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Abstract  

We propose a novel sixth-order convergence scheme for solving scalar equations, based on the weight function approach. This 

approach provides us with the flexibility to construct new iterative techniques with the same level of convergence. In addition, we 

extend the same idea to nonlinear systems of equations with the help of Banach space operators. Further, a challenging semi-local 

convergence analysis is conducted to establish the theoretical foundation of the scheme. We also demonstrate the applicability and 

efficiency of the scheme by applying it to three problems in applied science: an integral equation, a boundary value problem 

(BVP), and the two-dimensional Burger’s equation. Our scheme not only achieves smaller absolute residual errors, reduced 

differences between successive iterations, and requires fewer iterations to reach the desired accuracy compared to existing 

methods, but it also demonstrates lower CPU time consumption and stable convergence order. Finally, we conclude that our 

scheme exhibits superior efficiency and compatibility compared to existing methods of the same convergence order. 

 

Keywords- Nonlinear systems, Newton’s technique, Banach spaces, Convergence order. 

 

 

 

1. Introduction  
Mathematical modeling plays not only a crucial role in a variety of mathematical applications but also in 

physics, economics, chemistry, engineering, statistics, and applied science disciplines (Cercignani, 1988; 

Grosan and Abraham, 2008). These models help us describe and predict real-world phenomena by 

transforming them into mathematical equations. Many such models can be simplified into the following 

system of nonlinear equations (SNES) (after some simplifications and analyses)  

ℱ(𝑥) = 0                                                                                                                                                    (1) 
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where, ℱ: Ω ⊆ X → Y is a nonlinear operator and Ω is an open convex subset of a Banach space (BS) 𝑋. 

The images of 𝐹 in a BS 𝑌. Analytical or closed-form solutions are not always possible for such problems. 

In this context, iterative methods play a crucial role in estimating solutions through approximation. 

Newton’s method is one of the most popular methods, and its iteration is as follows:  

 𝑥𝑘+1 = 𝑥𝑘 − 𝛤𝑘
−1ℱ(𝑥𝑘),    𝑘 = 0,1,2, …                                                                                                    (2) 

 

where, Γ𝑘 = Γ𝑘, 𝑥0 being the starting guess. The inverse of Γ𝑘 (Γ𝑘
−1 ∈ ℒ(Y, X)), is a collection of bounded 

linear operators from 𝑌 into 𝑋. Over the past few years, researchers have suggested numerous higher-order 

iterative methods to address both scalar equations and SNES (Abbasbandy et al., 2016; Deep and Argyros, 

2023; Grau-Sánchez et al., 2011a; Grau-Sánchez et al., 2011b; Hueso at el., 2015; Kou et al., 2007; Lotfi et 

al., 2015; Sharma and Bahl, 2021; Sharma and Gupta, 2014; Wang and Li, 2017; Xiao and Yin, 2016). In 

the recent years, some scholars also proposed iterative methods for SNES in (Cordero et al., 2024; Cordero 

et al., 2025; Kumar et al., 2025). The introduction of 6th-order iterative techniques utilizing weight 

functions has also been a recent trend (Behl et al., 2019; Behl and Argyros, 2020). 

 

Motivated by ongoing advancements in this field, our objective is to develop a general class of 6th-order 

methods for solving scalar equations and extend this framework to SNES using operators in Banach spaces 

(BSs). The novelty of the article lies in the fact that this process leads to obtain a priori error estimates, 

existence and uniqueness of solution and R-order using more interesting semilocal convergence. Our 

scheme Equation (15) achieves smaller residual errors, reduced differences between iterations, and stable 

convergence, while requiring the same number of iterations as existing methods. Though Lotfi et al. 

(2015)’s method consumes less CPU time, our method outperforms in terms of residual errors and iteration 

differences, demonstrating superior efficiency and compatibility. The recurrence relations (RR) technique 

and Lipschitz conditions are used in this study to establish the semilocal convergence of Equation (3) for 

solving a SNES. Numerical experiments are conducted on a variety of nonlinear equations, including 

Burger’s equation, boundary value problems, and integral equations. 

 

The structure of the paper is organized as follows: In Section 2, we introduce a novel 6th-order family for 

scalar equations and its convergence analysis. In Section 3, the 6th-order family is extended to SNES 

within Banach spaces (BSs). Additionally, a semilocal convergence analysis is conducted, demonstrating 

the theoretical foundation and applicability of the proposed method in this generalized setting. Section 4 is 

dedicated to numerical experiments, where the proposed methods are applied to various real-life science 

problems, including boundary value problems, integral equations, and Burger’s equation. The results are 

analyzed to validate the convergence behavior of the iterative schemes. Finally, Section 5 provides 

concluding remarks and summarizes the findings. 

 

1.1 Some Basic Definitions 
There are many convergence criteria for iterative methods. Two main convergence approaches are given 

below: 

1) Local convergence: The local convergence analysis (Argyros et al., 2020; Sharma and Deep, 2023; 

Sharma et al., 2025) provides the bounds on the radius of convergence which is based on the required 

solution. 

 

2) Semi-local convergence: Semilocal analysis focuses on determining the sufficient conditions, based on 

the information near the initial point, that guarantee the convergence of the given method (more details can 

be found in Wang et al. (2011) and Zheng and Gu (2012)). Usually, there are two ways for the semi-local 

convergence, which are given below: 
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➢ Recurrence relations: Rall proposed a different approach using RR to ensure method convergence, 

which has been successfully applied in many contributions (see Wang et al. (2011), Zheng and Gu 

(2012) and references therein). This technique involves generating a sequence of 𝑥 ∈ ℝ+ (ℝ+ is set 

of positive real numbers) that produces an appropriate convergence domain and guarantees the 

convergence of iterative techniques in Banach spaces (BSs). 

➢ Majorizing sequences: Another approach to obtaining the convergence of the iterative technique’s 

sequence is the convergence of majorizing sequences (Argyros et al., 2023).  

 

In our study, we employed semi-local convergence analysis, one of the most rigorous and challenging 

approaches that guarantees the convergence of iterative methods. We adopted the recurrence relation 

approach to construct our scheme. 

 

2. A Novel Scheme for Scalar Equation 
In this part, the proposed family is formulated as follows:  

{
𝑧𝑘 = 𝑥𝑘 − ℋ(𝑟(𝑥𝑘))

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
,

𝑥𝑘+1 = 𝑧𝑘 − 𝒲(𝑟(𝑥𝑘))
𝑓(𝑧𝑘)

𝑓′(𝑥𝑘)
,
                                                                                                                 (3) 

 

where, 𝑦𝑘 = 𝑥𝑘 − 𝜃
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
, 𝜃 ∈ ℝ and 𝑓: 𝒟 ⊂ ℂ → ℂ is a sufficiently differentiable function in domain 𝒟 

enclosing the simple root of a nonlinear equation 𝑓(𝑥) = 0, 𝑟(𝑥𝑘) =
𝑓′(𝑦𝑘)

𝑓′(𝑥𝑘)
. The two maps ℋ: ℂ → ℂ and 

𝒲: ℂ → ℂ are analytic in the surrounding of the point 𝑏, where 𝑏 = 1. We can rewrite the 𝑟(𝑥𝑘) as: 

𝑟(𝑥𝑘) = 1 + 𝑣, where, 𝑣 =
𝑓′(𝑦𝑘)−𝑓′(𝑥𝑘)

𝑓′(𝑥𝑘)
. 

 

With the help of Taylor series expansion, the weight functions ℋ(𝑟) and 𝒲(𝑟) can be expanded in the 

neighborhood of the point 1 as follows:  

ℋ(𝑟) ≃ 𝛼0 + 𝛼1𝑣 +
𝛼2

2!
𝑣2 +

𝛼3

3!
𝑣3                                                                                                             (4) 

 

and 

𝒲(𝑟) ≃ 𝛽0 + 𝛽1𝑣 +
𝛽2

2!
𝑣2                                                                                                                          (5) 

 

where, 𝛼0 = ℋ(𝑏), 𝛽0 = 𝒲(𝑏), 𝛼1 = ℋ′(𝑏), 𝛽1 = 𝒲′(𝑏), 𝛼2 = ℋ′′(𝑏), 𝛽2 = 𝒲′′(𝑏) and 𝛼3 = ℋ′′′(𝑏). 

 

The next Theorem 2.1 illustrates the 6th-OC (OC stands for order of convergence) for the suggested class 

under specific conditions related to weight functions.  

 

Theorem 2.1: With a simple zero 𝑥∗ of 𝑓(𝑥) = 0, let 𝑓: 𝒟 ⊆ ℂ → ℂ be a suitably differentiable function in 

𝒟. The iterative algorithm family given by Equation (3) achieves 6th-OC. For this, we have to choose the 

initial approximation 𝑥0 in the close neighborhood of 𝑥∗. Further, the weight functions should satisfy the 

given conditions:  

𝛼0 = 1, 𝛼1 =
−3

4
, 𝛼2 =

9

4
, |𝛼3| < ∞, 

𝛽0 = 1, 𝛽1 =
−3

2
, |𝛽2| < ∞. 
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The following error equation serving as a crucial tool for analyzing the convergence and accuracy of 

iterative methods, which is given below:  

𝑒𝑘+1 =
1

729
(21870𝑎2

5 − 8019𝑎2
3𝑎3 + 729𝑎2𝑎3

2 + 486𝑎2
2𝑎4 − 81𝑎3𝑎4

+ 1728𝑎2
5𝛼3 − 288𝑎2

3𝑎3𝛼3 − 3240𝑎2
5𝛽2 + 648𝑎2

3𝑎3𝛽2

− 72𝑎2
2𝑎4𝛽2 − 256𝑎2

5𝛼3𝛽2)𝑒𝑘
6) + 𝑂(𝑒𝑘

7). 
 

Proof: Assuming that 𝑓′(𝑥∗) ≠ 0 and developing 𝑓(𝑥𝑘) in the neighborhood of 𝑥∗ using Taylor’s series 

expansion leads to  

𝑓(𝑥𝑘) = 𝑓′(𝑥∗)[𝑒𝑘 + 𝑎2𝑒𝑘
2 + 𝑎3𝑒𝑘

3 + 𝑎4𝑒𝑘
4 + 𝑎5𝑒𝑘

5 + 𝑎6𝑒𝑘
6 + 𝑂(𝑒𝑘

7)]                                                       (6) 

 

where, 𝑎𝑖 =
𝑓(𝑖)(𝑥∗)

𝑖!𝑓′(𝑥∗)
 for 𝑖 = 2,3, … Also,  

 

𝑓′(𝑥𝑘) = 𝑓′(𝑥∗)[1 + (2𝑎2 + 3𝑎3𝑒𝑘 + 4𝑎4𝑒𝑘
2 + 5𝑎5𝑒𝑘

3 + 6𝑎6𝑒𝑘
4)𝑒𝑘 + 𝑂(𝑒𝑘

6)]                                          (7) 

 

From first step of (5), we have 

𝑦𝑘 = 𝑥∗ + ((1 − 𝜃) + 𝜃𝑎2𝑒𝑘 − 2𝜃(𝑎2
2 − 𝑎3)𝑒𝑘)𝑒𝑘 + 𝜃(4𝑎2

3 − 7𝑎2𝑎3 + 3𝑎4)𝑒𝑘
4 − 2𝜃(4𝑎2

4 − 10𝑎2
2𝑎3 +

3𝑎3
2 + 5𝑎2𝑎4 − 2𝑎5)𝑒𝑘

5 +𝜃(16𝑎2
5 − 52𝑎2

3𝑎3 + 33𝑎2𝑎3
2 + 28𝑎2

2𝑎4 − 17𝑎3𝑎4 − 13𝑎2𝑎5 + 5𝑎6)𝑒𝑘
6 +

𝑂(𝑒𝑘
7). 

