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Abstract  

We explore the properties of almost Ricci solitons and the gradient Ricci solitons on generalized Sasakian-space-forms with beta-

Kenmotsu structure. We consider almost Ricci solitons on generalized Sasakian-space-forms with beta-Kenmotsu structure when 

the soliton vector field coincides with the Reeb vector field, and it is point-wise collinear with the Reeb vector field. We also 

investigate the properties of generalized Sasakian-space-forms with beta-Kenmotsu structure admitting the gradient Ricci solitons. 

 

Keywords- Almost contact metric manifolds, Generalized Sasakian space-forms, Curvature tensors, Eta-Einstein manifolds, Ricci 

flow, Almost Ricci soliton.  

 

 

 

1. Introduction  
Contact geometry in differential geometry is the study of a geometric structure on smooth manifolds that 

satisfies a criterion known as "complete non-integrability" and is provided by a hyperplane distribution in 

the tangent bundle. The non-integrability condition translates into a maximal nondegeneracy condition on 

the differential one-form, which is equivalent to such a distribution being given (at least locally) as the 

kernel of the form. In contrast, the Frobenius theorem contains two equivalent conditions for a hyperplane 

distribution to be "completely integrable," that is, to be tangent to a codimension one foliation on the 

manifold. In many aspects, contact geometry is the odd-dimensional equivalent of symplectic geometry, 

which is a structure on some even-dimensional manifolds. The mathematical formalism of classical 

mechanics serves as the inspiration for both contact and symplectic geometry. It allows one to examine 
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either the constant-energy hypersurface, which has odd dimension due to its codimension one, or the even-

dimensional phase space of a mechanical system. Geometrical optics, classical mechanics, 

thermodynamics, geometric quantization, integrable systems, and control theory are just a few of the many 

physical applications of contact geometry. Applications of contact geometry can also be found in low-

dimensional topology; for instance, Kronheimer and Mrowka have used it to demonstrate the property P 

conjecture. We are motivated to study contact manifolds and their many classes by the uses of contact 

metric manifolds. The features of a class of almost contact metric manifolds, known as generalized Sasakian 

space-forms, are investigated in this work. 

 

A heat flow equation is a nonlinear partial differential equation, which was introduced by Grattan-Guinness 

(1822). A similar nonlinear variant of heat flow equation, named as harmonic map heat flow, was invented 

by Eells and Sampson (1964). This flow inspired Hamilton to define a geometric flow, named Ricci flow 

(Hamilton, 1982, 1988). The Ricci flow, often known as Hamilton's Ricci flow, is a partial differential 

equation for a Riemannian metric that is studied in differential geometry and geometric analysis. Because 

of formal parallels in the equation's mathematical structure, it is sometimes compared to the diffusion of 

heat and heat equation. It is nonlinear, though, and displays a number of phenomena that are absent from 

the analysis of the heat equation. A Ricci flow (
∂𝑔

∂𝑡
= −2𝑅𝑖𝑐,   𝑔(0) = 𝑔0) is a nonlinear partial differential 

equation, where, 𝑔, 𝑡 and 𝑅𝑖𝑐 are the Riemannian metric, time, and the Ricci tensor of the Riemannian 𝑛-

manifold 𝑀, respectively.  

 

In 2000, the Clay Mathematics Institute observed that there are seven iconic unsolved problems in 

Mathematics, listed as: 
 

• Hodge conjecture (proposed by William Hodge in 1950). 

• Navier-Stokes existence and smoothness conjecture (proposed by Luis Caffarelli in 1960). 

• P versus NP problem conjecture (proposed by Stephen Cook and Leonid Levin in 1971). 

• Poincaré conjecture (proposed by Henri Poincaré in 1904). 

• Riemann hypothesis conjecture (proposed by Bernhard Riemann in 1859). 

• Birch and Swinnerton-Dyer conjecture (proposed by Birch and Swinnerton-Dyer in the first half of 

1960’s). 

• Yang-Mills existence and mass gap conjecture (proposed by Yang & Mills about a half century ago). 
 

The above listed millennium problems (except Poincaré conjecture) are the unsolved open challenging 

problems of science till today with a prize of 7 million US dollars. The Poincaré conjecture (one of the 

millennium problems) and Geometrization Conjecture have been solved by Perelman (2022, 2003a, 2003b) 

with the help of Ricci flow. Anderson (2004) has given the Geometrization of 3-manifolds via Ricci flow. 

Remarks that the Ricci flows have been used as a tool to address many long-standing unsolved problems 

of mathematics, physics, medical science, engineering, and technology. In this series, Wang et al. (2012) 

have used the Ricci flow as a tool to parameterize the brain surface conformally. We may use the Ricci 

flow as a powerful tool to compute the conformal Riemannian metric with prescribed Gaussian curvatures, 

which has many applications in engineering such as spline construction in geometric modeling, 

parametrization in graphics, surface parametrization, conformal brain mapping in medical imaging, and so 

on. A self-similar solution of the Ricci flow is termed as Ricci soliton. Thus, the Ricci soliton has been used 

as a tool to address several issues of mathematical sciences and allied areas.  

