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Abstract 

Various physical phenomena give rise to singularly perturbed differential equations with mixed shifts. Due to multiple parameters, 

singularly perturbed mixed delay boundary value problems are challenging to solve. This article considers a singularly perturbed 

differential-difference equation with delay and advance. To deal with the complexity of these equations, a non-polynomial spline 

numerical approach is adopted. For discretization, we have used a uniform mesh with equal spacing. Various theoretical results 

like stability and convergence are discussed. Numerical examples are solved to support the method and check the validity of the 

findings. The numerical order of convergence is determined and presented in the tables, along with the comparison of the results 

with the other existing methods. The comparison shows that the error is significantly less than the available solution in the literature. 

Also, the numerical order of convergence is determined to be equal to two. Graphs are drawn to observe the behavior of the solution 

for different values of parameters. 

 

Keywords- Singular perturbation, Differential-difference equations, Boundary value problems, Mixed delay, Non-polynomial 

spline, Boundary layer.  

 

 

 

1. Introduction  
Singularly perturbed differential equations (SPDEs) involve a small parameter with the highest order 

derivative, and the singularly perturbed differential-difference equations (SPDDE) are the SPDEs with 

mixed shifts. SPDDE are complex boundary value problems (BVP) with a minimum of three parameters 

posing significant challenges in finding the solution. SPDDEs are prevalent in the mathematical modeling 

of many biological, engineering, and physical phenomena (Cahlon and Schmidt, 2005; Derstine et al., 1982; 

Segundo et al., 1968; Tuckwell, 1976, 1988; Tuckwell and Wan, 2005). Naidu (2002) presented an 

exhaustive review of the singular perturbation and time scale problems arising in control theory. Chi et al. 

(1986) have discussed a non-linear first-order SPDDE. The equation arises in the myelinated nerve axon. 

The potential change is observed from node to node as myelin insulates the membrane entirely. Stein (1967) 

was the first to represent the stochastic effect due to neuronal excitation as a differential-difference equation, 

specifically an SPDDE with mixed shifts of the following type: 

𝜎2

2
𝑦″ + (𝜇 − 𝜐)𝑦 ′(𝜐) + 𝜆𝐸𝑦(𝜐 + 𝑎𝐸) + 𝜆𝐼𝑦(𝜐 − 𝑎𝐼) − (𝜆𝐸 + 𝜆𝐼)𝑦(𝜐) = −1, 

𝑦(𝜐) ≡ 0, 𝜐 ∈ (𝜐1, 𝜐2), 
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where, y  is the expected first-exit time, 𝜎 and 𝜇 are variance, and the drift parameters, 𝜆𝐸 , and 𝜆𝐼 are mean 

rates of are excitatory and inhibitory synaptic inputs, modelled as Poisson process respectively, and 𝑎𝐸 , Ia  

are small quantities that could depend on voltage. The occurrence of SPDDE in various areas is the 

motivation behind this study. Many researchers have used different numerical methods to deal with the 

complex structure of SPDDE. Traditional approaches often involve a variety of finite difference methods 

(FDM) on various types of mesh functions. Kadalbajoo and Sharma (2006) have employed exponentially 

fitted FDM on a uniform mesh. Authors Patidar and Sharma (2006) used non-standard FDM on uniform 

mesh and established uniform convergence. Duressa and Reddy (2015) have used the domain 

decomposition method. Many researchers have used polynomial based spline methods for SPDEs and 

SPDDEs. Ranjan (2023) applied the cubic spline method for SPDDE with a delay in the convection term 

with a fitting factor on the highest-order derivative. A quadratic B-spline method on the exponentially 

graded mesh is designed for fourth-order SPDE (Singh and Kumar, 2022). Mane and Lodhi (2023) solved 

a second-order SPDE with a discontinuous source term using the cubic B-spline technique. Lodhi and 

Mishra (2018) have approximated fourth-order SPDE via the quantic B-spline method. An FDM with two 

different non-uniform meshes is used for an SPDDE with large shifts (Elango and Unyong, 2022). A 

computational method based on FDM was used by Kiltu et al. (2021) SPDDE of reaction-diffusion type. 

 

In recent years, non-polynomial spline methods have emerged as promising alternatives due to their ability 

to provide more flexible and accurate approximations. Non-polynomial splines, also known as non-

polynomial interpolates, are the piecewise functions defined over an interval. A variety of other functions 

are used in place of linear, quadratic, cubic, etc. polynomials, such as exponential, trigonometric, or rational 

functions. Hammad et al. (2022) have used ten such splines to approximate Fredholm integral equations. 

Debela and Duressa (2022) have used a non-polynomial spline with a fitting factor for an SPDDE with an 

integral boundary condition. They have also discussed the convergence and stability of the method. 

Rashidinia et al. (2008) have tackled second-order BVP using a non-polynomial cubic spline. The proposed 

method is illustrated by applying it to two numerical examples. Wakjira and Duressa (2020) used 

exponential spline for third-order SPDE; the method was proved to be sixth-order convergent. The 

trigonometric B-spline method for SPDE with a delay term is considered by Vaid and Arora (2019) and Ali 

et al. (2018). 

 

It is observed that the numerical methods applied so far to handle the SPDDEs with mixed shifts are often 

very complex or need complex mesh structures (Kadalbajoo and Sharma, 2005; Mushahary et al., 2020). 

To overcome this limitation, a non-polynomial spline method with uniform mesh is proposed for SPDDE 

with mixed shifts. The advantage of applying the spline methods is that it gives the solution at every point 

of the domain. Also, the non-polynomial splines are easy to apply and computationally simple. 

 

This research paper aims to investigate the effectiveness of non-polynomial spline methods in solving 

SPDDEs with mixed delay. The objective is to get a better approximate solution with an improved order of 

convergence. The article starts with a statement of the problem in Section 2, and the method is described in 

Section 3, along with convergence analysis and stability. The method is illustrated by applying it to three 

numerical examples in Section 4. Results and findings are given in the last conclusion section.  