 

Taking 𝜃 =
2

3
, we obtain 

𝑦𝑘 = 𝑥∗ +
1

3
𝑒𝑘 +

2

3
𝑎2𝑒𝑘

2 −
4

3
(𝑎2

2 − 𝑎3)𝑒𝑘
3 +

2

3
(3𝑎4 + 4𝑎2

3 − 7𝑎2𝑎3)𝑒𝑘
4 −

4

3
(4𝑎2

4 − 10𝑎2
2𝑎3 + 3𝑎3

2 + 5𝑎2𝑎4 −

2𝑎5)𝑒𝑘
5 +

2

3
(16𝑎2

5 − 52𝑎2
3𝑎3 + 33𝑎2𝑎3

2 + 28𝑎2
2𝑎4 − 17𝑎3𝑎4 − 13𝑎2𝑎5 + 5𝑎6)𝑒𝑘

6 + 𝑂(𝑒𝑘
7)                           (8) 

 

Expanding 𝑓′(𝑦𝑘) about 𝑥∗ and adopting Equation (8), we yield  

𝑓′(𝑦𝑘) =
2

3
𝑎2𝑒𝑘 +

1

3
(4𝑎2

2 + 𝑎3)𝑒𝑘
2 +

4

27
(−18𝑎2

3 + 27𝑎2𝑎3 + 𝑎4)𝑒𝑘
3 +

1

81
(432𝑎2

4 − 864𝑎2
2𝑎3 + 216𝑎3

2 +

396𝑎2𝑎4 + 5𝑎5)𝑒𝑘
4 +

2

81
(−432𝑎2

5 + 1080𝑎2
3𝑎3 − 486𝑎2𝑎3

2 − 540𝑎2
2𝑎4 + 234𝑎3𝑎4 + 236𝑎2𝑎5 +

𝑎6)𝑒𝑘
5 + 𝑂(𝑒𝑘

6)                                                                                                                                             (9) 

 

Then, we yield 

𝑟𝑘 =
𝑓′(𝑦𝑘)

𝑓′(𝑥𝑘)
=

−4

3
𝑎2𝑒𝑘 +

4

3
(3𝑎2

2 − 2𝑎3)𝑒𝑘
2 +

8

27
(−36𝑎2

3 + 45𝑎2𝑎3 − 13𝑎4)𝑒𝑘
3 +

4

81
(540𝑎2

4 − 999𝑎2
2𝑎3 +

216𝑎3
2 + 363𝑎2𝑎4 − 100𝑎5)𝑒𝑘

4 +
4

81
(−1296𝑎2

5 + 3186𝑎2
3𝑎3 − 1485𝑎2𝑎3

2 − 1320𝑎2
2𝑎4 + 567𝑎3𝑎4 +

453𝑎2𝑎5 − 121𝑎6)𝑒𝑘
5 + 𝑂(𝑒𝑘

6). 

 

By Taylor’s series for weight function ℋ about 𝑟𝑘 = 𝑏, where 𝑏 = 1, we have  

ℋ(𝑟𝑘) = 𝛼0 + 𝛼1(𝑟𝑘 − 𝑏) + 𝛼2(𝑟𝑘 − 𝑏)2 + 𝛼3(𝑟𝑘 − 𝑏)3 + 𝑂(𝑒𝑘
5)  

           = 𝛼0 −
4

3
𝑎2𝛼1𝑒𝑘 +

4

9
(9𝑎2

2𝛼1 − 6𝑎3𝛼1 + 2𝑎2
2𝛼2)𝑒𝑘

2 +
8

81
(108𝑎2

3𝛼1 − 135𝑎2𝑎3𝛼1 + 39𝑎4𝛼1 +

54𝑎2
3𝛼2 − 36𝑎2𝑎3𝛼2 + 4𝑎2

3𝛼3)𝑒𝑘
3 +

4

81
(540𝑎2

4𝛼1 − 999𝑎2
2𝑎3𝛼1 + 216𝑎3

2𝛼1 + 363𝑎2𝑎4𝛼1 − 100𝑎5𝛼1 +

450𝑎2
4𝛼2 − 576𝑎2

2𝑎3𝛼2 + 72𝑎3
2𝛼2 + 104𝑎2𝑎4𝛼2 + 72𝑎2

4𝛼3 − 48𝑎2
2𝑎3𝛼3)𝑒𝑘

4 + 𝑂(𝑒𝑘
5)                        (10) 

 

Consequently, the second substep of Equation (3) yields  
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𝑧𝑘 − 𝑥∗ = (
1

3
− 𝛼0) 𝑒𝑘 + (

2

3
𝑎2 + 𝑎2𝛼0 +

4

3
𝑎2𝛼1)𝑒𝑘

2 +
2

9
(−6𝑎2

2 + 6𝑎3 − 9𝑎2
2𝛼0 + 9𝑎3𝛼0 − 24𝑎2

2𝛼1 +

12𝑎3𝛼1 − 4𝑎2
2𝛼2)𝑒𝑘

3 +
1

81
(216𝑎2

3 − 378𝑎2𝑎3 + 162𝑎4 + 324𝑎2
3𝛼0 − 567𝑎2𝑎3𝛼0 + 243𝑎4𝛼0 

+1404𝑎2
3𝛼1 − 1512𝑎2𝑎3𝛼1 + 312𝑎4𝛼1 + 504𝑎2

3𝛼2 − 288𝑎2𝑎3𝛼2 + 32𝑎2
3𝛼3)𝑒𝑘

4 + 𝑂(𝑒𝑘
5). 

 

Taking 𝛼0 = 1, 𝛼1 =
−3

4
 and 𝛼2 =

9

4
, above equation becomes  

𝑧𝑘 − 𝑥∗ =
1

81
(405𝑎2

3 − 81𝑎2𝑎3 + 9𝑎4 + 32𝑎2
3𝛼3)𝑒𝑘

4 +
2

81
(−1458𝑎2

4 + 1296𝑎2
2𝑎3 − 81𝑎3

2 − 90𝑎2𝑎4 +

12𝑎5 − 160𝑎2
4𝛼3 + 96𝑎2

2𝑎3𝛼3)𝑒𝑘
5 + 𝑂(𝑒𝑘

6)                                                                                            (11) 

 

Again, by Taylor’s series for weight function 𝒲 about 𝑟𝑘 = 𝑏,  

𝒲(𝑟𝑘) = 𝒲(𝑏) + 𝒲′(𝑏)(𝑟𝑘 − 𝑏) + 𝒲′′(𝑏)(𝑟𝑘 − 𝑏)2 + 𝑂(𝑒𝑘
5)  

            = 𝛽0 −
4

3
𝑎2𝛽1𝑒𝑘 +

4

9
(9𝑎2

2𝛽1 − 6𝑎3𝛽1 + 2𝑎2
2𝛽2)𝑒𝑘

2 + 𝑂(𝑒𝑘
3)                                                      (12) 

  

Adopting Taylor’s series of 𝑓(𝑧𝑘) about 𝑥∗, we yield  

𝑓(𝑧𝑘) =
1

81
(405𝑎2

3 − 81𝑎2𝑎3 + 9𝑎4 + 32𝑎2
3𝛼3)𝑒𝑘

4 −
2

81
(1458𝑎2

4 − 1296𝑎2
2𝑎3 + 81𝑎3

2 + 90𝑎2𝑎4 −

12𝑎5 + 160𝑎2
4𝛼3 − 96𝑎2

2𝑎3𝛼3)𝑒𝑘
5 + 𝑂(𝑒𝑘

6)                                                                                           (13) 

 

Further, employing Equations (12) and (13) in the last step of Equation (3), we obtain  

𝑥𝑘+1 =
1

81
(405𝑎2

3 − 81𝑎2𝑎3 + 9𝑎4 + 32𝑎2
3𝛼3 − 405𝑎2

3𝛽0 + 81𝑎2𝑎3𝛽0 − 9𝑎4𝛽0 −32𝑎2
3𝛼3𝛽0)𝑒𝑘

4 +
2

243
(−4374𝑎2

4 + 3888𝑎2
2𝑎3 − 243𝑎3

2 − 270𝑎2𝑎4 + 36𝑎5  − 80𝑎2
4𝛼3 +288𝑎2

2𝑎3𝛼3 + 5589𝑎2
4𝛽0 −

4131𝑎2
2𝑎3𝛽0 + 243𝑎3

2𝛽0 + 297𝑎2𝑎4𝛽0 −   36𝑎5𝛽0 +576𝑎2
4𝛼3𝛽0 − 288𝑎2

2𝑎3𝛼3𝛽0 + 810𝑎2
4𝛽1 −

162𝑎2
2𝑎3𝛽1 + 18𝑎2𝑎4𝛽1 +   64𝑎2

4𝛼3𝛽1)𝑒𝑘
5  +

1

729
(123930𝑎2

5 − 190998𝑎2
3𝑎3 + 48114𝑎2𝑎3

2 +

34182𝑎2
2𝑎4 − 5346𝑎3𝑎4 − 2430𝑎2𝑎5 + 378𝑎6 + 17856𝑎2

5𝛼3 − 21312𝑎2
3𝑎3𝛼3 + 3456𝑎2𝑎3

2𝛼3 +
2496𝑎2

2𝑎4 − 190998𝑎2
5𝛽0 + 251505𝑎2

3𝑎3𝛽0 − 53217𝑎2𝑎3
2𝛽0 − 37746𝑎2

2𝑎4𝛽0 + 5589𝑎3𝑎4𝛽0 +
2862𝑎2𝑎5𝛽0 − 378𝑎6𝛽0 − 24768𝑎2

5𝛼3𝛽0 + 25632𝑎2
3𝑎3𝛼3𝛽0 − 3456𝑎2𝑎3

2𝛼3𝛽0 − 2496𝑎2
2𝑎4𝛼3𝛽0 −

59292𝑎2
5𝛽1 + 45684𝑎2

3𝑎3𝛽1 − 3888𝑎2𝑎3
2𝛽1 − 2700𝑎2

2𝑎4𝛽1 +216𝑎3𝑎4𝛽1 + 288𝑎2𝑎5𝛽1 −
5760𝑎2

5𝛼3𝛽1 + 3072𝑎2
3𝑎3𝛼3𝛽1 − 3240𝑎2

5𝛽2 + 648𝑎2
3𝑎3𝛽2 − 72𝑎2

2𝑎4𝛽2 − 256𝑎2
5𝛼3𝛽2)𝑒𝑘

6 + 𝑂(𝑒𝑘
7). 

 

For the family to be 6th-OC, we take 𝛽0 = 1 and 𝛽1 =
−3

2
. With these values, the above equation yields  

𝑥𝑘+1 =
1

729
(21870𝑎2

5 − 8019𝑎2
3𝑎3 + 729𝑎2𝑎3

2 + 486𝑎2
2𝑎4 − 81𝑎3𝑎4  +1728𝑎2

5𝛼3 −288𝑎2
3𝑎3𝛼3 −

3240𝑎2
5𝛽2 + 648𝑎2

3𝑎3𝛽2 − 72𝑎2
2𝑎4𝛽2 − 256𝑎2

5𝛼3𝛽2)𝑒𝑘
6 + 𝑂(𝑒𝑘

7)                                                        (14) 

 

This demonstrates the convergence of our scheme to the sixth order. As a result, the required conditions 

have been met, and the proof is complete. 