 

The Ricci soliton equation on an n-dimensional Riemannian manifold M is given by, 

𝑆 +
1

2
ℒ𝑉𝑔 + 𝔑𝑔 = 0                                                                                                                                  (1) 
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where, ℒ is the Lie derivative operator of the Riemannian metric 𝑔, 𝑉 is a soliton vector field, 𝑆 is Ricci 

tensor and 𝔑 is a soliton constant. We symbolize the Ricci soliton with (𝑔, 𝑉, 𝔑). If we choose 𝔑 as a 

smooth function on 𝑀, then the Ricci soliton Equation (1) becomes almost Ricci soliton. Almost Ricci 

soliton (𝑔, 𝑉, 𝔑) is expanding, shrinking or steady provided that 𝔑 is, respectively, positive, negative or 

zero. The geometrical and physical properties of spacetimes equipped with Ricci solitons and the gradient 

Ricci solitons have been explored by several researchers. Chaubey and Suh (2023) studied the properties 

of Fischer-Marsden Conjecture, Ricci Bourguignon solitons and gradient Bourguignon solitons on 

generalized Sasakian space-forms. They have proved many interesting results, which play an important role 

in the study and development of this topic. Some properties of Ricci solitons and curvature properties of 

cosymplectic manifolds have been studied by Ayar and Chaubey (2019). In this series, the properties of 

Ricci solitons have been explored by several authors including (Chaubey and Vîlcu, 2022; De et al., 2020, 

2021a, 2021b; Haseeb et al., 2023; Hui et al., 2018; Pankaj et al., 2021; Pokhariyal et al., 2018; Siddiqi et 

al., 2022; Suh and Chaubey, 2023; Turan et al., 2019; Yadav et al., 2018, 2023; Yadav and Chaubey, 2020). 

It is remarked that the Ricci solitons and gradient Ricci solitons have been extensively used in Mathematical 

Physics, especially in the theory of relativity and cosmology. Haseeb et al. (2022) and Siddiqi et al. (2022) 

have studied the properties of solitons on space-times, and they proved some interesting results. There could 

be possible applications of the techniques and results proved in this paper are likely to be applicable in 

studies like (Hong and Van De Walle, 2012). 

 

Let us choose 𝑉 = 𝐷𝑓, where 𝐷 is the gradient operator of 𝑔 and 𝑓 is some smooth function on M, in 

Equation (1). Then we have the following equation of gradient almost Ricci soliton. 

𝐻𝑒𝑠𝑠𝑓 + 𝑆 + 𝔑𝑔 = 0                                                                                                                                 (2) 

 

where, 𝐻𝑒𝑠𝑠 𝑓 is the Hessian of smooth function 𝑓 on 𝑀. 

 

The above studies motivated us to explore the properties of (2𝑛 + 1)-dimensional generalized Sasakian-

space-forms with β-Kenmotsu structure 𝑀(𝑓1, 𝑓2, 𝑓3) if the Riemannian metric is almost Ricci soliton and 

gradient Ricci soliton, respectively.  

 

To achieve our main goals, we organize the manuscript as follows: After the introduction part, we gather 

the basic results of almost contact metric manifolds and their different classes in Section 2. We also gave 

some known definitions and curvature identities. In the next section, we study the geometrical properties 

of almost Ricci solitons on 𝑀(𝑓1, 𝑓2, 𝑓3). Special attention is given for the cases when the soliton vector 

field 𝑉  of almost Ricci soliton (𝑔, 𝑉, 𝔑) coincides with Reeb vector field ξ of 𝑀,  and it is point-wise 

collinear with the Reeb vector field ξ, respectively. Section 4 deals with the study of gradient Ricci solitons 

on 𝑀(𝑓1, 𝑓2, 𝑓3). 

 

2. Almost Contact Metric Manifolds 
A differentiable manifold 𝑀 of dimension (2𝑛 + 1) equipped with an almost contact structure and contact 

structure has been studied by Boothby and Wang (1958). Authors have studied these structures by 

considering topological notions. Sasaki (1960) has investigated the contact and almost contact structures 

by adopting the notion of tensor calculus. Remark that the contact geometry can be used as a tool to address 

the issues of physics, like control theory, quantization, thermodynamics, geometric optics, integrable 

systems, classical mechanics and many other branches. Many authors have established remarkable results 

on almost contact metric structure and its classes. In this manuscript, we establish some results of a class 

of almost contact metric manifolds under certain geometric flows.  
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Consider a differentiable manifold 𝑀 with a dimension of (2𝑛 + 1) that is of class 𝐶∞, along with a global 

differentiable 1-form η for which η ∧ (𝑑η)𝑛 ≠ 0 holds true at all points on 𝑀. Then 𝑀 satisfies 

ξ ⊗ η − 𝐼 = ϕ2, η(ξ) = 1                                                                                                                             (3) 
 

and 

𝑔(𝔗1, 𝔗2) = 𝑔(ϕ𝔗1, ϕ𝔗2) + η(𝔗1)η(𝔗2),   𝑔(𝔗1, ξ) = η(𝔗1)                                                                 (4) 
 

for 𝔗1 and 𝔗2 belonging to the set 𝔛(𝑀), is termed as almost contact metric manifold. 
 

where, 𝐼 represents the identity transformation, ϕ refers to the structure tensor of type (1,1), ξ is the unit 

vector field of type (1,0), and 𝑔 is a compatible Riemannian metric on 𝑀. For instance, see Blair (1976). 