 

2. Problem Statement 
Consider the following SPDDE with mixed shifts: 

𝜀𝑤𝜀
′′(𝑡) + 𝑎(𝑡)𝑤𝜀

′(𝑡) + 𝑘1(𝑡)𝑤𝜀(𝑡 − 𝛿) + 𝑏(𝑡)𝑤𝜀(𝑡) + 𝑘2(𝑡)𝑤𝜀(𝑡 + 𝜂) = 𝑣(𝑡), 𝑡 ∈ (0,1)                      (1) 

 

with the boundary conditions 
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𝑤𝜀(𝑡) = 𝜙(𝑡), −𝛿 ≤ 𝑡 ≤ 0 and 𝑤𝜀(𝑡) = 𝜓(𝑡),1 ≤ 𝑡 ≤ 𝜂                                                                          (2) 

 

where, 𝜀  is perturbation parameter, 0 < 𝜀 << 1, 𝑎(𝑡), 𝑏(𝑡), 𝑘1(𝑡), 𝑘2(𝑡)  and 𝑣(𝑡)  are smooth over 
(0, 1), 𝛿 and 𝜂 are delay and advance parameters respectively. If 𝛿 and 𝜂 tends to zero, then Equation (1) 

is an SPDE. The presence of 𝜀 causes layer behaviour in the solution of this BVP. The boundary region 

depends on whether coefficient of the convection term, i.e. 𝑎(𝑡) is positive or negative over (0,1). Using 

Taylor’s series approximation in delay and advance terms in Equation (1), we get 

𝜀𝑤𝜀
′′(𝑡) + 𝑝(𝑡)𝑤𝜀

′(𝑡) + 𝑞(𝑡)𝑤𝜀(𝑡) = 𝑣(𝑡)                                                                                               (3) 

 

subject to the conditions 

{
𝑤𝜀(0) = 𝜙(0),
𝑤𝜀(1) = 𝜓(1)

                                                                                                                                              (4) 

 

where, 𝑝(𝑡) = 𝑎(𝑡) − 𝛿𝑘1(𝑡) + 𝜂𝑘2(𝑡), 𝑞(𝑡) = 𝜆(𝑡) + 𝑏(𝑡) + 𝑘2(𝑡). The solution of the boundary value 

problem given by Equations (3)-(4) differ from the solution of Equations (1)-(2) by 𝑂(𝛿2) and 𝑂(𝜂2). As 

0 < 𝛿 << 1, and 0 < 𝜂 << 1, solution of Equations (3)-(4) provides a good approximate solution to 

original Equations (1)-(2). Define the differential operator 𝐿𝜀,𝛿,𝜂 corresponding to the Equations (3)-(4). 

𝐿𝜀,𝛿,𝜂𝑤𝜀(𝑡) ≡ 𝜀𝑤𝜀
′′(𝑡) + 𝑝(𝑡)𝑤𝜀

′(𝑡) + 𝑞(𝑡)𝑤𝜀(𝑡) = 𝑣(𝑡). 

 

2.1 Properties of Continuous Problem 
Continuous minimum principle: Let 𝜑(𝑡)  be a smooth function satisfying 𝜑(0) ≥ 0, 𝜑(1) ≥ 0and 

𝐿𝜀,𝛿,𝜂 ≤ 𝜑(𝑡), ∀𝑡 ∈ [0,1]. Then 𝜑(𝑡) ≥ 0, ∀𝑡 ∈ [0,1]. 

 

Lemma 1: The solution of BVP given by Equations (3)-(4) is bounded and it is given as follows:  

‖𝑤𝜀‖ ≤ 𝜃
−1‖𝑓‖ +𝑚𝑎𝑥(|𝜙|, 𝜓), 

 

where, ‖⋅‖ is defined by ‖𝑤𝜀‖ = 𝑚𝑎𝑥
0≤𝑡≤1

|𝑤𝜀|. 

 

Theorem 1: The derivative of the solution of BVP given by Equations (3)-(4) satisfies the following 

inequalities: 

‖𝑤𝜀
(𝑘)‖ ≤ 𝐶𝜀−1, 𝑘 = 1,2,3, 

where the constant 𝐶 > 0 does not depend on  . 

 

Refer to Kadalbajoo and Sharma (2005), and Miller et al. (2012) for the proofs. 

 

3. Method Description 
This section describes the non-polynomial spline method, which interpolates the SPDDE with mixed shifts 

defined by Equations (3)-(4). Let 𝜋 be the partition of the interval (0, 1) obtained by dividing it into N equal 

parts [𝑡𝑖, 𝑡𝑖+1] each of width h, where ℎ =
1

𝑁
, 𝑡0 = 0 and 𝑡𝑁 = 1. On each sub-interval of 𝜋 define the non-

polynomial spline function 𝑆𝑁(𝑡) as 

𝑆𝑁(𝑡) = 𝛾𝑖 + 𝜆𝑖(𝑡 − 𝑡𝑖) + 𝜇𝑖 𝑠𝑖𝑛 𝜏 (𝑡 − 𝑡𝑖) + 𝜎𝑖 𝑐𝑜𝑠 𝜏 (𝑡 − 𝑡𝑖)                                                                  (5) 

 

where, 𝜏 is a free parameter, 𝛾, 𝜆, 𝜇, and 𝜎 are constants. The non-polynomial spline 𝑆𝑁(𝑡) defined by 

Equation (5) interpolates 𝑤𝜀(𝑡) at the nodal points, and is a class of functions from 𝐶2(0,1). Further, it is 

given by 𝑠𝑝𝑎𝑛{1, 𝑡, 𝑐𝑜𝑠 𝜏 𝑡, 𝑠𝑖𝑛 𝜏 𝑡}, and as 𝜏 → 0, it reduces to the cubic spline given by 𝑠𝑝𝑎𝑛{1, 𝑡,  𝑡2, 𝑡3}. 
This fact is visible from the relation  
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𝑇 = 𝑠𝑝𝑎𝑛{1, 𝑡, 𝑐𝑜𝑠 𝜏 𝑡, 𝑠𝑖𝑛 𝜏 𝑡} = 𝑠𝑝𝑎𝑛 {1, 𝑡,
2

𝜏2
(1 − 𝑐𝑜𝑠 𝜏 𝑡),

6

𝜏3
(𝜏𝑡 − 𝑠𝑖𝑛 𝜏 𝑡)}. 