 

3. Extension of Family of 6th-Order Method to BSs and its Convergence Analysis 
Now, the extension of family given by Equation (3) presented in Section 2 to BSs is presented to solve 

Equation (1) preserving the OC as seen in scalar equations. The scheme in BSs is written as  

{
𝑧𝑘 = 𝑥𝑘 − ℋ(𝑟(𝑥𝑘))𝛤𝑘ℱ(𝑥𝑘),
𝑥𝑘+1 = 𝑧𝑘 − 𝒲(𝑟(𝑥𝑘))𝛤𝑘ℱ(𝑧𝑘),

                                                                                                            (15) 

 

where, 𝑦𝑘 = 𝑥𝑘 − 𝜃𝛤𝑘ℱ(𝑥𝑘),    𝛤𝑘 = 𝛤𝑘
−1, for 𝑘 ∈ ℕ,  
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ℋ(𝑟(𝑥𝑘)) = 𝛼0𝐼 + 𝛼1𝑣𝑘 +
1

2!
𝛼2𝑣𝑘

2 +
1

3!
𝛼3𝑣𝑘

3, 

and  

𝒲(𝑟(𝑥𝑘)) = 𝛽0𝐼 + 𝛽1𝑣𝑘 +
1

2!
𝛽2𝑣𝑘

2. 

 

where, 𝑣𝑘 = Γ𝑘[ℱ′(𝑦𝑘) − ℱ′(𝑥𝑘)] and 𝐼 is identity operator on 𝑋.  

 

3.1 Preliminary Results 
At 𝑥0, we have ℱ′(𝑥0)−1 = Γ0 ∈ ℒ(Y, X). In addition, we suppose that the inverse of ℱ′ occurs at some 

𝑥0 ∈ Ω. The collection of linear operators from 𝒴 into 𝒳 is known as ℒ(Y, X). The following hypotheses 

are made:  

 (𝐶1) ∥ Γ0 ∥≤ 𝛽, 
 (𝐶2) ∥ Γ0ℱ(𝑥0) ∥≤ 𝜂, 
 (𝐶3) ∥ 𝐴2(𝑥) ∥≤ 𝑀, 𝑥 ∈ Ω, 𝑤ℎ𝑒𝑟𝑒    𝐴2(𝑥) = ℱ′′(𝑥), 
 (𝐶4) ∥ 𝐴3(𝑥) ∥≤ 𝑁, 𝑥 ∈ Ω, 𝑤ℎ𝑒𝑟𝑒    𝐴3(𝑥) = ℱ′′′(𝑥), 
 (𝐶5) Then, a positive real number 𝐿 exists such that 

∥ 𝐴3(𝑥) − 𝐴3(𝑦) ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥, ∀𝑥, 𝑦 ∈ Ω                                                                                              (16) 

 

In the lemmas that follow, we begin by examining an approximation of the operator ℱ which will be 

utilized in subsequent conclusions. 

 

Lemma 3.1: Considering that ℱ: Ω ⊂ X → Y is a continuously 3rd-order Fréchet differentiable nonlinear 

operator. In addition, we assume that Ω is an open convex set. Further, 𝒳 and 𝒴 are two BSs. Then, the 

following item holds  

ℱ(𝑧𝑘) =
1

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2(𝑧𝑠𝑘
) +

1

2
𝐴2(𝑠𝑘)(𝑧𝑠𝑘

)2 + 𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)𝑣𝑘

2 [
9

8
+

𝛼3

2
(

𝑣𝑘

2
+

1

3
)] (𝑠𝑥𝑘

)  +

1

2
∫

1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)3(1 − 𝑡)2𝑑𝑡 −

1

3
∫

1

0
[𝐴3 (𝑥𝑘 +

2

3
𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)] (𝑠𝑥𝑘
)3(1 −

𝑡)𝑑𝑡 + ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)2(1 − 𝑡)𝑑𝑡(𝑧𝑠𝑘

)  + ∫
1

0
[𝐴2(𝑠𝑘 + 𝑡(𝑧𝑠𝑘

)) −

𝐴2(𝑠𝑘)](𝑧𝑠𝑘
)2(1 − 𝑡)𝑑𝑡 + [

2

3
∫

1

0
(𝐴2 (𝑥𝑘 +

2

3
𝑡(𝑠𝑥𝑘

)) − 𝐴2(𝑥𝑘)) (𝑠𝑥𝑘
)𝑑𝑡] (

9

8
𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)  (17) 

 

where, 𝑠𝑥𝑘
= 𝑠𝑘 − 𝑥𝑘, 𝑧𝑠𝑘

= 𝑧𝑘 − 𝑠𝑘 and 𝑠𝑘 = 𝑥𝑘 − 𝛤𝑘ℱ(𝑥𝑘). 

 

Proof: Utilizing the Taylor expansion, we get  

ℱ(𝑧𝑘) = ℱ(𝑠𝑘) + ℱ′(𝑠𝑘)(𝑧𝑠𝑘
) +

1

2
𝐴2(𝑠𝑘)(𝑧𝑠𝑘

)2 + ∫
1

0
[𝐴2(𝑠𝑘 + 𝑡(𝑧𝑠𝑘

)) − 𝐴2(𝑠𝑘)](𝑧𝑠𝑘
)2(1 − 𝑡)𝑑𝑡   (18) 

 

Now, 𝑧𝑠𝑘
= (𝐼 − ℋ(𝑟(𝑥𝑘)))𝛤𝑘ℱ(𝑥𝑘) = ((1 − 𝛼0)𝐼 − (𝛼1𝑣𝑘 +

1

2!
𝛼2𝑣𝑘

2 +
1

3!
𝛼3𝑣𝑘

3)) 𝛤𝑘ℱ(𝑥𝑘). 

 

Taking 𝛼0 = 1, we obtain  

𝑧𝑠𝑘
= −(𝛼1𝑣𝑘 +

1

2!
𝛼2𝑣𝑘

2 +
1

3!
𝛼3𝑣𝑘

3)𝛤𝑘ℱ(𝑥𝑘)  = 𝑓1(𝑣𝑘)(𝑠𝑥𝑘
)                                                                  (19) 

 

where,  

𝑓1(𝑣𝑘) = 𝛼1𝑣𝑘 +
1

2!
𝛼2𝑣𝑘

2 +
1

3!
𝛼3𝑣𝑘

3                                                                                                          (20) 
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Again by Taylor expansion and using the fact that ℱ(𝑥𝑘) = −Γ𝑘(𝑠𝑥𝑘
), we yield  

ℱ(𝑠𝑘) =
1

2
𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)2 +
1

6
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)3 +
1

2
∫

1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)3(1 − 𝑡)2𝑑𝑡       (21) 

ℱ′(𝑠𝑘) = 𝛤𝑘 + 𝐴2(𝑥𝑘)(𝑠𝑥𝑘
) +

1

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2 + ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)2(1 − 𝑡)𝑑𝑡      (22) 

and  

ℱ′(𝑦𝑘) = 𝛤𝑘 + 𝜃𝐴2(𝑥𝑘)(𝑠𝑥𝑘
) +

𝜃2

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2 + 𝜃2 ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](1 − 𝑡)𝑑𝑡(𝑠𝑥𝑘
)2     (23) 

 

Substituting Equations (19), (22) and (23) in the second term on the R.H.S. of Equation (18), we attain 

ℱ′(𝑠𝑘)(𝑧𝑠𝑘
) = (ℱ′(𝑠𝑘) − 𝛤𝑘)(𝑧𝑠𝑘

) + 𝛤𝑘(𝑧𝑠𝑘
)  

                       = 𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)(𝑧𝑠𝑘

) +
1

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2(𝑧𝑠𝑘
) + ∫

1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)2(1 −

                           𝑡)𝑑𝑡(𝑧𝑠𝑘
)  + (ℱ′(𝑦𝑘) − 𝛤𝑘) (𝛼1 +

1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)  

                      = 𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)(𝑧𝑠𝑘

) +
1

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2(𝑧𝑠𝑘
) + ∫

1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)2(1 −

                         𝑡)𝑑𝑡(𝑧𝑠𝑘
)  + 𝛼1𝜃𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)2 +
𝛼1𝜃2

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)3 + 𝛼1𝜃2 ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) −

                         𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)3(1 − 𝑡)𝑑𝑡 + (ℱ′(𝑦𝑘) − 𝛤𝑘) (

1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)                                  (24) 

 

Substituting Equations (21) and (24) in Equation (18), we get 

ℱ(𝑧𝑘) = (
1

2
+ 𝛼1𝜃) 𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)2 + (
1

6
+

𝛼1𝜃2

2
) 𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)3 +
1

2
∫

1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)3(1 −

𝑡)2𝑑𝑡 + ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) − 𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)2(1 − 𝑡)𝑑𝑡(𝑧𝑠𝑘

) + 𝛼1𝜃2 ∫
1

0
[𝐴3(𝑥𝑘 + 𝑡(𝑠𝑥𝑘

)) −

𝐴3(𝑥𝑘)](𝑠𝑥𝑘
)3(1 − 𝑡)𝑑𝑡 + ∫

1

0
[𝐴2(𝑠𝑘 + 𝑡(𝑧𝑠𝑘

)) − 𝐴2(𝑠𝑘)](𝑧𝑠𝑘
)2ℱ(1 − 𝑡)𝑑𝑡

1

2
𝐴3(𝑥𝑘)(𝑠𝑥𝑘

)2(𝑧𝑠𝑘
) +

1

2
𝐴2(𝑠𝑘)(𝑧𝑠𝑘

)2 + 𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)(𝑧𝑠𝑘

) + (ℱ′(𝑦𝑘) − 𝛤𝑘) (
1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)                                                (25) 

 

Taking 𝛼1𝜃 +
1

2
= 0 and 

𝛼1𝜃2

2
+

1

6
= 0, we obtain  

𝜃 =
2

3
    and    𝛼1 =

−3

4
                                                                                                                                (26) 

  

Now consider last two terms of Equation (25)  

𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)(𝑧𝑠𝑘

) + (ℱ′(𝑦𝑘) − 𝛤𝑘) (
1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
) = 𝐴2(𝑥𝑘)(𝑠𝑥𝑘

) [
−3

4
𝑣𝑘 +

1

2
𝛼2𝑣𝑘

2 +
1

6
𝛼3𝑣𝑘

3] (𝑠𝑥𝑘
) + [𝐴2(𝑥𝑘)(𝑦𝑥𝑘

)  + ∫
1

0
(𝐴2(𝑥𝑘 + 𝑡(𝑦𝑥𝑘

)) − 𝐴2(𝑥𝑘))(𝑦𝑥𝑘
)𝑑𝑡] (

1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
) 

= (
−3

4
+

𝛼2

3
) 𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)𝑣𝑘(𝑠𝑥𝑘
)  + 𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)𝑣𝑘
2 (

𝛼2

2
+

𝛼3

3
(

𝑣𝑘

2
+

1

3
)) (𝑠𝑥𝑘

)  + [
2

3
∫

1

0
(𝐴2(𝑥𝑘 + 𝑡(𝑦𝑥𝑘

)) −

𝐴2(𝑥𝑘))(𝑠𝑥𝑘
)𝑑𝑡] (

1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)  

 

where, 𝑦𝑥𝑘
= 𝑦𝑥𝑘

. 