The configuration (ϕ, ξ, η, 𝑔) on the manifold 𝑀 is referred to as an almost contact metric structure. From 

Equation (3), it can be readily observed that 

𝑟𝑎𝑛𝑘 (ϕ) = 2𝑛,   ϕξ = 0,   and  η ∘ ϕ = 0                                                                                                  (5) 
 

Also, Equation (3) to Equation (5) infer that 𝑔(ϕ𝔗1, 𝔗2) + 𝑔(𝔗1, ϕ𝔗2) = 0 for all 𝔗1,  𝔗2 ∈ 𝔛(𝑀). 
 

A contact metric manifold 𝑀  is defined as an almost contact metric manifold where 𝑑η(𝔗1, 𝔗2) =
𝑔(𝔗1, ϕ𝔗2) holds for all 𝔗1, 𝔗2 ∈ 𝔛(𝑀), with 𝑑 representing the exterior derivative operator. 𝑀 satisfying 

the tensorial expression [ϕ, ϕ] = −2dη ⊗ η where [ϕ, ϕ] is the Nijenhuis tensor of ϕ, is called as a normal 

contact metric manifold. A contact metric manifold 𝑀 is Sasakian if and only if 𝑅(𝔗1, 𝔗2)ξ = η(𝔗2)𝔗1 −
η(𝔗1)𝔗2  holds for all 𝔗1, 𝔗2   ∈ 𝔛(𝑀)  (Blair, 1976). Here 𝑅  denotes the Riemann curvature tensor 

corresponding to the Levi-Civita connection ∇. 
 

The various space-forms, such as real space-forms, Sasakian space-forms, Kenmotsu space-forms, and 

cosymplectic space-forms, served as inspiration for Alegre et al. (2004), who defined a new space-form 

known as a generalized Sasakian-space-form. Thus, an almost contact metric manifold of (2𝑛 + 1) 

dimensions with the global contact form η (η ∧ (𝑑η)𝑛  ≠ 0), the structure tensor ϕ, and the unit vector 

field ξ satisfying the following curvature identity: 

𝑅(𝔗1, 𝔗2)𝔗3 = 𝑓1{𝑔(𝔗2, 𝔗3)𝔗1 − 𝑔(𝔗1, 𝔗3)𝔗2} + 𝑓2{𝑔(𝔗1, ϕ𝔗3)ϕ𝔗2 − 𝑔(𝔗2, ϕ𝔗3)ϕ𝔗1 +

2𝑔(𝔗1, ϕ𝔗2)ϕ𝔗3} + 𝑓3{η(𝔗1)η(𝔗3)𝔗2 − η(𝔗2)η(𝔗3)𝔗1 + η(𝔗2)𝑔(𝔗1, 𝔗3) − η(𝔗1)𝑔(𝔗2, 𝔗3)ξ}    (6) 

 

for all 𝔗1,  𝔗2,  𝔗3 ∈ 𝔛(𝑀), is referred to as a generalized Sasakian-space-form, in which the smooth 

functions on 𝑀 are 𝑓1, 𝑓2, and 𝑓3, and 𝑔 is the Riemannian metric. The curvature tensor with regard to the 

Levi-Civita connection ∇ and the collection of all smooth vector fields of M are indicated here by the 

symbols R and 𝔛(𝑀), respectively. We use 𝑀(𝑓1, 𝑓2, 𝑓3) as a generalized Sasakian-space-form throughout 

the paper. In particular, the generalized Sasakian-space-form becomes Sasakian-space-form and Kenmotsu-

space-form, respectively, if we select 𝑓1 =
𝑐+3

4
, 𝑓2 = 𝑓3 =

𝑐−1

4
, and 𝑓1 =

𝑐−3

4
, 𝑓2 = 𝑓3 =

𝑐+1

4
. On 

𝑀(𝑓1, 𝑓2, 𝑓3), it is found that the smooth function 𝑓2 vanishes if and only if the manifold is conformally flat 

(Kim, 2006). Numerous geometers have examined the characteristics of 𝑀(𝑓1, 𝑓2, 𝑓3) in various settings. 

For instance, we refer to Alegre and Carriazo (2008), Alegre and Carriazo (2011) Carriazo et al. (2013), 

Chaubey and Yadav (2018), Chaubey and Yildiz (2019), Falcitelli (2010), Li et al. (2022), Sular and Özgür 
(2012). Pandey and Gupta (2009) and Pandey and Mohammad (2020) studied the properties of Kenmotsu 

manifolds. 
 

From Equation (6), it can be seen that 𝑀(𝑓1, 𝑓2, 𝑓3) satisfies, 

𝑆(𝔗1, 𝔗2) = (3𝑓2 + 2𝑛𝑓1 − 𝑓3)𝑔(𝔗1, 𝔗2) − ((2𝑛 − 1)𝑓3 + 3𝑓2)𝜂(𝔗1)𝜂(𝔗2)                                        (7) 
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which becomes 

𝑄𝔗1 = −(3𝑓2 + (2𝑛 − 1)𝑓3)𝜂(𝔗1)𝜉 + (2𝑛𝑓1 + 3𝑓2 − 𝑓3)𝔗1                                                                  (8) 

 

where, 𝑆(𝔗1,  𝔗2) = ∑ 𝑔(𝑅(𝑒𝑖 , 𝔗1)𝔗2, 𝑒𝑖)2𝑛+1
𝑖=1  is the Ricci tensor of 𝑀(𝑓1, 𝑓2, 𝑓3) for a set of orthonormal 

vectors {𝑒𝑖,   𝑖 = 1, 2, ⋯ , (2𝑛 + 1)}, and 𝑄 is the Ricci operator such that 𝑆(𝔗1,   𝔗2) = 𝑔(𝑄𝔗1, 𝔗2). Put 

𝔗3 = 𝜉 in Equation (6) and following Equation (3) to Equation (5) we have 

𝑅(𝔗1, 𝔗2)𝜉 = (𝑓1 − 𝑓3){𝜂(𝔗2)𝔗1 − 𝜂(𝔗1)𝔗2}                                                                                          (9) 

 

which can be written as 

𝑅(𝜉, 𝔗1)𝔗2 = (𝑓1 − 𝑓3){𝑔(𝔗1, 𝔗2)𝜉 − 𝜂(𝔗2)𝔗1}. 