 

Thus 𝑙𝑖𝑚
𝜏→0

𝑇 = {1, 𝑡,  𝑡2, 𝑡3}. Let 𝑤𝜀(𝑡𝑖) be the approximate solution of Equations (3)-(4) obtained by using 

non-polynomial spline function 𝑆𝑁(𝑡) on [𝑡𝑖, 𝑡𝑖+1]  passing through the points (𝑡𝑖 , 𝑤𝜀(𝑡𝑖)) and 

(𝑡𝑖+1, 𝑤𝜀(𝑡𝑖+1)). To determine the spline coefficients in Equation (5), we assume that 𝑆𝑁(𝑡) satisfies 

interpolation conditions at 𝑡 = 𝑡𝑖, and 𝑡 = 𝑡𝑖+1. We also assume that the first-order derivative is continuous 

at the common nodal points. We are using the following notations for the determination of constants in 

Equation (5). 

𝑆𝑁(𝑡𝑖) = 𝑤𝜀𝑖, 𝑆𝑁(𝑡𝑖+1) = 𝑤𝜀𝑖+1 

𝑆𝑁
″(𝑡𝑖) = 𝑀𝑖, 𝑆𝑁

″(𝑡𝑖+1) = 𝑀𝑖+1                                                                                                                    (6) 

 

Differentiating Equation (5), we obtain 

𝑆𝑁
′ (𝑡) = 𝜆𝑖 + 𝜇𝑖𝜏 𝑐𝑜𝑠 𝜏 (𝑡 − 𝑡𝑖) − 𝜎𝑖𝜏 𝑠𝑖𝑛 𝜏 (𝑡 − 𝑡𝑖)                                                                                   (7) 

 

𝑆𝑁
″(𝑡) = −𝜇𝑖𝜏

2 𝑠𝑖𝑛 𝜏 (𝑡 − 𝑡𝑖) − 𝜎𝑖𝜏
2 𝑐𝑜𝑠 𝜏 (𝑡 − 𝑡𝑖)                                                                                    (8) 

 

Putting 𝑡 = 𝑡𝑖 in Equation (8) and using Equation (6), we obtain 

𝜎𝑖 = −
𝑀𝑖

𝜏2
, 𝑖 = 0,1, … ,𝑁 − 1                                                                                                                      (9) 

 

Putting 𝑡 = 𝑡𝑖 in Equation (5) and using Equation (6), we obtain 

𝛾𝑖 = 𝑤𝜀𝑖 +
𝑀𝑖

𝜏2
, 𝑖 = 0,1, … ,𝑁 − 1                                                                                                              (10) 

 

Putting 𝑡 = 𝑡𝑖+1 in Equation (8) and using Equations (9) and (10), we have  

𝜆𝑖 =
𝑤𝜀𝑖+1−𝑤𝜀𝑖

ℎ
+
𝑀𝑖+1−𝑀𝑖

𝜏𝜃
, 𝑖 = 0,1,… ,𝑁 − 1                                                                                            (11) 

and 

𝜇𝑖 =
𝑀𝑖 𝑐𝑜𝑠 𝜃−𝑀𝑖+1

𝜏2 𝑠𝑖𝑛 𝜃
, 𝑖 = 0,1, … ,𝑁 − 1                                                                                                        (12) 

 

where, 𝜃 = 𝜏ℎ. 

 

Using the assumption that the 𝑆𝑁
′ (𝑡) is continuous at each nodal point, i.e., 𝑆𝑁𝑖−1

′ (𝑡𝑖) = 𝑆𝑁𝑖
′ (𝑡𝑖), we have 

𝜆𝑖−1 + 𝜇𝑖−1𝜏 𝑐𝑜𝑠 𝜃 − 𝜎𝑖−1𝜏 𝑠𝑖𝑛 𝜃 = 𝜆𝑖 + 𝜇𝑖𝜏                                                                                          (13) 

 

Substituting the values of coefficients from Equations (9)-(12) in Equation (13), we get 

𝛼𝑀𝑖+1 + 2𝛽𝑀𝑖 + 𝛼𝑀𝑖−1 =
1

ℎ2
(𝑤𝜀𝑖+1 − 2𝑤𝜀𝑖 +𝑤𝜀𝑖−1), 𝑖 = 0,1, … ,𝑁 − 1                                            (14) 

 

where, 𝛼 =
1

𝜃2
(𝜃 𝑐𝑠𝑐 𝜃 − 1), 𝛽 =

1

𝜃2
(1 − 𝜃 𝑐𝑜𝑡 𝜃). 

 

As ℎ → 0, 𝜃 = 𝜏ℎ → 0. A simple application of L’Hospital’s Rule gives us 

𝑙𝑖𝑚
𝜃→0

𝛼 =
1

6
 and  𝑙𝑖𝑚

   𝜃→0
𝛽 =

1

3
. 

 

Using notations given by Equation (6) in Equation (3), we get 

𝜀𝑀𝑖 + 𝑝𝑖𝑤𝜀𝑖
′ + 𝑞𝑖𝑤𝜀𝑖 = 𝑣𝑖                                                                                                                         (15) 
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where, 𝑝𝑖 = 𝑝(𝑡𝑖), 𝑞𝑖(𝑡𝑖), 𝑣𝑖 = 𝑣(𝑡𝑖). 
 

From Jain (1984), 𝑤𝜀
′ can be approximated as 

{
 
 

 
 𝑤𝜀𝑖

′ =
𝑤𝜀𝑖+1−𝑤𝜀𝑖−1

2ℎ
,

𝑤𝜀𝑖+1
′ =

3𝑤𝜀𝑖+1−4𝑤𝜀𝑖+𝑤𝜀𝑖−1

2ℎ
,

𝑤𝜀𝑖−1
′ =

−𝑤𝜀𝑖+1+4𝑤𝜀𝑖−3𝑤𝜀𝑖−1

2ℎ

                                                                                                                  (16) 

 

From Equation (15), we have 

{

𝑀𝑖 = 𝑣𝑖 − 𝑝𝑖𝑤𝜀𝑖
′ − 𝑞𝑖𝑤𝜀𝑖,

𝑀𝑖−1 = 𝑣𝑖−1 − 𝑝𝑖−1𝑤𝜀𝑖−1
′ − 𝑞𝑖−1𝑤𝜀𝑖−1,

𝑀𝑖+1 = 𝑣𝑖+1 − 𝑝𝑖+1𝑤𝜀𝑖+1
′ − 𝑞𝑖+1𝑤𝜀𝑖+1

                                                                                                 (17) 

 

Using the values from Equations (16)-(17) in Equation (14), we obtain by rearranging the terms 