 

Taking 
−3

4
+

𝛼2

3
= 0, we obtain 𝛼2 =

9

4
. Then  

 

𝐴2(𝑥𝑘)(𝑠𝑥𝑘
)(𝑧𝑠𝑘

) + (ℱ′(𝑦𝑘) − 𝛤𝑘) (
1

2
𝛼2𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)  = 𝐴2(𝑥𝑘)(𝑠𝑥𝑘

)𝑣𝑘
2 (

9

8
+

𝛼3

3
(

𝑣𝑘

2
+

1

3
)) (𝑠𝑥𝑘

)  +

[
2

3
∫

1

0
(𝐴2(𝑥𝑘 + 𝑡(𝑦𝑥𝑘

)) − 𝐴2(𝑥𝑘))(𝑠𝑥𝑘
)𝑑𝑡] (

9

8
𝑣𝑘 +

1

6
𝛼3𝑣𝑘

2) (𝑠𝑥𝑘
)                                                         (27) 
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Equation (17) renders easily by substituting Equation (27) in Equation (25). 

 

Lemma 3.2: If the postulates of Lemma 3.1 are satisfied, then we yield  

ℱ(𝑥𝑘+1) = 𝐴2(𝑥𝑘)[𝑓1(𝑣𝑘)𝛤𝑘ℱ(𝑥𝑘)𝒲(𝑟(𝑥𝑘)) + 𝛤𝑘ℱ(𝑥𝑘)𝑓2(𝑣𝑘)]𝛤𝑘ℱ(𝑧𝑘) −
𝛽2

2
𝛤𝑘𝑣𝑘

2𝛤𝑘ℱ(𝑧𝑘 +
1

2
𝐴2(𝑧𝑘)(𝑥𝑘+1 −

𝑧𝑘)2 + [∫
1

0
(𝐴2(𝑥𝑘 +

2

3
𝑡(𝑠𝑥𝑘

)) − 𝐴2(𝑥𝑘)) (𝑠𝑥𝑘
)𝑑𝑡] 𝛤𝑘ℱ(𝑧𝑘) + ∫

1

0
(𝐴2(𝑥𝑘 + 𝑡(𝑧𝑘 − 𝑥𝑘)) − 𝐴2(𝑥𝑘))(𝑧𝑘 −

𝑥𝑘)𝑑𝑡(𝑥𝑘+1 − 𝑧𝑘) + ∫
1

0
(𝐴2(𝑧𝑘 + 𝑡(𝑥𝑘+1 − 𝑧𝑘)) − 𝐴2(𝑧𝑘))(1 − 𝑡)𝑑𝑡(𝑥𝑘+1 − 𝑧𝑘)2                                     (28) 

  

Proof: We obtain the following expression by adopting Taylor expansion  

ℱ(𝑥𝑘+1) = ℱ(𝑧𝑘) + ℱ′(𝑧𝑘)(𝑥𝑘+1 − 𝑧𝑘) +
1

2
𝐴2(𝑧𝑘)(𝑥𝑘+1 − 𝑧𝑘)2 + ∫

1

0
(𝐴2(𝑧𝑘 + 𝑡(𝑥𝑘+1 − 𝑧𝑘)) −

𝐴2(𝑧𝑘))(1 − 𝑡)𝑑𝑡(𝑥𝑘+1 − 𝑧𝑘)2                                                                                                                  (29) 

 

Taking 𝛽0 = 1, we also notice that  

𝑥𝑘+1 − 𝑧𝑘 + 𝛤𝑘ℱ(𝑧𝑘) = − (𝛽1𝑣𝑘 +
1

2
𝛽2𝑣𝑘

2) 𝛤𝑘ℱ(𝑧𝑘)                                                                               (30) 

 

Now, using Taylor expansion, Equation (30) and taking 𝛽1 =
−3

2
, we obtain  

ℱ(𝑧𝑘) + ℱ′(𝑧𝑘)(𝑥𝑘+1 − 𝑧𝑘) = (ℱ′(𝑧𝑘) − ℱ′(𝑥𝑘))(𝑥𝑘+1 − 𝑧𝑘) + 𝛤𝑘(𝑥𝑘+1 − 𝑧𝑘 + 𝛤𝑘ℱ(𝑧𝑘))  

 = 𝐴2(𝑥𝑘)[𝑓1(𝑣𝑘)𝛤𝑘ℱ(𝑥𝑘)𝒲(𝑟(𝑥𝑘)) + 𝛤𝑘ℱ(𝑥𝑘)𝑓2(𝑣𝑘)]𝛤𝑘ℱ(𝑧𝑘) 

                         −
𝛽2

2
𝛤𝑘𝑣𝑘

2𝛤𝑘ℱ(𝑧𝑘) +
1

2
𝐴2(𝑧𝑘)(𝑥𝑘+1 − 𝑧𝑘)2 + [∫

1

0
(𝐴2(𝑥𝑘 +

2

3
𝑡(𝑠𝑥𝑘

)) −

                                                         𝐴2(𝑥𝑘)) 𝑑𝑡(𝑠𝑥𝑘
)] 𝛤𝑘ℱ(𝑧𝑘)  + ∫

1

0
(𝐴2(𝑥𝑘 + 𝑡(𝑧𝑘 − 𝑥𝑘)) −

                                                         𝐴2(𝑥𝑘))𝑑𝑡(𝑧𝑘 − 𝑥𝑘)(𝑥𝑘+1 − 𝑧𝑘)                                                             (31) 

 

Substituting Equation (31) in (30), we get Equation (28). 

 

Let us denote |𝛼3| = 𝑎, and |𝛽2| = 𝑏. Next, some scalar functions are introduced which will be used in 

subsequent results.  

𝑔𝑎,𝑏(𝑡) =
1

162
[162 + 81𝑡 + 81𝑡2 + 8𝑎𝑡3 + 𝑡 (1 + 𝑡 +

2𝑏𝑡2

9
) × (81 + 81𝑡 + 8𝑎𝑡2 +

1

324
(162 + 81𝑡 +

81𝑡2 + 8𝑎𝑡3))]                                                                                                                                           (32) 

ℎ𝑎,𝑏(𝑡) =
1

1−𝑡𝑔𝑎,𝑏(𝑡)
                                                                                                                                     (33) 

𝑝1(𝑡) = 1 +
𝑡

2
+

𝑡2

2
+

4𝑎𝑡3

81
                                                                                                                           (34) 

𝑝2(𝑡) = 1 + 𝑡 +
2𝑏𝑡2

9
                                                                                                                                   (35) 

𝑝3(𝑡) =
𝑡

2
+

𝑡2

2
+

4𝑎𝑡3

81
                                                                                                                                  (36) 

𝑝4(𝑡) = 𝑡 +
2𝑏𝑡2

9
                                                                                                                                          (37) 

𝑓𝑎,𝑏(𝑡1, 𝑡2, 𝑡3) =
𝑡1

3

2
+

4𝑎𝑡1
3(𝑡1+1)

81
+

𝑡1𝑡2

3
+

8𝑎𝑡1
2𝑡2

243
+

5𝑡3

18
+

(𝑡2+𝑡3)𝑝3(𝑡1)

2
+

𝑡1𝑝3(𝑡1)2

2
+ 

𝑡2𝑝3(𝑡1)3

2
                     (38) 

𝜙𝑎,𝑏(𝑡1, 𝑡2, 𝑡3) = 𝑓𝑎,𝑏(𝑡1, 𝑡2, 𝑡3)(
2𝑏𝑡1

2

9
+ 𝑡1(𝑝3(𝑡1)𝑝2(𝑡1) + 𝑝4(𝑡1)) +

𝑡1𝑝2(𝑡1)2

2
+

2𝑡2

3
+ 𝑡2𝑝1(𝑡1)2𝑝2(𝑡1) +

𝑡2𝑝2(𝑡1)3𝑓𝑎,𝑏(𝑡1,𝑡2,𝑡3)

2
)                                                                                                                                   (39) 
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Using the notations 𝜂0 = 𝜂, 𝛿0 = 𝛿, 𝑎0 = 𝑀𝛿𝜂, 𝑒0 = 𝑁𝛿𝜂2, 𝑐0 = 𝐿𝛿𝜂3, the subsequent sequences are 

defined for 𝑘 ≥ 0  

𝛿𝑘+1 = 𝛿𝑘ℎ𝑎,𝑏(𝑎𝑘)                                                                                                                                     (40) 

𝜂𝑘+1 = 𝜂𝑘ℎ𝑎,𝑏(𝑎𝑘)𝜙𝑎,𝑏(𝑎𝑘 , 𝑒𝑘 , 𝑐𝑘)                                                                                                            (41) 

𝑎𝑘+1 = 𝑎𝑘ℎ𝑎,𝑏(𝑎𝑘)2𝜙𝑎,𝑏(𝑎𝑘, 𝑒𝑘 , 𝑐𝑘)                                                                                                          (42) 

𝑒𝑘+1 = 𝑒𝑘ℎ𝑎,𝑏(𝑎𝑘)3𝜙𝑎,𝑏(𝑎𝑘, 𝑒𝑘 , 𝑐𝑘)2                                                                                                         (43) 

𝑐𝑘+1 = 𝑐𝑘ℎ𝑎,𝑏(𝑎𝑘)4𝜙𝑎,𝑏(𝑎𝑘 , 𝑒𝑘 , 𝑐𝑘)3                                                                                                         (44) 

 

for 𝑘 = 0,1, …. 

 

Let 𝑧𝑎,𝑏(𝑡) = 𝑡𝑔𝑎,𝑏(𝑡) − 1. Since 𝑧(0) = −1, that means we have atleast one positive root. Let 𝜌 

represent the lowest positive zero of 𝑡𝑔𝑎,𝑏(𝑡) − 1.  

 

Lemma 3.3: Suppose that the real functions 𝑔𝑎,𝑏, ℎ𝑎,𝑏 and 𝜙𝑎,𝑏 are defined as in Equations (32), (33) and 

(39), respectively. Then, 

 

(i)  The functions 𝑔𝑎,𝑏(𝑡) and ℎ𝑎,𝑏(𝑡) are both increasing, and greater than 1 ∀𝑡 ∈ (0, 𝜌), 
(ii) The function 𝜙𝑎,𝑏(𝑡1, 𝑡2, 𝑡3) is increasing for 𝑡1 ∈ (0, ρ), 𝑡2 > 0, 𝑡3 > 0.  

 

Proof: The proof is obvious. 

 

Lemma 3.4: Suppose that the real functions 𝑔𝑎,𝑏, ℎ𝑎,𝑏 and 𝜙𝑎,𝑏 are defined as in Equations (32), (33) and 

(39), respectively. If 0 < 𝑎0 < 𝜌 and  

ℎ𝑎,𝑏(𝑎0)2𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) < 1                                                                                                                   (45) 

 

then for all 𝑘 ≥ 0, we have  

(i)  ℎ𝑎,𝑏(𝑎𝑘) > 1    and    ℎ𝑎,𝑏(𝑎𝑘)𝜙𝑎,𝑏(𝑎𝑘 , 𝑒𝑘 , 𝑐𝑘) < 1, 

(ii) the sequences    {𝜂𝑘}, {𝑎𝑘}, {𝑒𝑘}, {𝑐𝑘}   and    {ℎ𝑎,𝑏(𝑎𝑘)𝜙𝑎,𝑏(𝑎𝑘, 𝑒𝑘 , 𝑐𝑘)}   are decreasing,  

(iii)  𝑎𝑘𝑔𝑎,𝑏(𝑎𝑘) < 1    and    ℎ𝑎,𝑏(𝑎𝑘)2𝜙𝑎,𝑏(𝑎𝑘, 𝑒𝑘, 𝑐𝑘) < 1    𝑓𝑜𝑟    𝑘 ≥ 0.  
 