 

Additionally, it is noted that the following identity are satisfied by 𝑀(𝑓1, 𝑓2, 𝑓3). 

𝑆(𝔗1, 𝜉) = 2𝑛(𝑓1 − 𝑓3)𝜂(𝔗1), for all 𝔗1 ∈ 𝔛(𝑀)                                                                                   (10) 

 

The contraction of Equation (7) over the vector fields 𝔗1 and 𝔗2 takes the form 

𝑟 = 2𝑛{3𝑓2 + (2𝑛 + 1)𝑓1 − 2𝑓3}. 

 

From Equation (10), it is obvious that 2𝑛(𝑓1 − 𝑓3) is an eigenvalue of the Ricci operator 𝑄 corresponding 

to the eigenvector 𝜉. Suppose a (2𝑛 + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu 

structure is denoted by 𝑀(𝑓1, 𝑓2, 𝑓3). Then we have 

∇𝔗1
𝜉 = 𝛽(𝔗1 − 𝜂(𝔗1)𝜉)  ⟺  (∇𝔗1

𝜂)(𝔗2) = 𝛽(𝑔(𝔗1, 𝔗2) − 𝜂(𝔗1)𝜂(𝔗2))                                        (11) 

 

which gives (∇𝜉𝜂)(𝔗1) = (∇𝔗1
𝜂)(𝜉) = 0 . From Equation (11), it is clear that (∇𝔗1

𝜂)(𝔗2) −

(∇𝔗2
𝜂)(𝔗1) = 0, that is, the 1-form 𝜂 is closed. Also, we notice that 

(ℒ𝜉𝑔)(𝔗1, 𝔗2) = 𝑔(∇𝔗1
𝜉, 𝔗2) + 𝑔(𝔗1, ∇𝔗2

𝜉) =  2𝛽[𝑔(𝔗1, 𝔗2) − 𝜂(𝔗1)𝜂(𝔗2)]                                (12) 

 

In particular, 𝑀(𝑓1, 𝑓2, 𝑓3)  reduces to the generalized Sasakian-space-form with cosymplectic and 

Kenmotsu structures, respectively, if we select 𝛽 = 0 and 𝛽 = 1 on 𝑀(𝑓1, 𝑓2, 𝑓3). Alegre and Carriazo 

(2008) demonstrated that the relation 𝑓1 − 𝑓3 + 𝜉(𝛽) + 𝛽2 = 0 is satisfied by a generalized Sasakian-

space-form with 𝛽 -Kenmotsu structure. We assume that 𝛽  is constant on 𝑀(𝑓1, 𝑓2, 𝑓3)  throughout the 

manuscript.  

 

Chaubey and Suh (2023) proved that the following: 

 

Lemma 2.1 An 𝑀(𝑓1, 𝑓2, 𝑓3) satisfies 

(i) (∇𝔗1
𝑄)(𝜉) = 2𝑛 𝛽 (𝑓1 − 𝑓3)𝜂(𝔗1)𝜉 − 𝛽 𝑄𝔗1 + 2𝑛𝔗1(𝑓1 − 𝑓3)𝜉 + 2𝑛(𝑓1 − 𝑓3)𝛽𝔗1 − 2𝑛(𝑓1 −

𝑓3)𝛽𝜂 (𝔗1)𝜉, 

(ii)  (∇𝜉𝑄)(𝔗1) = 𝜉(2𝑛 𝑓1  + 3𝑓2 − 𝑓3)𝔗1 − 𝜉 (3𝑓2 + (2𝑛 − 1)𝑓3)𝜂(𝔗1)𝜉, 

(iii) (∇𝜉𝑄)(𝔗1) − (∇𝔗1
𝑄)(𝜉) = [𝜉((2𝑛 − 1)𝑓3 + 3𝑓2) + 𝛽(3𝑓2 + (2𝑛 − 1)𝑓3)](𝔗1 − 𝜂(𝔗1)𝜉), 

(iv) 𝑑𝑟(𝜉) = −𝑛𝛽[(2𝑛 − 1)𝑓3 + 3𝑓2] = (𝑛 − 1)𝜉(3𝑓2 + (2𝑛 − 1)𝑓3), 

(v)  𝔗1(2𝑛𝑓1 + 3𝑓2 − 𝑓3) = 𝔗1(3𝑓2 + (2𝑛 − 1)𝑓3) 

for all 𝔗1 ∈ 𝔛(𝑀). 

 

From Lemma 2.1 (iv), it is obvious that the scalar curvature tensor of 𝑀(𝑓1, 𝑓2, 𝑓3) is constant if and only 

if 3𝑓2 + (2𝑛 − 1)𝑓3 is constant. Thus, we can state: 
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Lemma 2.2 An 𝑀(𝑓1, 𝑓2, 𝑓3)  possesses a constant scalar curvature if and only if 3𝑓2 + (2𝑛 − 1)𝑓3  is 

constant. 
 