𝑤𝜀𝑖−1 (
3

2𝜀
𝛼ℎ𝑝𝑖−1 +

1

𝜀
𝛽ℎ𝑝𝑖 −

1

2𝜀
𝛼ℎ𝑝𝑖+1 −

1

𝜀
𝛼ℎ2𝑞𝑖−1 − 1) + 𝑤𝜀𝑖 (−

2

𝜀
𝛼ℎ𝑝𝑖−1 +

2

𝜀
𝛼ℎ𝑝𝑖+1 −

1

𝜀
𝛽ℎ2𝑞𝑖 +

2) + 𝑤𝜀𝑖+1 (
1

2𝜀
𝛼ℎ𝑝𝑖−1 −

1

𝜀
𝛽ℎ𝑝𝑖 −

3

2𝜀
𝛼ℎ𝑝𝑖+1 −

1

𝜀
𝛼ℎ2𝑞𝑖+1 − 1) = −ℎ

2 (
𝛼

𝜀
𝑣𝑖−1 +

2𝛽

𝜀
𝑣𝑖 +

𝛼

𝜀
𝑣𝑖+1)       (18) 

 

3.1 Stability 
In this subsection, we have proved the following theorem to show the stability of the proposed method. 

 

Theorem 2: For sufficiently small values of h, the tri-diagonal coefficient matrix V in the system given by 

Equations (18) is irreducible and diagonally dominant matrix; hence the proposed method is stable.  

 

Proof: Let V denotes the tri-diagonal coefficient matrix in the system given by Equations (18), then  

𝑉(𝑖, 𝑗) = {

𝐸𝑖
∗, 𝑖 − 𝑗 = 1,

𝐹𝑖
∗, 𝑖 = 𝑗,

𝐺𝑖
∗, 𝑗 − 𝑖 = 1, 𝑓𝑜𝑟𝑖, 𝑗 = 2,3,… ,𝑁 − 2,

 

 

where, 

* 2

1 1 1

* 2

1 1

* 2

1 1 1

3 1
,

2 2

2 2 2 ,

1 3
, 2 , 3, , 2.

2 2

i i i i i

i i i i

i i i i i

E hp hp hp h q

F hp hp h q

G hp hp hp h q for i N

    

   

    

− + −

− +

− + +


= + − − −


= − + − +


 = − − − − = −


 

 

Thus, for sufficiently small h, we have 

( )

* *

1 1

1 1

*

2 2 2

2 2

, , 2 , 3, , 2.

i i i i

i i

i

E G hp hp

h p p

F for i j N

  

 

− +

− +

+ = − −

= − −

 = −

 

 

Eliminate 𝑤𝜀0 and 𝑤𝜀𝑁 from Equation (18) using the boundary conditions given in Equations (4). Thus the 

first row of 𝑉  is given as [𝐹1
∗  𝐺1

∗  0  0 ⋯   0] , where 𝐹1
∗ = −2𝛼ℎ𝑝0 + 2𝛼ℎ𝑝2 − 𝛽ℎ

2𝑞0 + 2𝜀  and 𝐺1
∗ =
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1

2
𝛼ℎ𝑝0 − 𝛽ℎ𝑝1 −

3

2
𝛼ℎ𝑝2 − 𝛼ℎ

2𝑞2 − 𝜀. Further the last row of 𝑉 is given as [0 ⋯0  𝐸𝑁−1
∗   𝐹𝑁−1

∗ ], where 

𝐸𝑁−1
∗ =

3

2
𝛼ℎ𝑝𝑁−2 + 𝛽ℎ𝑝𝑁−1 −

1

2
𝛼ℎ𝑝𝑁 − 𝛼ℎ

2𝑞𝑁−2 − 𝜀  and 𝐹𝑁−1
∗ = −2𝛼ℎ𝑝𝑁−2 + 2𝛼ℎ𝑝𝑁 − 𝛽ℎ

2𝑞𝑁−1 +

2𝜀. Clearly, for small values of h, |𝐺1
∗| ≤ |𝐹1

∗| and |𝐸𝑁−1
∗ | ≤ |𝐹𝑁−1

∗ |. 
 

Hence V is diagonally dominant. Further even for ℎ → 0,𝐸𝑖
∗ ≠ 0, and 𝐺𝑖

∗ ≠ 0, 𝑖 = 1,2,… ,𝑁 − 1. Thus, V 

is an irreducible matrix. Hence proved. 

 

3.2 Convergence Analysis 
In this subsection, convergence analysis of the proposed method is described.  

 

Writing Equation (18) in the matrix form as: 

𝐴𝑤𝜀 + ℎ
2𝐵𝐹 = 𝑈                                                                                                                                                 (19) 

 

where, A is a diagonally dominant tri-diagonal matrix given by ,A P hQR= +  where ( , )P P i j=  is given 

by 

𝑃(𝑖, 𝑗) = {

2, 𝑖 = 𝑗 = 1,2,… ,𝑁 − 1

−1, |𝑖 − 𝑗| = 1
0, otherwise,

 

 

𝑄𝑅 = 𝑍(𝑖, 𝑗) =

{
 
 
 
 
 

 
 
 
 
 
2𝛼

𝜀
(𝑝2 − 𝑝0) −

2𝛽

𝜀
ℎ𝑞1, 𝑖 = 𝑗 = 1

3

2𝜀
𝛼𝑝𝑖−1 +

1

𝜀
𝛽𝑝𝑖 −

1

2𝜀
𝛼𝑝𝑖+1 −

1

𝜀
𝛼ℎ𝑞𝑖−1, 𝑖 > 𝑗

2

𝜀
𝛼(𝑝𝑖+1 − 𝑝𝑖−1) −

2

𝜀
𝛽ℎ𝑞𝑖, 𝑖 = 𝑗

1

2𝜀
𝛼𝑝𝑖−1 −

1

𝜀
𝛽𝑝𝑖 −

3

2𝜀
𝛼𝑝𝑖+1 −

1

𝜀
𝛼ℎ𝑞𝑖+1, 𝑖 < 𝑗

2𝛼

𝜀
(𝑝𝑁 − 𝑝𝑁−1) −

2𝛽

𝜀
ℎ𝑞𝑁−1, 𝑖 = 𝑗 = 𝑁 − 1,

 

 

𝐹 = (𝑣1, 𝑣2, … , 𝑣𝑁−1)
𝑇 , 𝑤𝜀 = (𝑤𝜀1, 𝑤𝜀2, … , 𝑤𝜀𝑁−1)

𝑇 , 
 

2

2

2

2

2

B

 

  

  

  

 

 
 
 
 

=  
 
 
 
 

, 

 

and 𝑈 = (𝑢1, 0,… ,0, 𝑢𝑁−1)
𝑇 , where 𝑢1 = −ℎ

2𝛼𝑣0, 𝑢𝑁−1 = −ℎ
2𝛼𝑣𝑁. 