Proof: Lemma 3.3 and Equation (45) imply that ℎ𝑎,𝑏(𝑎0) > 1 and ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) < 1. It is also 

clear from relations given by Equations (41-45) that 𝜂1 < 𝜂0, 𝑎1 < 𝑎0, 𝑒1 < 𝑒0 and 𝑐1 < 𝑐0. Also, 

ℎ𝑎,𝑏(𝑎1)𝜙𝑎,𝑏(𝑎1, 𝑒1, 𝑐1) < ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) and thus (𝑖𝑖) holds true for 𝑘 = 0. As a result it 

implies that 𝑎1𝑔(𝑎1) < 𝑎0𝑔(𝑎0) < 1 and ℎ𝑎,𝑏(𝑎1)2𝜙𝑎,𝑏(𝑎1, 𝑒1, 𝑐1) < ℎ𝑎,𝑏(𝑎0)2𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) < 1, 
which proves the third part for 𝑘 = 0. Using first part of Lemma 3.3 and induction, the Lemma 3.4 is 

verified for all 𝑘 ≥ 0. 

 

Lemma 3.5: Assume the maps 𝑔𝑎,𝑏 , ℎ𝑎,𝑏 , 𝜙𝑎,𝑏 are defined as in Equations (32), (33) and (39), 

respectively.In addition, we consider θ ∈ (0,1), then for t ∈ (0, ρ), 𝑔𝑎,𝑏(𝜃𝑡) < 𝑔𝑎,𝑏(𝑡), ℎ𝑎,𝑏(𝜃𝑡) <

ℎ𝑎,𝑏(𝑡), 𝑝1(𝜃𝑡) < 𝑝1(𝑡), 𝑝2(𝜃𝑡) < 𝑝2(𝑡), 𝑝3(𝜃𝑡) < 𝜃𝑝3(𝑡), 𝑝4(𝜃𝑡) < 𝜃𝑝4(𝑡), 𝑓𝑎,𝑏(𝜃𝑡1, 𝜃2𝑡2, 𝜃3𝑡3) <

𝜃3𝑓𝑎,𝑏(𝑡1, 𝑡2, 𝑡3) and 𝜙𝑎,𝑏(𝜃𝑡1, 𝜃2𝑡2, 𝜃3𝑡3) < 𝜃5𝜙𝑎,𝑏(𝑡1, 𝑡2, 𝑡3). 
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Proof: For the values 𝜃 ∈ (0,1) and 𝑡 ∈ (0, 𝜌), by using Equations (32) - (39), the Lemma 3.5 follows 

easily. 

 

Lemma 3.6: By adopting the Lemma 3.4, suppose 𝛾 = ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0𝑒0, 𝑐0), 𝛥 = 1/ℎ𝑎,𝑏(𝑎0). Then, 

we have  

ℎ𝑎,𝑏(𝑎𝑘)𝜙𝑎,𝑏(𝑎𝑘 , 𝑒𝑘 , 𝑐𝑘) ≤ 𝛥𝛾6𝑘
, 𝑘 ≥ 0                                                                                                   (46) 

 

and  

∏𝑘
𝑖=0 ℎ𝑎,𝑏(𝑎𝑖)𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖 , 𝑐𝑖) ≤ 𝛥𝑘+1𝛾

6𝑘+1−1

5                                                                                             (47) 

 

Proof: Since  

𝑎1 = 𝑎0ℎ𝑎,𝑏(𝑎0)2𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) = 𝛾𝑎0, 
 

𝑒1 = 𝑒0ℎ𝑎,𝑏(𝑎0)3𝜙𝑎,𝑏
2 (𝑎0, 𝑒0, 𝑐0) < 𝛾2𝑒0 

and  

𝑐1 = 𝑐0ℎ𝑎,𝑏(𝑎0)4𝜙𝑎,𝑏
3 (𝑎0, 𝑒0, 𝑐0) < 𝛾3𝑐0. 

Now  

ℎ𝑎,𝑏(𝑎1)𝜙𝑎,𝑏(𝑎1, 𝑒1, 𝑐1) < ℎ𝑎,𝑏(𝛾𝑎0)𝜙𝑎,𝑏(𝛾𝑎0, 𝛾2𝑒0, 𝛾3𝑐0) 

< 𝛾5ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) = 𝛾61−1ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) = 𝛥𝛾61
. 

 

Suppose for 𝑖 ≥ 1, ℎ𝑎,𝑏(𝑎𝑖)𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖, 𝑐𝑖) ≤ 𝛥𝛾6𝑖
. Then, above lemma renders the following  

 

ℎ𝑎,𝑏(𝑎𝑖+1)𝜙𝑎,𝑏(𝑎𝑖+1, 𝑒𝑖+1, 𝑐𝑖+1)  

< ℎ𝑎,𝑏(𝑎𝑖)𝜙𝑎,𝑏(𝑎𝑖ℎ𝑎,𝑏(𝑎𝑖)2𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖, 𝑐𝑖), 𝑒𝑖ℎ𝑎,𝑏(𝑎𝑖)3𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖, 𝑐𝑖)2, 𝑐𝑖ℎ𝑎,𝑏(𝑎𝑖)4𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖 , 𝑐𝑖)3) 

 = 𝛥𝛾6𝑖+1
. 

 

Thus ℎ𝑎,𝑏(𝑎𝑘)𝜙𝑎,𝑏(𝑎𝑘, 𝑒𝑘 , 𝑐𝑘) ≤ 𝛥𝛾6𝑘
 holds for all 𝑘 ≥ 0. Thus  

∏

𝑘

𝑖=0

ℎ𝑎,𝑏(𝑎𝑖)𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖, 𝑐𝑖) ≤ ∏

𝑘

𝑖=0

𝛥𝛾6𝑖
≤ 𝛥𝑘+1𝛾∑𝑘

𝑖=0 6𝑖
≤ 𝛥𝑘+1𝛾

6𝑘+1−1

5 . 

 

Thus, Equation (47) is proved. 

 

Lemma 3.7: Using the postulates of Lemma 3.4 and assuming 𝛾 = ℎ𝑎,𝑏(𝑎0)2𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0), 𝛥 =

1/ℎ𝑎,𝑏(𝑎0), the sequence {ηk} satisfies, 

𝜂𝑘 ≤ 𝜂𝛿𝑘𝛾
6𝑘−1

5 , 𝑘 ≥ 0                                                                                                                               (48) 

and thus, the sequence {ηk} → 0 and  

∑𝑘+𝑚−1
𝑖=𝑘 𝜂𝑖 ≤ 𝜂𝛥𝑘𝛾

6𝑘−1

5 𝑀    ∀    𝑘 ≥ 0    and    𝑚 ≥ 1                                                                             (49) 

 

where, 𝑀 = (
1−(𝛥𝛾6𝑘

)𝑚

1−𝛥𝛾6𝑘 ). 

 

Proof: From Equations (41) and (46), we have  
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 𝜂𝑘 = 𝜂𝑘−1ℎ𝑎,𝑏(𝑎𝑘−1)𝜙𝑎,𝑏(𝑎𝑘−1, 𝑒𝑘−1, 𝑐𝑘−1) 

 = 𝜂𝑘−2ℎ𝑎,𝑏(𝑎𝑘−2)𝜙𝑎,𝑏(𝑎𝑘−2, 𝑒𝑘−2, 𝑐𝑘−2)ℎ𝑎,𝑏(𝑎𝑘−1)𝜙𝑎,𝑏(𝑎𝑘−1, 𝑒𝑘−1, 𝑐𝑘−1) 

 = ⋯ 

 = 𝜂 ∏𝑘−1
𝑖=0 ℎ𝑎,𝑏(𝑎𝑖)𝜙𝑎,𝑏(𝑎𝑖, 𝑒𝑖, 𝑐𝑖) 

 ≤ 𝜂𝛥𝑘𝛾
6𝑘−1

5 . 
  

Since 𝛿 < 1 and 𝛾 < 1, it shows that 𝜂𝑘 → 0 as 𝑘 → ∞. Now  

 ∑𝑘+𝑚−1
𝑖=𝑘 𝜂𝑖 ≤ ∑𝑘+𝑚−1

𝑖=𝑘 𝜂𝛥𝑖𝛾
6𝑖−1

5  

 ≤ 𝜂𝛾
6𝑘−1

5 ∑𝑚−1
𝑖=0 𝛥𝑘+𝑖(𝛾6𝑘

)
6𝑖−1

5 ≤ 𝜂𝛥𝑘𝛾
6𝑘−1

5 ∑𝑚−1
𝑖=0 𝛥𝑖(𝛾6𝑘

)𝑖 

 ≤ 𝜂𝛥𝑘𝛾
6𝑘−1

5 𝑀. 
 

Using the fact that Δ < 1 and 𝛾 < 1, a convergent series verifying:  

∑∞
𝑘=0 𝜂𝑘 ≤

1

1−𝛥𝛾
𝜂  

is obtained. 

 

3.2 Recurrence Relations for Our Technique 
It comprises of the derivation of RR for the scheme given by Equation (15) under the postulates taken in 

consideration in the previous section. Let 𝐵(𝑥, 𝑟) and 𝐵(𝑥, 𝑟) defined as {𝑦 ∈ 𝒳: ∥ 𝑦 − 𝑥 ∥< 𝑟} and {𝑦 ∈
𝒳: ∥ 𝑦 − 𝑥 ∥≤ 𝑟} respectively. 

 

For 𝑛 = 0, the existence of 𝑦0, 𝑧0 and 𝑠0 is implied if Γ0 exists and we have  

∥ 𝑠0 − 𝑥0 ∥=∥ 𝛤0ℱ(𝑥0) ∥≤ 𝜂. 
  

∥ 𝑦0 − 𝑥0 ∥=
2

3
∥ 𝛤0ℱ(𝑥0) ∥≤

2

3
𝜂. 