A (2𝑛 + 1)-dimensional almost contact metric manifold 𝑀 is said to be an 𝜂-Einstein manifold if its non-

vanishing Ricci tensor 𝑆 satisfies, 

𝑆 = 𝑏 𝜂 ⊗ 𝜂 + 𝑎 𝑔                                                                                                                                     (13) 
 

where, 𝑎 and 𝑏 are smooth functions on 𝑀. If we take 𝑏 = 0 in Equation (13) then the 𝜂-Einstein manifold 

reduces to the Einstein manifold. 

 

Definition 2.1 A smooth function Ω on an 𝑚-dimensional Riemannian manifold is said to be  

➢ harmonic if and only if it satisfies the Laplace equation ∆ Ω = 0. 

➢ super-harmonic if and only if ∆ Ω≤ 0. 

➢ sub-harmonic if and only if ∆ Ω ≥ 0. 

 

3. Almost Ricci Solitons on Generalized Sasakian-Space-Forms with 𝜷-Kenmotsu Structure 

Let a (2𝑛 + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure admit almost 

Ricci soliton (𝑔, 𝜉, 𝔑). Then an almost Ricci soliton Equation (1) reduces to 

(ℒ𝜉𝑔)(𝔗1, 𝔗2) + 2𝑆(𝔗1, 𝔗2) + 2 𝔑 𝑔(𝔗1, 𝔗2) = 0,  
 

which in view of Equation (7) and Equation (12) becomes 

2𝛽 (𝑔(𝔗1, 𝔗2) − 𝜂(𝔗1)𝜂(𝔗2)) + 2(2𝑛𝑓1 + 3𝑓2 − 𝑓3)𝑔(𝔗1, 𝔗2) − 2(3𝑓2 + (2𝑛 −

1)𝑓3)𝜂(𝔗1)𝜂(𝔗2) + 2𝔑𝑔(𝔗1, 𝔗2) = 0                                                                                                        (14) 

 

∀ 𝔗1, 𝔗2 ∈ 𝔛(𝑀). Setting 𝔗2 = 𝜉 in Equation (14) and then following Equation (3) and Equation (4) we 

lead to  
(2𝑛𝑓1 − 2𝑛𝑓3)𝜂(𝔗1) + 𝔑 𝜂(𝔗1) = 0, 
 

which becomes 

𝔑 = −2𝑛(𝑓1 − 𝑓3) = 2𝑛 𝛽2 ≥ 0                                                                                                             (15) 
 

This equation together with our hypothesis (𝛽 is constant on 𝑀(𝑓1, 𝑓2, 𝑓3)) infers that the soliton function 

𝔑 of (𝑔, 𝜉, 𝔑) is constant. Remark that the almost Ricci soliton equation with 𝔑 = constant reduces to a 

Ricci soliton equation. Thus, we conclude the following: 

 

Theorem 3.1 An almost Ricci soliton (𝑔, 𝜉, 𝔑) on 𝑀(𝑓1, 𝑓2, 𝑓3) is a Ricci soliton. 

 

The contraction of Equation (14) over the vector fields 𝔗1 and 𝔗2 gives 

2𝑛 𝛽 + 2𝑛(2𝑛 + 1)𝑓1 + 6𝑛𝑓2 − 4𝑛𝑓3 + 𝔑(2𝑛 + 1) = 0                                                                                    (16) 

 

From Equation (15) and Equation (16), we notice that 

𝛽 = 3𝑓2 − (2𝑛 − 1)𝑓3. 
 

Thus, we state our results as follows. 
 

Theorem 3.2 Let the soliton vector field 𝑉 of an almost Ricci soliton (𝑔, 𝑉, 𝔑) coincide with the Reeb 

vector field 𝜉  of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. Then 𝛽 = 3𝑓2 − (2𝑛 −
1)𝑓3. 
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In consequence of Theorem 3.1, Theorem 3.2 and Lemma 2.2, we list the following corollaries. 

 

Corollary 3.1 Let the Riemannian metric 𝑔 of a (2𝑛 + 1)-dimensional generalized Sasakian-space-form 

with 𝛽-Kenmotsu structure 𝑀(𝑓1, 𝑓2, 𝑓3) be almost Ricci soliton (𝑔, 𝜉, 𝔑). Then the scalar curvature of 

𝑀(𝑓1, 𝑓2, 𝑓3) is constant. 

 

Corollary 3.2 Let a generalized Sasakian space-form with cosymplectic structure admit an almost Ricci 

soliton (𝑔, 𝜉, 𝔑). Then (𝑔, 𝜉, 𝔑) is steady and 3𝑓2 − (2𝑛 − 1)𝑓3 = 0.  
 

Corollary 3.3 Let a generalized Sasakian space-form with Kenmotsu structure admit an almost Ricci 

soliton (𝑔, 𝜉, 𝔑). Then (𝑔, 𝜉, 𝔑) is expanding and 3𝑓2 − (2𝑛 − 1)𝑓3 = 1.  
 