 

Let 𝑊 = (𝑊(𝑡1),𝑊(𝑡2),… ,𝑊(𝑡𝑁−1))
𝑇

be the exact solution of Equations (1)-(2) at nodal points. Using 

these in Equation (19), we obtain  
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𝐴𝑊 + ℎ
2𝐵𝐹 = 𝑇(ℎ) + 𝑈                                                                                                                                 (20) 

 

where, 𝑇(ℎ) = (𝑇(𝑡1), 𝑇(𝑡2),… , 𝑇(𝑡𝑁−1))
𝑇
is the truncation error obtained by numerical approximation.  

 

Applying Taylor’s series in Equation (18) about 𝑡 = 𝑡𝑖, and using Equation (15), truncation error 𝑇(ℎ) can 

be given by 

𝑇𝑖(ℎ) = (−1 + 2(𝛼 + 𝛽))𝜀ℎ
2𝑤𝜀

″(𝜁𝑖) +
1

3
(𝛼𝑝𝑖+1 − 𝛽𝑝𝑖 + 𝛼𝑝𝑖+1)ℎ

4𝑤𝜀
‴(𝜁𝑖) +

1

12
(𝜀(−12𝛼 + 1) +

𝛼ℎ(𝑝𝑖+1 − 𝑝𝑖+1))ℎ
4𝑤𝜀

(4)(𝜁𝑖) + 𝑂(ℎ
5), 𝑡𝑖−1 < 𝜁𝑖 < 𝑡𝑖                                                                                        (21) 

 

From Equations (20) and (21), we have  

𝐴(𝑊 −𝑤𝜀) = 𝐴𝐸 = 𝑇(ℎ)                                                                                                                         (22) 

 

with 𝐸 = 𝑊 −𝑤𝜀 = (𝑒1, 𝑒2, … , 𝑒𝑁−1)
𝑇. We will now prove that ‖𝐸‖ is bounded. 

 

Lemma 2: If D is a square matrix, and 1D  . Then ( )
1

I D
−

+  exists, and ( )
1 1

.
1

I D
D

−
+ 

−
 

 

Proof: Refer Rashidinia et al. (2008). 

 

From Equations (20) and (22), we get 

𝐸 = 𝐴−1𝑇 = (𝑃 + ℎ𝑄𝑅)−1𝑇 = (𝐼 + ℎ𝑃−1𝑄𝑅)−1𝑃−1𝑇. 
 

This implies, ‖𝐸‖ ≤ ‖(𝐼 + ℎ𝑃−1𝑄𝑅)−1‖‖𝑃−1‖‖𝑇‖ ≤
‖𝑃−1‖‖𝑇‖

‖(𝐼+ℎ𝑃−1𝑄𝑅)‖
. 

 

Then  

‖𝐸‖ ≤
‖𝑃−1‖‖𝑇‖

1−ℎ‖𝑃−1‖‖𝑄𝑅‖
                                                                                                                                  (23) 

 

provided ℎ‖𝑃−1‖‖𝑄𝑅‖ ≤ 1.  
 

From Henrici (1962) we have 

‖𝑃−1‖ ≤
1

8ℎ2
                                                                                                                                              (24) 

 

this implies  

 
‖𝑄𝑅‖ ≤ 8𝛼𝑝 + 6𝛽𝑞 + 2𝛼𝑞                                                                                                                      (25) 

 

where, 𝑝 = 𝑚𝑎𝑥|𝑝(𝑡𝑖)| and 𝑞 = 𝑚𝑎𝑥|𝑞(𝑡𝑖)| , 0 < 𝑡𝑖 < 1. Consider the following two cases, according to 

the values of 𝛼 and 𝛽. 
 

Case I: If 𝛼 + 𝛽 =
1

2
𝑎𝑛𝑑 𝛼 ≠

1

12
  

 

From Equation (21), we have ‖𝑇‖ ≤ 𝜆1ℎ
4𝑊4, where 𝑊4 = 𝑚𝑎𝑥

0<𝜉<1
|𝑤(4)(𝜉)|. Using this in Equation (23), we 

get  
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‖𝐸‖ ≤
𝜆1ℎ

2𝑊4

1−𝜔𝑝𝑞
≡ 𝑂(ℎ2)                                                                                                                             (26) 

 

Hence, the method is second-order method. 

 

Case II: If 𝛼 =
1

12
 and  𝛽 =

5

12
 

 

In this case, from Equation (21), we have 

𝑇𝑖(ℎ) =
1

36
(𝑝𝑖+1 − 5𝑝𝑖 + 𝑝𝑖+1)ℎ

4𝑤𝜀
‴(𝜁𝑖) +

1

144
(ℎ(𝑝𝑖+1 − 𝑝𝑖+1))ℎ

4𝑤𝜀
(4)
(𝜁𝑖) + 𝑂(ℎ

5), 𝑡𝑖−1 < 𝜉𝑖−1

< 𝑡𝑖+1. 
 

For this choice of 𝛼 and 𝛽, our method is an optimal second-order method. 

 

4. Numerical Results and Discussion 
This section illustrates three numerical instances to verify the validity of the proposed method. Maximum 

absolute error (MAE) 𝐸𝑁 is calculated by using the formula:  

𝐸𝑁 = 𝑚𝑎𝑥
0≤𝑖≤𝑁

|𝑤𝜀(𝑡𝑖) − 𝑆𝑁(𝑡𝑖)|, 

 

where, 𝑤𝜀(𝑡𝑖) is the actual solution and 𝑆𝑁(𝑡𝑖) is the approximate solution obtained by non-polynomial 

spline method at the nodal points 𝑡𝑖 , 𝑖 = 0,1,… ,𝑁. 
 

The rate of convergence (ROC) is determined using the formula: 

𝑅 = 𝑙𝑜𝑔2(𝐸𝑁/𝐸2𝑁). 
 