Also, we get 

∥ 𝑣0 ∥≤∥ 𝛤0 ∥∥ ℱ′(𝑦0) − ℱ′(𝑥0) ∥≤
2

3
, 

so that  

∥ 𝑧0 − 𝑥0 ∥=∥ ℋ(𝑢(𝑥0)) ∥∥ 𝛤0ℱ(𝑥0) ∥≤ (1 +
1

2
𝑎0 +

1

2
𝑎0

2 +
4

81
|𝛼3|𝑎0

3) 𝜂 = 𝑝1(𝑎0)𝜂                         (50) 

and  

∥ 𝑥1 − 𝑧0 ∥=∥ 𝒲(𝑢(𝑥0)) ∥∥ 𝛤0ℱ(𝑧0) ∥≤ (1 + 𝑎0 +
2

9
|𝛽2|𝑎0

2) ∥ 𝛤0ℱ(𝑧0) ∥  

   = 𝑝2(𝑎0) ∥ 𝛤0ℱ(𝑧0) ∥                                                                                                               (51) 

 

Also, we have  

∥ 𝑧0 − 𝑠0 ∥≤ (
1

2
𝑎0 +

1

2
𝑎0

2 +
4

81
|𝛼3|𝑎0

3) 𝜂 = 𝑝3(𝑎0)𝜂                                                                              (52) 

∥ 𝑓1(𝑣0) ∥≤ 𝑝3(𝑎0)                                                                                                                                   (53) 

∥ 𝑓2(𝑣0) ∥≤ 𝑝4(𝑎0)                                                                                                                                   (54) 

 

Lemma 3.1 and Lemma 3.2 render  

∥ 𝛤0ℱ(𝑧0) ∥≤ 𝑓𝑎,𝑏(𝑎0, 𝑒0, 𝑐0)𝜂                                                                                                                  (55) 
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and  

∥ 𝛤0ℱ(𝑥1) ∥≤ 𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0)𝜂                                                                                                                (56) 

  

Again, by Taylor expansion, we have 

ℱ(𝑧0) = ℱ(𝑥0) + ℱ′(𝑥0)(𝑧0 − 𝑥0) + ∫
1

0
[ℱ′(𝑥0 + 𝑡(𝑧0 − 𝑥0)) − ℱ′(𝑥0)]  

           = ℱ(𝑥0) + ℱ′(𝑥0)(𝑠0 − 𝑥0) + ℱ′(𝑥0)(𝑧0 − 𝑠0) + ∫
1

0
[ℱ′(𝑥0 + 𝑡(𝑧0 − 𝑥0)) − ℱ′(𝑥0)]𝑑𝑡(𝑧0 − 𝑥0) (57) 

 

then from Equations (50) and (52), we obtain  

∥ 𝛤0ℱ(𝑧0) ∥≤ (𝑝3(𝑎0) +
1

2
𝑎0𝑝1

2(𝑎0)) 𝜂                                                                                                   (58) 

 

From Equation (51), we get 

∥ 𝑥1 − 𝑧0 ∥≤ 𝑝2(𝑎0) (𝑝3(𝑎0) +
1

2
𝑎0𝑝1

2(𝑎0)) 𝜂                                                                                        (59) 

 

From Equations (50) and (59), we have  

∥ 𝑥1 − 𝑥0 ∥≤∥ 𝑥1 − 𝑧0 ∥ +∥ 𝑧0 − 𝑥0 ∥≤ 𝑔𝑎,𝑏(𝑎0)𝜂                                                                                (60) 

  

From the previous section supposition ℎ𝑎,𝑏(𝑎0)2𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0) < 1, hence it implies 𝑥1 ∈ 𝐵(𝑥0, 𝑅𝜂). 

Now  

 

∥ 𝐼 − 𝛤0ℱ′(𝑥1) ∥≤∥ 𝛤0 ∥∥ ℱ′(𝑥0) − ℱ′(𝑥1) ∥≤ 𝑎0𝑔𝑎,𝑏(𝑎0) < 1. 
  

According to the Banach lemma, the inverse of ℱ′(𝑥1) (Γ1) possible and  

∥ 𝛤1 ∥≤
𝛿0

1−𝑎0𝑔𝑎,𝑏(𝑎0)
= ℎ𝑎,𝑏(𝑎0)𝛿0 = 𝛿1                                                                                                   (61) 

 

Hence, we obtain 

∥ 𝑠1 − 𝑥1 ∥=∥ 𝛤1ℱ(𝑥1) ∥≤ ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0)𝜂0 = 𝜂1                                                                   (62) 

  

Since 𝑔𝑎,𝑏(𝑎0) > 1, we find that  

∥ 𝑠1 − 𝑥0 ∥≤∥ 𝑥1 − 𝑥0 ∥ +∥ 𝑠1 − 𝑥1 ∥≤ 𝑅𝜂                                                                                              (63) 

 

which shows that 𝑠1, 𝑦1 lies in 𝐵(𝑥0, 𝑅𝜂). Thus, the following lemma can be obtained by induction.  

 

Lemma 3.8: With considerations of Lemma 3.2 and hypotheses C1–C5 satify, then the following relations 

are valid for all k ≥ 0: 

 

(I)  There exists 𝛾𝑘 and ∥ 𝛾𝑘 ∥≤ ℎ𝑎,𝑏(𝑎𝑘−1) ∥ 𝛾𝑘−1 ∥  

(II) ∥ 𝛾𝑘ℱ(𝑥𝑘) ∥≤ 𝜂𝑘  

(III)   𝑀 ∥ 𝛤𝑘 ∥∥ 𝛾𝑘ℱ(𝑥𝑘) ∥≤ 𝑎𝑘  

(IV)  𝑁 ∥ 𝛤𝑘 ∥∥ 𝛾𝑘ℱ(𝑥𝑘) ∥2≤ 𝑒𝑘  

(V)   𝐿 ∥ 𝛤𝑘 ∥∥ 𝛾𝑘ℱ(𝑥𝑘) ∥3≤ 𝑐𝑘  

(VI)   ∥ 𝑥𝑘+1 − 𝑥𝑘 ∥≤ 𝑔𝑎,𝑏(𝑎𝑘)𝜂𝑘  

(VII) ∥ 𝑥𝑘+1 − 𝑥0 ∥≤ 𝑅𝜂, where 𝑅 =
𝑔𝑎,𝑏(𝑎0)

1−ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0,𝑒0,𝑐0)
. 
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Proof: The proof of (I) − (VI) follows easily using an inductive procedure and formerly described 

development. In order to prove (VII), using (VI) and Lemma 3.7, we have  

 

∥ 𝑥𝑘+1 − 𝑥0 ∥≤ ∑

𝑘

𝑖=0

∥ 𝑥𝑖+1 − 𝑥𝑖 ∥≤ ∑

𝑘

𝑖=0

𝑔𝑎,𝑏(𝑎𝑖)𝜂𝑖 

    ≤ 𝑔𝑎,𝑏(𝑎0) ∑𝑘
𝑖=0 𝜂𝑖 ≤ 𝑅𝜂. 

 

3.3 Semi-Local Convergence (SC) 
This section comprises of SC establishment of the method given by Equation (3) along with domain of 

existence-uniqueness. Additionally, the priori error bounds of the solution are also depicted.  

 

Theorem 3.1: Let ℱ denote a nonlinear operator as defined in Equation (1). This operator is continuously 

differentiable up to the 3rd-order within an open subset Ω0 that includes 𝑥0 and postulates (C1) − (C5) 

hold. Considering 𝑎0 = 𝑀𝛿𝜂, 𝑒0 = 𝑁𝛿𝜂2 and 𝑐0 = 𝐿𝛿𝜂3 such that 𝑎0 lies in (0, 𝜌), 𝜌 being the smallest 

positive zero of 𝑡𝑔𝑎,𝑏(𝑡) − 1 and 𝑔𝑎,𝑏 , ℎ𝑎,𝑏 and 𝜙𝑎,𝑏 are defined by Equations (32), (33) and (39), 

respectively. 

 

Let 𝐵(𝑥0, 𝑅𝜂) ∈ 𝛺 where 𝑅 =
𝑔𝑎,𝑏(𝑎0)

1−ℎ𝑎,𝑏(𝑎0)𝜙𝑎,𝑏(𝑎0,𝑒0,𝑐0)
 with 𝛥 =

1

ℎ𝑎,𝑏(𝑎0)
 and 𝛾 = ℎ𝑎,𝑏

2 (𝑎0)𝜙𝑎,𝑏(𝑎0, 𝑒0, 𝑐0).  

 

Then the sequence {𝑥𝑘}, initializing from 𝑥0, obtained by scheme (3) converges to a required solution x∗. 

For any 𝑎, 𝑏 ∈ ℝ+, the R-OC of (3) is at least six. The iterates 𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , 𝑥∗ lie in 𝐵(𝑥0, 𝑅𝜂). In addition, 

the solution x∗ is unique and lies in 𝐵(𝑥0,
2

𝑀𝛿
− 𝑅𝜂) ∩ 𝛺. 

 

A priori error estimate is given as  

∥ 𝑥𝑘 − 𝑥0 ∥≤ 𝑔𝑎,𝑏(𝑎0)𝛥𝑘𝛾
6𝑘−1

5
1

1−𝛥𝛾6𝑘 𝜂                                                                                                   (64) 

 

Proof: We shall demonstrate that {𝑥𝑘} is a Cauchy sequence. By adopting Lemma 3.3 and Lemma 3.4, it 

follows that 𝑔𝑎,𝑏(𝑎𝑘) ≤ 𝑔𝑎,𝑏(𝑎𝑛) for all 𝑘 ≤ 𝑛. Thus, we have  

 

∥ 𝑥𝑛+𝑘 − 𝑥𝑘 ∥≤ ∑𝑘+𝑛−1
𝑖=𝑘 ∥ 𝑥𝑖+1 − 𝑥𝑖 ∥≤ ∑𝑘+𝑛−1

𝑖=𝑘 𝑔𝑎,𝑏(𝑎𝑖)𝜂𝑖  

                                                 ≤ 𝑔𝑎,𝑏(𝑎0) ∑𝑘+𝑛−1
𝑖=𝑘 𝜂𝑖 ≤ 𝛥𝑘𝛾

6𝑘−1

5
1−(𝛥𝛾6𝑘

)𝑛

1−𝛥𝛾6𝑘 𝜂0                          (65) 

 

so that, {𝑥𝑘} is a cauchy sequence. Therefore, it reaches to the required solution 𝑥∗. By taking 𝑛 → ∞ we 

obtain the estimation:  

∥ 𝑥𝑘 − 𝑥0 ∥≤ 𝑔𝑎,𝑏(𝑎0)𝛥𝑘𝛾
6𝑘−1

5
1

1 − 𝛥𝛾6𝑘 𝜂. 

  

Taking 𝑘 = 0 in Equation (65) and 𝑛 → ∞, we have  

∥ 𝑥∗ − 𝑥𝑘 ∥≤ 𝑅𝜂0. 
  

Then, 𝑥∗ ∈ 𝐵(𝑥0, 𝑅𝜂0).  
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Firstly, we illustrate that 𝑥∗ is a solution of (1). Since  

∥ 𝛤𝑛 ∥≤∥ 𝛤𝑛 − 𝛤0 ∥ +∥ 𝛤0 ∥ ≤ 𝑀 ∥ 𝑥𝑛 − 𝑥0 ∥ +∥ 𝛤0 ∥ ≤ 𝑀𝑅𝜂0+∥ 𝛤0 ∥, 
  

and boundedness of Γ𝑛 and convergence of ∥ Γ𝑛ℱ(𝑥𝑛) ∥ to 0 follow immediately. This implies that  

∥ ℱ(𝑥𝑛) ∥≤∥ ℱ′(𝑥𝑛) ∥∥ 𝛤𝑛ℱ(𝑥𝑛) ∥→ 0, 

  

and, by the continuity of ℱ, we get that 𝑥∗ is a solution of (1). 

 

For uniqueness of 𝑥∗, firstly we see that 𝑦∗ ∈ 𝐵 (𝑥0,
2

𝑀𝛿
− 𝑅𝜂) ∩ 𝛺, by Lemma  

 

𝑅𝜂 <
1

𝑎0
𝜂 < (

2

𝑎0
− 𝑅) 𝜂 =

2

𝑀𝛿
− 𝑅𝜂,  

 

and 𝐵 (𝑥0,
2

𝑀𝛿
− 𝑅𝜂) ∩ 𝛺 ⊇ 𝐵(𝑥0, 𝑅𝜂). 