Next, we suppose that 𝑀(𝑓1, 𝑓2, 𝑓3) admits an almost Ricci soliton (𝑔, 𝜉, 𝔑), where the soliton vector field 

𝑉 of (𝑔, 𝜉, 𝔑) is pointwise collinear with the Reeb vector field 𝜉 of 𝑀, that is, 𝑉 = 𝑎𝜉 for some smooth 

function 𝑎 on 𝑀. The covariant derivative of this expression along 𝔗1 gives, 

∇𝔗1
𝑉 = 𝔗1(𝑎)𝜉 + 𝛽𝑎 (𝔗1 − 𝜂(𝔗1)𝜉)                                                                                                      (17) 

 

Using Equation (7) and Equation (17) in the almost Ricci soliton equation, 

𝑔(∇𝔗1
𝑉, 𝔗2) + 𝑔(𝔗1, ∇𝔗2

𝑉) + 2𝑆(𝔗1, 𝔗2) + 2𝔑 𝑔(𝔗1, 𝔗2) = 0. 

 

we achieve 

𝔗1(𝑎)𝜂(𝔗2) + 2𝛽𝑎 {𝑔(𝔗1, 𝔗2) − 𝜂(𝔗1)𝜂(𝔗2)} + {𝔗2(𝑎)𝜂(𝔗1) + 2[2𝑛𝑓
1

+ 3𝑓
2

− 𝑓
3

]𝑔(𝔗1, 𝔗2) −

2(3𝑓
2

+ (2𝑛 − 1)𝑓
3
)𝜂(𝔗1)𝜂(𝔗2) + 2𝔑𝑔(𝔗1, 𝔗2) = 0                                                                       (18) 

 

Substitute 𝔗2 = 𝜉 in the above equation, we find 

𝔗1(𝑎) + 𝜉(𝑎)𝜂(𝔗1) − 2[2𝑛𝑓
1

− 2𝑛𝑓
2

− 𝔑]𝜂(𝔗1) = 0                                                                           (19) 

 

Again putting 𝔗1 = 𝜉 in the above equation, we get 

𝜉(𝑎) = 2𝑛(𝑓1 − 𝑓3) − 𝔑                                                                                                                                                             (20) 

 

In view of Equation (19) and Equation (20), we conclude 

𝔗1(𝑎) − [2𝑛(𝑓
1

− 𝑓
3
) − 𝔑]𝜂(𝔗1) = 0                                                                                                       (21) 

 

Equation (20) and Equation (21) give 

𝔗1(𝑎) = 𝜉(𝑎)𝜉 ⟺  𝐷𝑎 = 𝜉(𝑎)𝜉                                                                                                              (22) 

 

where, 𝐷 denotes the gradient operator of 𝑔. Equation (22) shows that the gradient of the smooth function 

𝑎 is point-wise collinear with the Reeb vector field 𝜉. The covariant derivative of Equation (22) gives, 

∇𝔗1
𝐷𝑎 = 𝔗1(𝜉(𝑎))𝜉 + 𝜉(𝑎)𝛽 (𝔗1 − 𝜂(𝔗1)𝜉), 

 

which reduces to (taking contraction over 𝔗1) 

∆𝑎 = 𝜉(𝜉(𝑎)) + 2𝑛 𝛽 𝜉(𝑎) = 𝜉(𝜉(𝑎) + 2𝑛 𝛽 𝑎). 
 

Thus, we can state the following: 
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Theorem 3.3 Let 𝑀(𝑓1, 𝑓2, 𝑓3) admit an almost Ricci soliton (𝑔, 𝑉, 𝔑), where 𝑉 = 𝑎 𝜉. Then the gradient 

of the smooth function 𝑎 is point-wise collinear with the Reeb vector field 𝜉. Also, (𝑔, 𝑉, 𝔑) is expanding, 

shrinking or steady if 2𝑛(𝑓1 − 𝑓3) > 𝜉(𝑎), 2𝑛(𝑓1 − 𝑓3) < 𝜉(𝑎) or 2𝑛(𝑓1 − 𝑓3) = 𝜉(𝑎), respectively, and 

∆𝑎 = 𝜉(𝜉(𝑎) + 2𝑛 𝛽 𝑎). 
 

Definition 2.1 together with Theorem 3.6 state the following: 

 

Corollary 3.4 Let 𝑀(𝑓1, 𝑓2, 𝑓3) admit an almost Ricci soliton (𝑔, 𝑉, 𝔑), where the soliton vector field 𝑉 is 

point-wise collinear with the Reeb vector field 𝜉, that is 𝑉 = 𝑎 𝜉. Then the smooth function 𝑎 is 

• harmonic if and only if 𝜉(𝑎) + 2𝑛 𝛽 𝑎 = constant, 

• sub-harmonic if and only if 𝜉(𝜉(𝑎) + 2𝑛 𝛽 𝑎) ≥ 0, 
• super-harmonic if and only if 𝜉(𝜉(𝑎) + 2𝑛 𝛽 𝑎) ≤ 0. 
 

Now, contracting Equation (18) over 𝔗1 and 𝔗2 we lead 

2(𝑛 + 1)𝑓1 + 3𝑓2 − 3𝑓3 + 𝛽 𝑎 − 2𝑛 𝛽2𝜉(𝑎) = 0. 
 

From Equation (21) we have 

𝑑 𝑎 = 𝑏 ∧ 𝜂. 

