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Abstract 

Reliability and ranking estimation of complex systems such as Wind Turbine plant (WTP) is essential for their efficient operation 

and vulnerability to the operational issues and conditions. Thus, this paper addresses the importance of the reliability assessment 

of a wind turbine plant incorporating both the routine as well as preventive maintenance strategies using Fuzzy logic. Wind turbines, 

which are used for the power generation through renewable sources of energy, require effective reliability analysis for the optimal 

level of performance. For this, generalized trapezoidal fuzzy numbers (GTFNs) are introduced with certain level of confidence. 

Lambda-Tau methodology together with GTFNs and associated mathematical operations have been employed for calculating the 

different performance measures e.g. Reliability, Availability, Maintainability, Mean Time to Failure, Mean Time to Repair, Mean 

Time Between Failure, Expected Number of Failure (ENOF) of the wind turbine plant. Authors also performed ranking analysis 

for the components of WTP to determine the key components of the same. The outcome of the study can be considered as a valuable 

reference to the maintenance team to plan strategy in a better way. Based on the results, it can be concluded that this methodology 

is highly effective for the performance analysis of WTP system. Additionally, the authors have outlined the future scope of the 

research work at the end of the conclusion section. 

 

Keywords- Wind turbine plant, GTFNs, Reliability indices, Lambda-Tau methodology, Ranking, Fault tree.  

 

 

 

1. Introduction 
Reliability analysis is a significant way to understand how the lifecycle of a system’s performance behaves. 

It is a process which monitors the change in reliability measures of a system with respect to time, wear tear 

out of its different components, maintenance practices and operational conditions. It is therefore important 

to calculate the different reliability measures of a system to forecast different failures/repairs which leads 

in a better understanding for planning of some realistic maintenance strategies. On the other hand, 

sensitivity analysis seeks to establish the level at which the changes of specific components failure impact 

the overall performance of the system. If one knows how sensitive each component is, in the event of a 

disturbance it tells what components failure can be manipulated to increase overall reliability. Collectively 

these analytical tools provide useful recommendations not only on the aspect of reliability. 

 

The use of fuzzy logic in the reliability theory has received a lot of interest in the field of engineering 

especially in performance analysis of different complex systems (Benhamida et al., 2025; Chachra et al., 

2024; Khajuria et al., 2025; Kharola et al., 2022). In recent years many papers published which address the 

use of different fuzzy methodologies to improve the performance of complex systems. Kumar and Dhiman 
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(2020) have developed a reliability analysis method based on trapezoidal fuzzy numbers and their 

operations for transition from point to interval estimate. That is why this approach provide a better 

understanding of the uncertainty in reliability assessment of the system. However, Dhiman and Kumar 

(2020) used fuzzy lambda-tau methodology to examine the RAM indices in skim milk powder plant 

considering human failure and conclude that the human factors/error should be included in reliability 

models, which is not usually done in practice. In continuation of this, Kumar and Dhiman (2023) proposed 

an analytical framework for Injection Moulding Machine to quantify the reliability, availability, MTTF, 

MTTR, MTBF, ENOF by using Right Triangular Generalised Fuzzy Numbers (RTrGFN). The inclusion 

of RTrGFNs brings a level of assurance into the estimation process as it deals with vagueness in data. 

Reliability, Availability and Maintainability (RAM) analysis of a screening unit of a paper industry with 

the help of fuzzy numbers has been done by Garg et al. (2012). The studies adopted Artificial Bee Colony-

based Lambda-Tau (ABCBLT) method and conclude that it had a positive impact in minimizing the 

uncertainty levels related to the RAM parameter.  

 

For wind energy systems, there exist number of works that employed the fuzzy methodologies in order to 

improve the reliability. Akhtar and Kirmani (2020) used FFTA to assess the reliability of wind energy 

systems with the help of operational failures and errors by considering them in fuzzy environment. They 

came up with a fuzzy risk index to enable them to perform an extensive risk analysis and proved that fuzzy 

logic is efficient in dealing with uncertainties. Aikhuele (2018) proposed a flexible model with the help of 

the Triangular Intuitionistic Flexibility Ranking and Aggregating (TIFRA) operator for failure detection 

and reliability management of wind turbines where the primary focus was on the areas of failure and the 

researchers described the faults in the system in detail. Gao et al. (2018) analysed fuzzy reliability through 

universal generating function by considering failure dependence, multiple load effects and strength 

degradation. These dynamic models made a substantial development in the calculation of the system 

reliability. This approach was later expanded by Huang et al. (2021) to evaluate the reliability of doubly 

fed induction generators in wind turbine systems. The integration of fuzzy numbers in unfolding system’s 

states improved the reliability especially for those systems that described the components using trapezoidal 

fuzzy numbers. Ali et al. (2023) suggested a fault tree analysis technique integrated with the log-linear 

proportional intensity model to optimize failure probability, failure rate and mean time to failure of wind 

turbines. This method helped to identify the components which were most affected by the poor repair 

quality and to define preventive maintenance actions.  