 

Let 𝑦∗ ∈ 𝐵 (𝑥0,
2

𝑀𝛿
− 𝑅𝜂) ∩ 𝛺 is another zero of ℱ(𝑥). By Taylor theorem, we have  

∫
1

0
ℱ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗))𝑑𝑡(𝑦∗ − 𝑥∗) = ℱ(𝑦∗) − ℱ(𝑥∗) = 0                                                                  (66) 

 

As  

∥ 𝛤0 ∥∥ ∫
1

0
[ℱ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗)) − ℱ′(𝑥0)]𝑑𝑡 ∥ ≤ 𝑀𝛿 ∫

1

0
∥ 𝑥∗ − 𝑥0 + 𝑡(𝑦∗ − 𝑥∗) ∥ 𝑑𝑡 

                                                                 ≤ 𝑀𝛿 ∫
1

0
(𝑡 ∥ 𝑦∗ − 𝑥0 ∥ +(1 − 𝑡) ∥ 𝑥∗ − 𝑥0 ∥)𝑑𝑡 

                                                                 <
𝑀𝛿

2
(𝑅𝜂 +

2

𝑀𝛿
− 𝑅𝜂) = 1                                         (67) 

 

As a result of Banach’s lemma, it can be inferred that (∫
1

0
(ℱ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗))𝑑𝑡)

−1
 exists and which 

confirm the 𝑥∗ = 𝑦∗. 

 

4. Numerical Results 
Here, we conducted a computational analysis to illustrate their practical relevance. We compared our 

scheme with existing 6th-order methods, selecting the following approaches for evaluation: method given 

by Equation (8) from Abbasbandy et al. (2016), method given by Equation (14) from Hueso et al. (2015), 

and method given by Equation (6) from Wang and Li (2017). Additionally, we included method given by 

Equation (5) proposed by Lotfi et al. (2015) in our comparison. 

 

To conduct our computational examination, we selected three problems. In Example 4.1, we addressed a 

nonlinear integral equation (NIE), with the numerical outcomes depicted in Table 1. The numerical 

findings for the SC of the boundary value problem (BVP) discussed in Example 4.2 and computational 

outcomes are mentioned in Table 2. Finally, we analyzed the well-known Burgers’ equation in Example 

4.3, with the corresponding numerical findings mentioned in Table 3. 

 

In addition, we mentioned the computational OC (𝐶𝑂𝐶), which has been computed using the following 

formulas:  

𝜉 =
ln

∥𝑒𝜄+1∥

∥𝑒𝜄∥

ln
∥𝑒𝜄∥

∥𝑒𝜄−1∥

,    𝑒𝜄 = 𝑥𝜄 − 𝑥∗,        𝑓𝑜𝑟𝜄 = 1,2, … 
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or approximated COC (𝐴𝐶𝑂𝐶) Grau-Sánchez et al. 2011(a and b) by:  

𝜉∗ =
ln

∥𝑥𝜄+1−𝑥𝜄∥

∥𝑥𝜄−𝑥𝜄−1∥

ln
∥𝑥𝜄−𝑥𝜄−1∥

∥𝑥𝜄−1−𝑥𝜄−2∥

,    𝑓𝑜𝑟𝜄 = 2,3, …  

 

The termination criteria for the programming process are as follows: (𝑖)  ∥ 𝑥𝜄+1 − 𝑥𝜄 ∥< 𝜖, and (𝑖𝑖)  ∥
𝐹(𝑥𝜄) ∥< 𝜖, where 𝜖 = 10−150. All calculations were carried out using Mathematica 11 with multi-

precision arithmetic. We used the following weight functions:  

ℋ(𝑟(𝑥𝑘)) = 𝐼 −
3

4
𝑣𝑘 +

9

4
𝑣𝑘

2,

𝒲(𝑟(𝑥𝑘)) = 𝐼 −
3

2
𝑣𝑘 .

 

 

We can also select alternative weight functions, provided they satisfy the conditions outlined in the Lemma 

and Theorem. This approach allows us to generate numerous new 6th-order iterative schemes. 

 

The following describes the features of the computer machine that is used for programming: 

• Brand name: HP.  

• Operating System Build: 19045.2006.  

• Computer RAM: 8.00 GB.  

• Processor: i7(Intel)  

• Window Edition: Window 10, 64-bit.  

 

Example 4.1: We adopt the succeeding NIE:  

ℱ(𝑥)(𝑠) = 𝑥(𝑠) − 1 +
1

2
∫

1

0
𝑠 𝑐𝑜𝑠(𝑥(𝑡))𝑑𝑡                                                                                              (68) 

 

where, 𝑠 ∈ [0,1], 𝒳 = C[0,1], the space of continuous functions on [0,1] and 𝑥 ∈ 𝛺 = 𝐵(0,2) ⊂ 𝒳. Here, 

we use max-norm,  

∥ 𝑥 ∥= 𝑚𝑎𝑥
𝑠∈[0,1]

|𝑥(𝑠)|. 

 

We can easily see that the 1st, 2nd and 3rd order Fréchet derivatives of ℱ ∈ Ω. Therefore, we have  

∥ 𝐴2(𝑥) ∥≤
1

2
≡ 𝑀,    𝑥 ∈ 𝛺,    ∥ 𝐴3(𝑥) ∥≤

1

2
≡ 𝑁,    𝑥 ∈ 𝛺, 

∥ 𝐴3(𝑥) − 𝐴3(𝑦) ∥≤
1

2
∥ 𝑥 − 𝑦 ∥ ,    𝑥, 𝑦 ∈ 𝛺. 

 

 
Table 1. Comparison of error bounds for Example 4.1. 

 

k  Method (15)  Wang et al. (2011)  Zheng and Gu (2012)  

1 2.9 × 10−4  8.0 × 103  4.0 × 10−4  

2 1.4 × 10−22  4.5 × 10−10  7.0 × 10−21  

3 1.2 × 10−128  2.0 × 10−48  1.6 × 10−120  

 

Our method (15) exhibits lower error bounds as compared to the existing method. 

 

Choosing 𝑥(𝑡) = 4/3 as initial approximation, then we obtain  
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∥ ℱ(𝑥0) ∥≤
1

2
cos

4

3
. 

 

 Also, ∥ 𝐼 − ℱ′(𝑥0) ∥≤
1

2
sin

4

3
, then by Banach lemma, 𝛤0 exists and  

∥ Γ0 ∥≤
2

2−sin
4

3

≡ 𝛿.  

and it follows that  

∥ Γ0ℱ(𝑥0) ∥≤
cos

4

3

2−sin
4

3

≡ 𝜂.  

 

Therefore, we have , 

𝑎0 = 𝑀𝛿𝜂 ≤
𝑐𝑜𝑠

4

3

(2−𝑠𝑖𝑛
4

3
)2

,  

𝑒0 = 𝑁𝛿𝜂2 ≤
𝑐𝑜𝑠24

3

(2−𝑠𝑖𝑛
4

3
)3

,  

𝑐0 = 𝐿𝛿𝜂3 ≤
𝑐𝑜𝑠34

3

(2−𝑠𝑖𝑛
4

3
)4

.  

 

Then, we can compute  

𝑎0 = 0.222571 … < 𝜌 = 0.508641 …, 
 

and  

ℎ2(𝑎0)𝑝2(𝑎0, 𝑒0, 𝑐0) ≃ 0.00292569 < 1. 
 

Thus, the postulates of Theorem 3.1 are satisfied and hence, using the theoretical results proved in Section 

3, the solution 𝑥∗ lies in 𝐵(𝑥0, 𝑅𝜂), where 𝐵(𝑥0, 𝑅𝜂) = 𝐵(4/3,0.301185 … ). It is also confirmed that 

solution is unique and lies in 𝐵(4/3,1.75494) ∩ Ω. The error bounds comparison between the method in 

Equation (15) and the 6th-order methods by Wang et al. (2011) and Zheng and Gu (2012) is shown in 

Table 1 which depicts the superiority of the proposed method. 

 

Example 4.2: Boundary value problems (BVPs) are among the fundamental challenges in Mathematics, 

Physics, and Engineering (Sharma and Gupta, 2014). These problems involve solving differential 

equations that are subject to conditions set at specific points, typically at the boundaries of a given domain. 

For this reason, we selected the succeeding BVP (refer to (Kou et al., 2007) for further details):  

𝑢′′ + 𝑎2𝑢′2 = −1                                                                                                                                      (69) 

  

with 𝑢(0) = 0, 𝑢(1) = 1. By partitioning the closed interval [0,1] into ℓ segments, we obtain  

𝑢0 = 𝑢(𝛾0) = 0, 𝑢1 = 𝑢(𝛾1), 𝑢2 = 𝑢(𝛾2), … , 𝑢ℓ = 𝑢(𝛾ℓ) = 1, 
 

where, 𝛾ℓ+1 = 𝛾ℓ + ℎ, ℎ =
1

ℓ
. 

 

By applying discretization approach, we get  

𝑢′𝜏 =
𝑢𝜏+1 − 𝑢𝜏−1

2ℎ
,    𝑢′′𝜏 =

𝑢𝜏−1 − 2𝑢𝜏 + 𝑢𝜏+1

ℎ2
,    𝜏 = 1,2,3, … , 𝑝 − 1, 
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which proceed to the following SNES  

 

𝑢𝜏−1 − 2𝑢𝜏 + 𝑢𝜏+1 +
1

8
(𝑢𝜏+1

2 + 𝑢𝜏−1
2 − 2𝑢𝜏+1𝑢𝜏−1) + ℎ2 = 0                                                              (70) 

 

with 𝜇 =
1

2
. For 𝑝 = 111, the SNES 𝑥∗ given in Equation (70) mentioned above, the required solution is 

shown below:  

 

 

𝑥∗ = ( 0.01520 ⋯ ,0.03027 ⋯ ,0.04520 ⋯ ,0.05999 ⋯ ,0.07465 ⋯ ,0.08917 ⋯ ,

0.1035 ⋯ ,0.1178 ⋯ ,0.1319 ⋯ ,0.1459 ⋯ ,0.1598 ⋯ ,0.1735 ⋯ ,0.1871 ⋯ ,
0.2006 ⋯ ,0.2139 ⋯ ,0.2272 ⋯ ,0.2403 ⋯ ,0.2533 ⋯ ,0.2661 ⋯ ,0.2789 ⋯ ,
0.2915 ⋯ ,0.3040 ⋯ ,0.3164 ⋯ ,0.3286 ⋯ ,0.3407 ⋯ ,0.3528 ⋯ ,0.3647 ⋯ ,
0.3765 ⋯ ,0.3881 ⋯ ,0.3997 ⋯ ,0.4111 ⋯ ,0.4225 ⋯ ,0.4337 ⋯ ,0.4448 ⋯ ,
0.4558 ⋯ ,0.4667 ⋯ ,0.4774 ⋯ ,0.4881 ⋯ ,0.4986 ⋯ ,0.5091 ⋯ ,0.5194 ⋯ ,
0.5296 ⋯ ,0.5398 ⋯ ,0.5498 ⋯ ,0.5597 ⋯ ,0.5695 ⋯ ,0.5792 ⋯ ,0.5888 ⋯ ,
0.5983 ⋯ ,0.6076 ⋯ ,0.6169 ⋯ ,0.6261 ⋯ ,0.6352 ⋯ ,0.6442 ⋯ ,0.6530 ⋯ ,
0.6618 ⋯ ,0.6705 ⋯ ,0.6791 ⋯ ,0.6875 ⋯ ,0.6959 ⋯ ,0.7042 ⋯ ,0.7124 ⋯ ,
0.7205 ⋯ ,0.7284 ⋯ ,0.7363 ⋯ ,0.7441 ⋯ ,0.7518 ⋯ ,0.7594 ⋯ ,0.7669 ⋯ ,
0.7743 ⋯ ,0.7816 ⋯ ,0.7889 ⋯ ,0.7960 ⋯ ,0.8030 ⋯ ,0.8100 ⋯ ,0.8168 ⋯ ,
0.8236 ⋯ ,0.8302 ⋯ ,0.8368 ⋯ ,0.8433 ⋯ ,0.8497 ⋯ ,0.8560 ⋯ ,0.8622 ⋯ ,
0.8683 ⋯ ,0.8743 ⋯ ,0.8802 ⋯ ,0.8861 ⋯ ,0.8918 ⋯ ,0.8975 ⋯ ,0.9031 ⋯ ,
0.9085 ⋯ ,0.9139 ⋯ ,0.9192 ⋯ ,0.9245 ⋯ ,0.9296 ⋯ ,0.9346 ⋯ ,0.9396 ⋯ ,
0.9445 ⋯ ,0.9493 ⋯ ,0.9540 ⋯ ,0.9586 ⋯ ,0.9631 ⋯ ,0.9675 ⋯ ,0.9719 ⋯ ,

0.9761 ⋯ ,0.9803 ⋯ ,0.9844 ⋯ ,0.9884 ⋯ ,0.9924 ⋯ ,0.9962 ⋯ )𝑡𝑟

 

 

The (COC), iteration count, error differences across successive iterations, CPU time and absolute residual 

errors for Example 4.2 are illustrated in Table 2, with initial choice 𝑥0 = (0.9,0.9 ⋯
110

, 0.9)𝑡𝑟. 