In the first example, the advance term is absent i.e., 𝑘2(𝑡) = 0; in the second one, only the advance term is 

present, i.e., 𝑘1(𝑡) = 0, whereas in the third example, both the parameters are present. MATLAB is used 

for numerical computations. 

 

Example 1: Consider the following singularly perturbed delay differential equation 

𝜀𝑤𝜀
″ +𝑤𝜀

′ (𝑡) + 2𝑤𝜀(𝑡 − 𝛿) − 3𝑤𝜀(𝑡) = 0, 
 

with the boundary conditions 

𝑤𝜀(𝑡) = 1,−𝛿 ≤ 𝑡 ≤ 0, and 𝑤𝜀(𝑡) = 1. 
 

The exact solution is 𝑤𝜀(𝑡) = 𝑎1 𝑒𝑥𝑝(𝑟1𝑡) + 𝑎2 𝑒𝑥𝑝(𝑟2𝑡), 
 

where, 

𝑟1 =
−(1−2𝛿)+√(1−2𝛿)2+4𝜀

2𝜀
,  𝑟2 =

−(1−2𝛿)−√(1−2𝛿)2+4𝜀

2𝜀
,  𝑎1 =

1−𝑒𝑥𝑝(𝑟2)

𝑒𝑥𝑝(𝑟1)−𝑒𝑥𝑝(𝑟2)
, and  𝑎2 = 1 − 𝑎1.  

 

 

Table 1 gives MAE, and Table 2 gives ROC for Example 1, for different 𝛼, 𝛽, 𝑁 and 𝛿 values. Table 3 

gives the comparison of the values obtained by non-polynomial spline with existing solution in the literature. 

Figure 1 provides a comparison of exact and approximate solution for Example 1 with 𝜀 = 10−2, 𝛿 = 2𝜀 
and 𝑁 = 50. It can be seen that the proposed method provides a good approximation to the actual solution 
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than the existing solution in the literature. Figure 2 represents the behaviour of the solution for different 

values of 𝛿 for Example 1. Very less variation is observed in the solution for different values of 𝛿. 
 

Table 1. MAE for Example 1 with 𝜀 = 0.1 and different values of 𝛿, 𝛼, and 𝛽. 
 

𝛼 and 𝛽   N = 10 N = 100 N = 1000 N = 10000 

1/4,    1/4 

0.01 

2.4630E-02 2.1575E-04 2.1564E-06 2.1762E-08 

1/6,    1/3 2.2361E-02 1.9714E-04 1.9702E-06 1.9898E-08 

1/14,  3/7 1.9800E-02 1.7588E-04 1.7575E-06 1.7455E-08 

1/18,  4/9 1.9376E-02 1.7233E-04 1.7220E-06 1.7418E-08 

1/24,  11/24 1.9006E-02 1.6923E-04 1.6910E-06 1.7107E-08 

1/12,  5/12 2.0118E-02 1.7854E-04 1.7841E-06 1.8037E-08 

1/4,    1/4 

0.05 

2.2036E-02 1.9586E-04 1.9564E-06 1.9444E-08 

1/6,    1/3 1.9735E-02 1.7647E-04 1.7629E-06 1.7505E-08 

1/14,  3/7 1.7138E-02 1.5431E-04 1.5417E-06 1.5295E-08 

1/18,  4/9 1.6709E-02 1.5062E-04 1.5048E-06 1.5244E-08 

1/24,  11/24 1.6334E-02 1.4739E-04 1.4726e-06 1.4922E-08 

1/12,  5/12 1.7461E-02 1.5708E-04 1.5693E-06 1.5571E-08 

1/4,    1/4 

0.09 

1.9486E-02 1.7638E-04 1.7623E-06 1.7501E-08 

1/6,    1/3 1.7164E-02 1.5621E-04 1.5611E-06 1.5486E-08 

1/14,  3/7 1.4544E-02 1.3315E-04 1.3311E-06 1.3189E-08 

1/18,  4/9 1.4110E-02 1.2932E-04 1.2928E-06 1.3451E-08 

1/24,  11/24 1.3732E-02 1.2596E-04 1.2593E-06 1.2792E-08 

1/12,  5/12 1.4869E-02 1.3604E-04 1.3598E-06 1.3475E-08 

 

 

 

Table 2. ROC for Example 1 with 𝜀 = 0.1 and different values of 𝛿, 𝛼, and 𝛽. 
 

𝛼 and 𝛽   N = 10 N = 100 N = 1000 N = 10000 

1/4,    1/4 

0.01 

2.1503E+00 2.0005E+00 2.0000E+00 2.0448E+00 

1/6,    1/3 2.1433E+00 2.0007E+00 2.0000E+00 2.0515E+00 

1/14,  3/7 2.1354E+00 2.0010E+00 2.0000E+00 2.0294E+00 

1/18,  4/9 2.1340E+00 2.0011E+00 2.0000E+00 2.5397E+00 

1/24,  11/24 2.1328E+00 2.0012E+00 2.0000E+00 2.0601E+00 

1/12,  5/12 2.1364E+00 2.0011E+00 2.0000E+00 1.6768E+00 

1/4,    1/4 

0.05 

2.1318E+00 2.0012E+00 1.9999E+00 2.0270E+00 

1/6,    1/3 2.1249E+00 2.0011E+00 2.0000E+00 2.0282E+00 

1/14,  3/7 2.1169E+00 2.0010E+00 2.0000E+00 2.0316E+00 

1/18,  4/9 2.1156E+00 2.0010E+00 1.9999E+00 2.0667E+00 

1/24,  11/24 2.1143E+00 2.0010E+00 2.0000E+00 2.0695E+00 

1/12,  5/12 2.1178E+00 2.0010E+00 1.9999E+00 2.0355E+00 

1/4,    1/4 

0.09 

2.1145E+00 2.0010E+00 2.0000E+00 2.0305E+00 

1/6,    1/3 2.1077E+00 2.0009E+00 2.0001E+00 2.0371E+00 

1/14,  3/7 2.0999E+00 2.0003E+00 2.0001E+00 2.0392E+00 

1/18,  4/9 2.0985E+00 2.0003E+00 2.0001E+00 2.1135E+00 

1/24,  11/24 2.0974E+00 2.0002E+00 2.0001E+00 2.0785E+00 

1/12,  5/12 2.1008E+00 2.0005E+00 1.9999E+00 2.0406E+00 

 

 
 

Table 3. Comparison of MAE for Example 1 with Melesse et al. (2019) with 𝜀 = 0.1, 𝛼 = 1/24, 𝛽 = 11/24 and 

𝑁 = 100. 
 

