 

𝐼6 = 𝑃 ∫
𝑖

−𝑖
𝑒𝑧𝑑𝑧, 𝐼1 = 𝑃∫

𝑖/2

−𝑖/2
cos 𝑧  𝑑𝑧. 

 

 
Table 7. Numerical evaluation of complex line integrals. 

 

Rules Approx. Value of 𝑰𝟏 Abs. Error Approx. Value of 𝑰𝟐 Abs. Error 

𝑄1(𝑔) 1.682860093872789i 8.2 × 10−5 1.042191277895125𝑖 6.7 × 10−7 

𝑄2(𝑔) 1.682951958905436i 10.0 × 10−6 1.042190527130796𝑖 8.4 × 10−8 

𝑄3(𝑔) 1.682944730072933i 2.8 × 10−6 1.042190585739540𝑖 2.5 × 10−8 

𝑄32(𝑔) 1.682941686353984𝑖 2.8 × 10−7 1.042190610416907𝑖 5.7 × 10−10 

𝑄13(𝑔) 1.682941707351499𝑖 2.6 × 10−7 1.042190610459383𝑖 5.2 × 10−10 

𝑄12(𝑔) 1.682941751679586i 2.2 × 10−8 1.042190610549055𝑖 4.4 × 10−10 

Exact Value 𝟏. 𝟔𝟖𝟐𝟗𝟒𝟏𝟗𝟔𝟗𝟔𝟏𝟓𝟕𝟗𝟑𝐢  𝟏. 𝟎𝟒𝟐𝟏𝟗𝟎𝟔𝟏𝟎𝟗𝟖𝟕𝟒𝟗𝟓𝒊  
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3.3 Evaluation of Real CPV Integrals 
The following real CPV integrals are numerically approximated in this subsection. I8 = P R 1 −1 1+xcosx 

x dx, I9 = P R 3/2 1/2 sinx x−1 dx. The approximate values with their absolute errors are reflected in 

Table 8. 

 

𝐼8 = 𝑃 ∫
1+𝑥 cos𝑥

𝑥

1

−1
𝑑𝑥, 𝐼9 = 𝑃∫

sin𝑥

𝑥−1
𝑑𝑥

3/2

1/2
. 

 

 
Table 8. Numerical evaluation of real principal value integrals. 

 

Rules  Approx. Value of 𝑰𝟖 Abs. Error  Approx. Value of 𝑰𝟗 Abs. Error 

𝑄1(𝑔) 1.682860093872789 8.2 × 10−5 0.532854099299606 5.1 × 10−8 

𝑄2(𝑔) 1.682951958905436i 10.0 × 10−6 0.532854156329300 6.3 × 10−9 
𝑄3(𝑔) 1.682944730072933 2.8 × 10−6 0.532854151864677 1.8 × 10−9 
𝑄32(𝑔) 1.682941686353984 2.8 × 10−7 0.532854149984835 3.4 × 10−11 

𝑄13(𝑔) 1.682941707351499 2.6 × 10−7 0.532854149987353 3.1 × 10−11 

𝑄12(𝑔) 1.682941751679586 2.2 × 10−8 0.532854149992668 2.6 × 10−11 

Exact Value 𝟏. 𝟔𝟖𝟐𝟗𝟒𝟏𝟗𝟔𝟗𝟔𝟏𝟓𝟕𝟗𝟑  𝟏. 𝟎𝟒𝟐𝟏𝟗𝟎𝟔𝟏𝟎𝟗𝟖𝟕𝟒𝟗𝟓𝒊   

 

 

3.4 Evaluation of Real Definite Integrals 
The following real definite integrals are numerically approximated in this subsection. 

𝐼10 = ∫ 𝑒𝑥𝑑𝑥, 𝐼11 = ∫ cos 𝑥𝑑𝑥
1/2

−1/2

1

−1
. 

 
Table 9. Numerical evaluation of real definite integrals. 

 

Rules Approx. Value of 𝑰𝟏𝟎 Abs Error Approx. Value of 𝑰𝟏𝟏 Abs. Error 

𝑄1(𝑔) 2.350489907519472 8.7 × 10−5 0.958850421323795 6.6 × 10−7 

𝑄2(𝑔) 2.350391190203891 1.1 × 10−5 0.958851158706536 8.1 × 10−8 

𝑄3(𝑔) 2.350398860218264 3.5 × 10−6 0.958851100959398 2.3 × 10−8 

𝑄32(𝑔) 2.350402089697999 3.0 × 10−7 0.958851076644813 5.6 × 10−10 

𝑄13(𝑔) 2.350402111907592 2.7 × 10−7 0.958851076686698 5.2 × 10−10 

𝑄12(𝑔) 2.350402158794511 2.3 × 10−7 0. 958851076775121 4.3 × 10−10 

Exact Value 2.350402387287603  0.958851077208406  

 

 

4. Conclusion 
The present study aimed to investigate a quadrature rule to obtain a numerical approximation of CPV 

integrals in the complex plane. Furthermore, we demonstrated the presence of such rules theoretically and 

experimentally. We also obtained the asymptotic error estimate and the error bound for each rule. The 

numerical results in the tables in Section 3 show that, the values produced by applying a series of 

increasingly precise rules, converge to a value that is equal to the exact value of the corresponding 

integrals, which is accurate up to eight to eleven figures after the decimal point. So, when a series of such 

rules of increasing accuracy are applied to an integral for its numerical evaluation, one can confidently 

accept the value of the integral (whose value is not feasible to acquire analytically) obtained 

corresponding to the quadrature rule of highest precision. Once more, these rules are also applicable to the 

numerical integration of: 

(i) complex definite integrals on the line segment having end points 𝑧0 − ℎ and 𝑧0 + ℎ.  

(ii) Real CPV and real definite integrals.  

 

In the future, we want to extend these rules to evaluate complex CPV integrals with oscillatory kernels 

and also to compute multidimensional complex integrals. 
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