 

where, 𝑏 = 2𝑛(𝑓1 − 𝑓3) − 𝔑 and 𝑑 represents the exterior derivative of 𝑔. Taking exterior derivative of 

last equation and then following 𝑑2 = 0 and 𝑑𝜂 = 0, we find 

𝑑𝑏(𝔗1)𝜂(𝔗2) − 𝑑𝑏(𝔗2)𝜂(𝔗1) = 0, 𝑑𝑏 = −𝑑 𝔑, 
 

which gives 𝐷 𝔑 = 𝜉(𝔑)𝜉. This shows that the gradient of soliton function 𝔑 is point-wise collinear with 

the Reeb vector field 𝜉. It can be easily shown that the soliton function 𝔑 of almost Ricci soliton (𝑔, 𝑉, 𝔑) 

satisfies the Poisson equation ∆𝔑 = Ψ, where Ψ = 𝜉(𝜉(𝔑)) + 2𝑛𝛽𝜉(𝔑). Now, we state: 

 

Corollary 3.5 Let a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admit an almost Ricci 

soliton (𝑔, 𝑉, 𝔑). If the soliton vector field 𝑉 of (𝑔, 𝑉, 𝔑)is point-wise collinear with the Reeb vector field, 

𝜉, then the soliton function 𝔑 satisfies the Poisson equation ∆𝔑 = Ψ. 

 

4. Gradient Ricci Solitons on 𝑴(𝒇𝟏, 𝒇𝟐, 𝒇𝟑) 
This section deals with the study of generalized Sasakian-space-forms with 𝛽  -Kenmotsu structure 

admitting a gradient Ricci soliton. We have from Equation (2), 

∇𝔗1
𝐷𝑓 = −𝑄𝔗1 −  𝔑𝔗1                                                                                                                              (23) 

 

Differentiating Equation (23) covariantly along the vector field 𝔗1, we have 

∇𝔗2
∇𝔗1

 𝐷𝑓 = −(∇𝔗2
𝑄)(𝔗1) − 𝑄(∇𝔗2

𝔗1) − 𝔑∇𝔗2
𝔗1                                                                             (24) 

 

Swapping out 𝔗1 and 𝔗2 in Equation (24), we get  

∇𝔗1
∇𝔗2

 𝐷𝑓 = −(∇𝔗1
𝑄)(𝔗2) − 𝑄(∇𝔗1

𝔗2) − 𝔑∇𝔗1
𝔗2                                                                           (25) 

 

Using Equation (23) to Equation (25) in the curvature identify  

𝑅(𝔗1, 𝔗2)𝐷𝑓 = ∇𝔗1
∇𝔗2

𝐷𝑓 −  ∇𝔗2
∇𝔗1

𝐷𝑓 − ∇[𝔗1,   𝔗2]𝐷𝑓, 

 

we find 
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𝑅(𝔗1, 𝔗2)𝐷𝑓 =  (∇𝔗2
𝑄)(𝔗1) − (∇𝔗1

𝑄)(𝔗2)                                                                                            (26) 

 

The covariant derivative of Equation (8) gives 

(∇𝔗1
𝑄)(𝔗2) = 𝔗1(3𝑓2 + (2𝑛 − 1)𝑓3)(𝔗2 − 𝜂(𝔗2)𝜉) − (3𝑓2 + (2𝑛 − 1)𝑓3)𝛽 [𝑔(𝔗1, 𝔗2)𝜉 +

𝜂(𝔗2)𝔗1 − 2𝜂(𝔗2)𝜂(𝔗1)𝜉]  
 

which gives 

(∇𝔗1
𝑄)(𝔗2) − (∇𝔗2

𝑄)(𝔗1) = 𝔗1(3𝑓2 + (2𝑛 − 1)𝑓3)(𝔗2 − 𝜂(𝔗2)𝜉) − (3𝑓2 + (2𝑛 −

1)𝑓3)𝛽 [𝜂(𝔗2)𝔗1 − 𝜂(𝔗1)𝔗2], 
 

reduces to 

𝑔 ((∇𝔗1
𝑄)(𝔗2) − (∇𝔗2

𝑄)(𝔗1), 𝜉) = 0                                                                                                     (27) 

 

In consequence of Equation (27), Equation (26) assumes the form 

𝑔(𝑅(𝔗1, 𝔗2)𝐷𝑓, 𝜉) = 0                                                                                                                              (28) 

 

Again Equation (6) together with Equation (3) to Equation (5) takes the form  

𝑔(𝑅(𝔗1, 𝔗2)𝐷𝑓, 𝜉) = (𝑓1 − 𝑓3){𝔗2(𝑓)𝜂(𝔗1) − 𝔗1(𝑓)𝜂(𝔗2)}                                                               (29) 

 

Equation (28) and Equation (29) infer that either 𝑓1 = 𝑓3 or 𝔗2(𝑓)𝜂(𝔗1) = 𝔗1(𝑓)𝜂(𝔗2). In first case, the 

manifold under consideration becomes a generalized Sasakian-space-form with cosymplectic structure. Let 

us consider the second case 𝔗2(𝑓)𝜂(𝔗1) = 𝔗1(𝑓)𝜂(𝔗2), where, 𝑓1 ≠  𝑓3. Taking 𝔗2 = 𝜉 in last equation, 

we obtain 

𝔗1(𝑓) = 𝜉(𝑓)𝜂(𝔗1)  ⟺  𝐷𝑓 = 𝜉(𝑓)𝜉                                                                                                         (30) 

 

This shows that the gradient of the gradient function 𝑓 is point-wise collinear with the Reeb vector field 𝜉. 