𝛿 Non-polynomial Spline Melesse et al. (2019) 

𝛿 = 0.00𝜀  1.75E-04 2.46E-02 

𝛿 = 0.20𝜀  1.64E-04 2.56E-02 

𝛿 = 0.50𝜀  1.47E-04 2.96E-02 

𝛿 = 0.80𝜀  1.32E-04 3.33E-02 

𝛿 = 1.00𝜀  7.15E-05 5.38E-02 
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Figure 1. Exact and approximate solution of example 1 for 𝜀 = 10−2, 𝛿 = 2𝜀 and 𝑁 = 50. 
 

 

 

 
 

Figure 2. Solution of Example 1 for 𝜀 = 10−1, 𝑁 = 100 and different values of 𝛿. 

 

 

Example 2: Consider the following singularly perturbed differential equation with advance parameter 

𝜀𝑤𝜀
″(𝑡) + 𝑤𝜀

′ (𝑡) − 3𝑦(𝑡) + 2𝑤𝜀(𝑡 + 𝜂) = 0, 
 

with the boundary conditions 

𝑤𝜀(0) = 1 and 𝑤𝜀(𝑡) = 1,1 ≤ 𝑡 ≤ 𝜂. 
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The exact solution is 𝑤𝜀(𝑡) = 𝑎1 𝑒𝑥𝑝(𝑟1𝑡) + 𝑎2 𝑒𝑥𝑝(𝑟2𝑡), 
 

where, 𝑟1 =
−(1+2𝜂)+√(1+2𝜂)2+4𝜀

2𝜀
,  𝑟2 =

−(1+2𝜂)−√(1+2𝜂)2+4𝜀

2𝜀
,  𝑎1 =

1−𝑒𝑥𝑝(𝑟2)

𝑒𝑥𝑝(𝑟1)−𝑒𝑥𝑝(𝑟2)
, and  𝑎2 = 1 − 𝑎1. 

 

Table 4 gives MAE and Table 5 gives ROC of Example 2, for different 𝛼, 𝛽, 𝑁 and  𝜂 values. Figure 3 

provides the behavior of the solution of Example 2 for different values of 𝜂. The Figure 3 shows that the 

change in parameter values has negligible effect on the solution. This proves the robustness of the method. 

 

 
Table 4. MAE for Example 2 with 𝜀 = 0.1, and different values of 𝜂, 𝛼, and 𝛽. 

 

𝛼 and 𝛽   N = 10 N = 100 N = 1000 N = 10000 

1/4,    1/4 

0.01 

2.5936E-02 2.2612E-04 2.2581E-06 2.2463E-08 

1/6,    1/3 2.3687E-02 2.0783E-04 2.0756E-06 2.0638E-08 

1/14,  3/7 2.1146E-02 1.8693E-04 1.8671E-06 1.8550E-08 

1/18,  4/9 2.0726E-02 1.8345E-04 1.8323E-06 1.8516E-08 

1/24,  11/24 2.0358E-02 1.8040E-04 1.8019E-06 1.8212E-08 

1/12,  5/12 2.1462E-02 1.8955E-04 1.8932E-06 1.8812E-08 

1/4,    1/4 

0.05 

2.8553E-02 2.4650E-04 2.4651E-06 2.4533E-08 

1/6,    1/3 2.6346E-02 2.2897E-04 2.2895E-06 2.2780E-08 

1/14,  3/7 2.3853E-02 2.0894E-04 2.0890E-06 2.0771E-08 

1/18,  4/9 2.3441E-02 2.0560E-04 2.0556E-06 2.1056E-08 

1/24,  11/24 2.3081E-02 2.0268E-04 2.0263E-06 2.0454E-08 

1/12,  5/12 2.4163E-02 2.1144E-04 2.1141E-06 2.1024E-08 

1/4,    1/4 

0.09 

3.1159E-02 2.6805E-04 2.6760E-06 2.6643E-08 

1/6,    1/3 2.9000E-02 2.5112E-04 2.5071E-06 2.4954E-08 

1/14,  3/7 2.6560E-02 2.3176E-04 2.3141E-06 2.3025E-08 

1/18,  4/9 2.6156E-02 2.2854E-04 2.2819E-06 2.3008E-08 

1/24,  11/24 2.5804E-02 2.2572E-04 2.2538E-06 2.2726E-08 

1/12,  5/12 2.6864E-02 2.3418E-04 2.3382E-06 2.3265E-08 

 

 

 
 

Table 5. ROC for Example 2 with 𝜀 = 0.1, and different values of 𝜂, 𝛼, and 𝛽. 
 

𝛼 and 𝛽   N = 10 N = 100 N = 1000 N = 10000 

1/4,    1/4  

 
0.01 

2.1601E+00 2.0014E+00 2.0000E+00 2.3791E+00 

1/6,    1/3 2.1531E+00 2.0013E+00 2.0000E+00 2.0256E+00 

1/14,  3/7 2.1451E+00 2.0010E+00 2.0000E+00 2.0274E+00 

1/18,  4/9 2.1438E+00 2.0013E+00 1.9999E+00 2.4984E+00 

1/24,  11/24 2.1425E+00 2.0014E+00 2.0000E+00 2.0545E+00 

1/12,  5/12 2.1461E+00 2.0011E+00 2.0000E+00 1.6729E+00 

1/4,    1/4  

 
0.05 

2.1807E+00 1.9993E+00 1.9999E+00 2.3380E+00 

1/6,    1/3 2.1737E+00 1.9996E+00 2.0000E+00 2.0236E+00 

1/14,  3/7 2.1656E+00 1.9996E+00 2.0000E+00 2.0234E+00 

1/18,  4/9 2.1643E+00 1.9999E+00 2.0000E+00 2.4532E+00 

1/24,  11/24 2.1631E+00 1.9999E+00 2.0000E+00 2.4383E+00 

1/12,  5/12 2.1666E+00 1.9998E+00 2.0000E+00 1.7082E+00 

1/4,    1/4  

 
0.09 

2.2025E+00 2.0018E+00 2.0000E+00 2.3018E+00 

1/6,    1/3 2.1955E+00 2.0018E+00 2.0000E+00 2.0183E+00 

1/14,  3/7 2.1874E+00 2.0017E+00 2.0000E+00 2.0197E+00 

1/18,  4/9 2.1860E+00 2.0017E+00 2.0000E+00 2.3772E+00 

1/24,  11/24 2.1849E+00 2.0017E+00 2.0001E+00 2.0402E+00 

1/12,  5/12 2.1885E+00 2.0017E+00 2.0000E+00 1.7380E+00 
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Figure 3. Solution of Example 2 for 𝜀 = 10−1, 𝛿 = 2𝜀, and different values of 𝜂. 