 
Table 2. Computational results of Example 4.2. 

 

Methods  ∥ ℱ(𝑥3) ∥ ∥ 𝑥4 − 𝑥3 ∥ 𝑛 CPU Timing 𝜉∗ 

Abbasbandy et al. (2016)]  1.0 × 10−187 7.6 × 10−187 3 274.018 6.2268 

Lotfi et al. (2015) 8.5 × 10−146 1.7 × 10−143 3 110.052 5.4277 

Hueso et al. (2015)  4.0 × 10−136 3.2 × 10−135 3 175.773 5.2326 

Method (15)  4.2 × 10−197 3.2 × 10−196 3 155.117 6.2146 

 

(Our scheme given by Equation (15) not only achieves smaller absolute residual errors, reduced 

differences between successive iterations, and requires same number of iterations to reach the desired 

accuracy compared to existing methods, but it also demonstrates stable convergence order. In addition, 

there is no doubt that method proposed by Lotfi et al. (2015) consuming lower CPU time consumption as 

compared to our and existing ones but absolute residual errors and reduced differences between successive 

iterations belong to our method. Finally, we conclude that our scheme exhibits superior efficiency and 

compatibility compared to existing methods of the same convergence order.)  

 

Example 4.3: The two-dimensional Burger’s equation is among the most known equations in Physics, 

Mathematics, Engineering and applied sciences. It describes the evolution of velocity fields over the time, 

incorporating both convection and diffusion processes. As a result, we examine the 2-D Burger’s equation 

(Xiao and Yin, 2016) given by  
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𝜕2𝑝

𝜕2𝑢
−

𝜕𝑝

𝜕𝑡
+ 𝑝

𝜕𝑝

𝜕𝑢
+ 𝑔(𝑢, 𝑡) = 0,  

 

where, (𝑢, 𝑡) ∈ [0,1] × [0,1] and boundary hypotheses  

𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 0, 𝑝(𝑢, 0) = 10(𝑢2 − 𝑢), 𝑝(𝑢, 1) =
10

𝑒
(𝑢2 − 𝑢), 

 

where, 𝑔(𝑢, 𝑡) = −10𝑒−2𝑡[𝑒𝑡(𝑢2 − 𝑢 + 2) + 10𝑢(2𝑢2 − 3𝑢 + 1)]. The meaning of 𝑝𝑖,𝑗 = 𝑝(𝑢𝑖, 𝑡𝑗) is the 

estimated answer at the grid points of the mesh. Further, ℳ and 𝒩 represent the number of steps in the 𝑢-

direction and 𝑡-direction, respectively, with corresponding step sizes ℎ and 𝑘. By applying a finite 

difference discretization, we obtain a SNES derived from the given partial differential equation. Further, 

we utilize the central difference and backward difference schemes as follows:  
𝜕2𝑝

𝜕2𝑢
=

𝜕2𝑝

𝜕2𝑢
(𝑢𝑖, 𝑡𝑗) =

𝑝𝑖+1,𝑗−2𝑝𝑖,𝑗+𝑝𝑖−1,𝑗

ℎ2 , 

 

and 

 
𝜕𝑝

𝜕𝑢
=

𝑝𝑖+1,𝑗−𝑝𝑖−1,𝑗

2ℎ
,    

𝜕𝑝

𝜕𝑡
=

𝑝𝑖,𝑗+1−𝑝𝑖,𝑗−1

2𝑘
.  

 

To derive a complicated SNES of size 144 × 144, we choose ℳ = 𝒩 = 12. The desired solution, 

denoted as 𝑥∗ given below:  

 
𝑥∗ = ( −0.6575 ⋯ , −0.6088 ⋯ , −0.5637 ⋯ , −0.5220 ⋯ , −0.4833 ⋯ , −0.4475 ⋯ ,

−0.4144 ⋯ , −0.3837 ⋯ , −0.3553 ⋯ , −0.3290 ⋯ , −0.3046 ⋯ , −0.2821 ⋯ , −1.205 ⋯ ,
−1.116 ⋯ , −1.033 ⋯ , −0.9570 ⋯ , −0.8862 ⋯ , −0.8205 ⋯ , −0.7598 ⋯ , −0.7035 ⋯ ,
−0.6514 ⋯ , −0.6032 ⋯ , −0.5585 ⋯ , −0.5172 ⋯ , −1.643 ⋯ , −1.522 ⋯ , −1.409 ⋯ ,
−1.305 ⋯ , −1.208 ⋯ , −1.118 ⋯ , −1.036 ⋯ , −0.9594 ⋯ , −0.8883 ⋯ , −0.8226 ⋯ ,
−0.7617 ⋯ , −0.7053 ⋯ , −1.972 ⋯ , −1.826 ⋯ , −1.691 ⋯ , −1.566 ⋯ , −1.450 ⋯ ,
−1.342 ⋯ , −1.243 ⋯ , −1.151 ⋯ , −1.066 ⋯ , −0.9871 ⋯ , −0.9140 ⋯ , −0.8464 ⋯ ,
−2.191 ⋯ , −2.029 ⋯ , −1.879 ⋯ , −1.740 ⋯ , −1.611 ⋯ , −1.492 ⋯ , −1.381 ⋯ ,
−1.279 ⋯ , −1.184 ⋯ , −1.096 ⋯ , −1.015 ⋯ , −0.9404 ⋯ , −2.301 ⋯ , −2.130 ⋯ ,
−1.973 ⋯ , −1.827 ⋯ , −1.691 ⋯ , −1.566 ⋯ , −1.450 ⋯ , −1.343 ⋯ , −1.243 ⋯ ,
−1.151 ⋯ , −1.066 ⋯ , −0.9875 ⋯ , −2.301 ⋯ , −2.130 ⋯ , −1.973 ⋯ , −1.827 ⋯ ,
−1.691 ⋯ , −1.566 ⋯ , −1.450 ⋯ , −1.343 ⋯ , −1.243 ⋯ , −1.151 ⋯ , −1.066 ⋯ ,
−0.9875 ⋯ , −2.191 ⋯ , −2.029 ⋯ , −1.879 ⋯ , −1.740 ⋯ , −1.611 ⋯ , −1.492 ⋯ ,
−1.381 ⋯ , −1.279 ⋯ , −1.184 ⋯ , −1.096 ⋯ , −1.015 ⋯ , −0.9405 ⋯ , −1.972 ⋯ ,
−1.826 ⋯ , −1.691 ⋯ , −1.566 ⋯ , −1.450 ⋯ , −1.342 ⋯ , −1.243 ⋯ , −1.151 ⋯ ,
−1.066 ⋯ , −0.9871 ⋯ , −0.9140 ⋯ , −0.8464 ⋯ , −1.643 ⋯ , −1.522 ⋯ , −1.409 ⋯ ,
−1.305 ⋯ , −1.208 ⋯ , −1.119 ⋯ , −1.036 ⋯ , −0.9594 ⋯ , −0.8884 ⋯ , −0.8226 ⋯ ,
−0.7617 ⋯ , −0.7053 ⋯ , −1.205 ⋯ , −1.116 ⋯ , −1.033 ⋯ , −0.9571 ⋯ , −0.8862 ⋯ ,
−0.8206 ⋯ , −0.7598 ⋯ , −0.7036 ⋯ , −0.6515 ⋯ , −0.6032 ⋯ , −0.5585 ⋯ , −0.5172 ⋯ ,
−0.6575 ⋯ , −0.6088 ⋯ , −0.5637 ⋯ , −0.5220 ⋯ , −0.4834 ⋯ , −0.4476 ⋯ , −0.4144 ⋯ ,

−0.3837 ⋯ , −0.3553 ⋯ , −0.3290 ⋯ , −0.3046 ⋯ , −0.2821 ⋯ )𝑡𝑟

 

 

The (COC), iteration count, error differences across successive iterations, CPU time and absolute residual 

errors for Example 4.3 are illustrated in Table 3, by choosing 𝑥0 = (−1, −1, ⋯
141

, −1)𝑡𝑟. 
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(Our scheme given by Equation (15) achieves smaller residual errors, reduced differences between 

iterations, and stable convergence, while requiring the same number of iterations as existing methods. 

Though Lotfi et al.’s method consumes less CPU time, our method outperforms in terms of residual errors 

and iteration differences, demonstrating superior efficiency and compatibility.)  

 

Table 3. Computational results of Example (4.3). 
 

Methods  ∥ ℱ(𝑥3) ∥ ∥ 𝑥4 − 𝑥3 ∥ 𝑛 CPU Timing 𝜉∗ 

Abbasbandy et al. (2016)]  2.4 × 10−208 9.1 × 10−211 3 1595.51 6.2955 

Lotfi et al. (2015) 1.0 × 10−147 2.0 × 10−149 4 665.138 5.1818 

Hueso et al. (2015) 1.7 × 10−145 1.3 × 10−147 4 1122.6 5.4736 

Method (15) 3.9 × 10−217 1.4 × 10−219 3 822.798 6.2224 

 

 

5. Conclusion 
We introduced a novel 6th-order convergence (6th-OC) scheme for solving scalar equations by adopting 

the weight function approach. This approach provides flexibility in constructing new schemes of the same 

order. The proposed method is extended to SNES using the BS operator. Additionally, we suggested its 

semi-local convergence, which is rigorously analyzed based on the recurrence relations approach. To 

validate the efficiency and effectiveness of our scheme, we have applied it to three problems in applied 

science: an integral equation, a boundary value problem transformed into a 121 × 121 and the two-

dimensional Burger’s equation has been converted into a 144 × 144 SNES. The results obtained 

demonstrates that our technique outperforms existing schemes of similar convergence order. 

 

Our scheme achieved smaller absolute residual errors, reduced differences between successive iterations, 

and required fewer iterations to reach the desired accuracy. Further, it also demonstrated lower CPU time 

consumption and stable convergence order. All the above advantages make it a robust and efficient method 

for solving complex nonlinear problems. Therefore, we conclude that our scheme has broader applications 

in applied mathematics and computational science.  
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