Thus, we can state the following: 

 

Theorem 4.1 Let 𝑀(𝑓1, 𝑓2, 𝑓3)  be a generalized Sasakian-space-form with 𝛽 -Kenmotsu structure. If 

𝑀(𝑓1, 𝑓2, 𝑓3) admits a gradient Ricci soliton, then either 𝑀(𝑓1, 𝑓2, 𝑓3) is either a generalized Sasakian-space-

form with cosymplectic structure or the gradient of gradient function of the gradient Ricci soliton is point-

wise collinear with the Reeb vector field of the manifold. 

 

Taking covariant derivative of Equation (30) along the vector field 𝔗1 and then following Equation (3) to 

Equation (5) and Equation (8), we lead to 

𝔑 = − [
𝑟

2𝑛
+ 𝛽(𝜉(𝑓) + 𝛽)] 

    =  −[2𝑛𝑓1 + 3𝑓2 − 𝑓3 + 𝛽 𝜉(𝑓)]                                                                                                           (31) 

 

Well-known that a gradient Ricci soliton is expanding, steady or shrinking provided that 𝔑 is positive, zero 

and negative. These facts together with Equation (31) conclude the following results.  

 

Corollary 4.1 Let 𝑀(𝑓1, 𝑓2, 𝑓3)  be a generalized Sasakian-space-form with 𝛽 -Kenmotsu structure. If 

𝑀(𝑓1, 𝑓2, 𝑓3) admits a gradient Ricci soliton, then the soliton is expanding, shrinking, and steady if 2𝑛𝑓1 +
3𝑓2 − 𝑓3 + 𝛽 𝜉(𝑓) < 0, 2𝑛𝑓1 + 3𝑓2 − 𝑓3 + 𝛽 𝜉(𝑓) > 0, and 2𝑛𝑓1 + 3𝑓2 − 𝑓3 + 𝛽 𝜉(𝑓) = 0, respectively. 
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5. Results Discussion  
To generalize the notion of different space forms, Alegre et al. (2004) have established the notion of 

generalized Sasakian space-forms and proved its existence by proving some non-trivial examples. Since 

then, the properties of generalized Sasakian-space-forms have been studied by many geometers, including 

Alegre et al. (2004), Alegre and Carriazo (2008, 2011), Chaubey and Yadav (2018), Chaubey and Yildiz 

(2019). Recently, Chaubey and Suh (2023) explored the properties of Ricci-Bourguignon solitons and the 

Fischer-Marsden Conjecture on generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. To the best 

of our knowledge, the study of almost Ricci solitons and gradient almost Ricci solitons are not studied on 

generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. This manuscript is dedicated to filling this 

gap, and we explored the geometrical properties of a class of almost contact metric manifolds endowed 

with almost Ricci solitons and gradient almost Ricci solitons. We have derived the sufficient condition for 

which almost Ricci solitons on 𝑀(𝑓1, 𝑓2, 𝑓3) to be Ricci solitons, which has been used a tool to solve one 

of the millennium problems, named Poincaré Conjecture proposed in 1904. We established the relations 

between the smooth functions 𝑓1, 𝑓2 and 𝑓3 of 𝑀(𝑓1, 𝑓2, 𝑓3), which may be used in the classification of 

generalized Sasakian space forms. We noticed that 𝑀(𝑓1, 𝑓2, 𝑓3) holds a set of partial differential equations, 

including the Poisson equation, which has many applications in engineering, and allied areas. The sufficient 

conditions for which the solitons on 𝑀(𝑓1, 𝑓2, 𝑓3) to be expanding, shrinking, or steady are established. In 

this sequel, it is proved that 𝑀(𝑓1, 𝑓2, 𝑓3) endowed with gradient almost Ricci solitons is either cosymplectic 

manifold (play a central role in mathematical physics) or the gradient of the soliton function is pointwise 

colinear with the Reeb vector field of 𝑀(𝑓1, 𝑓2, 𝑓3). This work will be helpful to researchers working in the 

area of geometric flows and their solutions. The results of this manuscript may be considered as a basic 

result for further study of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. 

 

6. Conclusion 
The Ricci flow, often known as Hamilton's Ricci flow, is a specific partial differential equation for a 

Riemannian metric in the mathematical domains of differential geometry, geometric analysis, and 

mathematical physics. Because of formal parallels in the equation's mathematical structure, it is sometimes 

compared to the diffusion of heat and heat equation. It is nonlinear, though, and displays a number of 

phenomena that are absent from the analysis of the heat equation. A self-similar solution of Ricci flow 

equation is termed as Ricci soliton Equation (1). Ricci flows and solitons have been used to address many 

long-standing problems of science, technology and applied areas. For example, Poincaré conjecture (one 

of the millennium problems announced by the Clay Mathematical Institute), differential sphere conjecture, 

Willium Thurston’s conjecture, etc. Surface parameterization, surface matching, manifold splines, and the 

creation of geometric structures on generic surfaces are just a few of the many uses for Ricci flow in 

graphics, geometric modeling, and medical imaging. Due to its various applications in different eras, it 

attracts researchers to do research in this area. If we consider the soliton constant as a smooth function in 

the Ricci soliton Equation (1), then we recover the expression of almost Ricci soliton equation. Noted that 

the Ricci flows and their solutions are capable to solve many long standings as well as new challenges of 

science, technology and medical science. 
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