 

Example 3: Consider the following singularly perturbed differential equation with mixed shifts 

𝜀𝑤𝜀
″(𝑡) + 𝑤𝜀

′ (𝑡) − 2𝑤𝜀(𝑡 − 𝛿) − 5𝑤𝜀(𝑡) + 𝑤𝜀(𝑡 + 𝜂) = 1, 
 

with the boundary conditions  

𝑤𝜀(𝑡) = 1,−𝛿 ≤ 𝑡 ≤ 0 and 𝑤𝜀(𝑡) = 1,1 ≤ 𝑡 ≤ 𝜂. 
 

The exact solution of the problem is given by 𝑤𝜀(𝑡) = 𝑎1 𝑒𝑥𝑝( 𝑟1𝑡) + 𝑎2 𝑒𝑥𝑝( 𝑟2𝑡),  
 

where, 𝑟1 =
−(1+2𝛿+𝜂)+√(1+2𝛿+𝜂)2+24𝜀

2𝜀
, 𝑟2 =

−(1+2𝛿+𝜂)−√(1+2𝛿+𝜂)2+24𝜀

2𝜀
, 𝑎1 =

1−𝑒𝑥𝑝(𝑟2)

𝑒𝑥𝑝(𝑟1)−𝑒𝑥𝑝(𝑟2)
, and  

𝑎2 = 1 − 𝑎1.  
 

Table 6. MAE for Example 3 with 𝜀 = 0.1 and 𝜂 = 0.8𝜀, and different values of 𝛿, 𝛼, and 𝛽. 
 

𝛿 N = 10 N = 100 N = 1000 N = 10000 

0.01 3.3654E-02 3.1254E-04 3.1271E-06 3.1263E-08 

0.05 3.8935E-02 3.6406E-04 3.6375E-06 3.6365E-08 

0.09 4.4494E-02 4.1912E-04 4.1821E-06 4.1842E-08 

 

 

Table 7. ROC for Example 3 with 𝜀 = 0.1, 𝜂 = 0.8𝜀, and different values of 𝛿, 𝛼, and 𝛽. 
 

𝛿 N = 10 N = 100 N = 1000 N = 10000 

0.01 2.0837E+00 1.9986E+00 2.0000E+00 2.0118E+00 

0.05 2.0557E+00 2.0013E+00 2.0000E+00 2.0100E+00 

0.09 2.0283E+00 2.0024E+00 2.0000E+00 1.9937E+00 

 

Tables 6 and 7 presents the MAE and ROC of Example 3 for different values of 𝛿, and Tables 8 and 9 

presents the MAE and ROC of Example 3 for different values of 𝜂. The behavior of the solution for different 

values of 𝛿, and 𝜂 are given in Figures 4 and 5. 
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Table 8. MAE for Example 3 with 𝜀 = 0.1, 𝛿 = 0.5𝜀, and different values of 𝜂, 𝛼, and 𝛽. 
 

𝜂 N = 10 N = 100 N = 1000 N = 10000 

0.01 3.4298E-02 3.1862E-04 3.1890E-06 3.1882E-08 

0.05 3.6920E-02 3.4420E-04 3.4420E-06 3.4412E-08 

0.09 3.9615E-02 3.7078E-04 3.7036E-06 3.7028E-08 

 

 

Table 9. ROC for Example 3 with 𝜀 = 0.1, 𝜂 = 0.8𝜀, and different values of 𝛿, 𝛼, and 𝛽. 
 

𝜂 N = 10 N = 100 N = 1000 N = 10000 

0.01 2.0802E+00 1.9981E+00 2.0000E+00 1.9906E+00 

0.05 2.0662E+00 1.9995E+00 2.0000E+00 1.9915E+00 

0.09 2.0523E+00 2.0019E+00 2.0000E+00 1.9919E+00 

 

 

 
 

Figure 4. Solution of Example 3 for 𝜀 = 10−1, 𝜂 = 0.8𝜀, 𝑁 = 100, and different values of 𝛿. 
 

 

 
 

Figure 5. Solution of Example 3 for 𝜀 = 10−1, 𝛿 = 0.5𝜀, 𝑁 = 100, and different values of 𝜂. 
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We have solved three numerical examples with left boundary layer. From the tabulated values, it can be 

easily seen that the MAE decreases as 𝑁 increases. In Example 3, from Figures 4 and 5, it is seen that the 

delay and advance parameters have similar effect on the solution. This implies that the variation caused by 

delay and advance parameters in the solution are very well handled by the proposed method for different 

values of 𝛼 and 𝛽. From Tables 1, 4, 6 and Table 8, presenting MAE, it is seen that there is no abrupt 

change in the error values proving the stability of the method. Tables 2, 5, 7 and 9 show that the numerical 

order of convergence is 2. 
 

 

5. Conclusion 
The non-polynomial spline method is developed and analyzed for SPDDE with mixed shifts. The method 

presents a promising pathway to tackle the complex structure of SPDDEs. The proposed approach 

effectively captures the boundary layers and ensures high accuracy. One of the key features of the proposed 

method is second-order convergence, which is verified by thorough error analysis and numerical 

experiments. The scheme's stability is also confirmed by stability analysis under standard perturbation and 

shift parameters, making it highly reliable. Numerical experiments confirm the robustness and efficiency 

of the method, showing superior accuracy compared to traditional numerical schemes. The MAE values 

presented in the tables show the consistency of the method throughout the domain. The non-polynomial 

spline is very effective and computationally simple to apply. The findings indicate that the non-polynomial 

spline can be utilized to solve various types of SPDEs, SPDDEs with different delay structures, and other 

complexities. In the future, non-polynomial splines can be explored for SPDDEs with fixed delay, non-

linear SPDDEs, and higher-order SPDDEs.  
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