 

In recent years, various method proposed to enhance the reliability and performance of networks and 

systems. Joshi et al. (2022) proposed a Markov-based mathematical model for a P2P network to evaluate 

availability, reliability, and MTTF And identified critical components. Ram et al. (2024b) introduced a 

Programmable Logic Controller (PLC) based system and its reliability is computed from universal 

generating function technique. In the realm of stochastic-flow networks, Forghani-Elahabad and Mahdavi-

Amiri (2013) proposed a simple algorithm for finding all minimal path vectors in stochastic-flow networks 

and demonstrated that this algorithm more efficient than the existing algorithm. Forghani-Elahabad (2021) 

discussed the key exact methods for evaluating the reliability of multistate flow networks (MFNs) using 

minimal cuts (MCs) and minimal paths (MPs). Expanding on this work, Forghani-Elahabad (2022) 

examined the quickest path reliability problem and the reliability of two and k disjoint minimal paths 

(DMPs), presenting algorithms with benchmark examples and their complexity analyses. It also introduces 

related optimization problems for finding the most reliable DMPs. 

 

In literature researchers has also discussed safety and failure prediction techniques in wind turbine. 

Parthasarathy and Narayanan (2014) pointed out that safety engineering is crucial for large-scale wind 

turbines and introduced the basic analysis methods for assessing the safety of the same. Xiao et al. (2019) 
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employed radar charts and support vector machines for fault prediction in wind turbines with a high 

accuracy. Zhu et al. (2019) proposed a method based on fuzzy synthesis for the real-time evaluation of wind 

turbine gearbox conditions, the proposed method give higher accuracy in determining the operating state 

and possible failure for gear box of the turbine. Li et al. (2022) proposed an advanced FMEA method for 

the offshore wind turbines based on the large amount of data analysis and suggest optimal strategies to 

system engineers to avoid the failure and improve its performance. On the other hand, Hosseini et al. (2022) 

provide application of fuzzy logic in pitch angle control for a wind turbine to improve power system 

oscillation and found that the fuzzy controller minimizes the power oscillation and optimizes the turbine 

dynamic. Other studies like Li et al. (2020) investigated the reliability of the wind turbines, including 

control strategies and environmental factors, by using the survival signature and FMEA. A new FMEA 

approach based on the fuzzy MCDM technique with spherical fuzzy sets was suggested by Ghoushchi et 

al. (2022). Kang et al. (2019) worked on the reliability assessment of the FOWT by performing the FTA to 

assess the risk of failure due to marine environment and determine the main causes of Failure for the same. 

In recent research, Rezamand et al. (2019) have proposed an analysis of wind turbine generator reliability, 

based on the different life data analyses, for optimizing the effect of the electrical loads on reliability. Liu 

et al. (2023) have proposed fatigue reliability assessment method based on continuous time Bayesian 

network and FEA.and its performance is verified by a comprehensive analysis with the results of discrete 

time Bayesian networks. Later on, Ram et al. (2024a) focused on evaluating the reliability of a wind turbine 

drive system under three repair policies using analytical methods applicable to any maintainable system. A 

bivariate stochastic process with a copula function is proposed for modelling repairs, and the Markov 

approach with the supplementary variable technique is used for time-dependent reliability and failure 

analysis. Furthermore, Gaidai et al. (2024) apply bivariate modified Weibull method to assess extreme 

operational loads on a 10-MW floating wind turbine's drivetrain, considering cross-correlated forces and 

environmental effects. 

 
Table 1. Related work review. 

 

References Objectives Area Methodology Solution algorithm 

Dhiman and 

Kumar (2020) 

Investigated RAM indices in skim 

milk powder plant with human 

mistakes. 

Industrial system 

reliability 

Fuzzy lambda-tau 

methodology 

Arithmetic operations 

on fuzzy numbers 

Kumar and 

Dhiman (2023) 

Analysis of reliability, availability, 

MTTF, MTTR, MTBF, and ENOF 

for an injection moulding machine. 

Manufacturing 

system reliability 

Right triangular 

generalized fuzzy numbers 

(RTrGFN) 

Fuzzy arithmetic with 

confidence level 

Akhtar and 
Kirmani (2020) 

Evaluates the reliability of wind 
energy systems, integrating 

operational failures and errors. 

Wind energy systems Fuzzy fault tree analysis 
(FTA) 

Fuzzy risk index for 
risk analysis 

Gao et al. (2018) Explores fuzzy reliability models for 
multistate systems using UGF. 

Multi-state systems 
(wind turbines) 

Fuzzy universal generating 
function (FUGF) 

Dynamic modeling 
using UGF 

Huang et al. 

(2021) 

Assesses the reliability of doubly fed 

induction generators in wind turbine 

systems. 

Wind turbine systems Fuzzy universal generating 

function (FUGF) with 

trapezoidal fuzzy numbers 

Multi-state system 

(MSS) assessment 

Ali et al. (2023) Improves failure probability, failure 

rate, and MTTF for wind turbines 

with imperfect repairs. 

Wind turbines Fault tree analysis (FTA) 

with log-linear proportional 

intensity model (LPIM) 

Preventive 

maintenance planning 

Asghari et al. 
(2015) 

Comparative analysis of static and 
dynamic fault tree models for wind 

turbine systems. 

Wind turbine systems 
 

Static fault tree (SFT) and 
dynamic fault tree (DFT) 

Monte carlo simulation 
for DFT 

Kang et al. (2019) Evaluates reliability and failure of 
floating offshore wind turbines. 

Floating offshore 
wind turbines 

Fault tree analysis (FTA) Risk assessment of 
marine conditions 

Li et al. (2022) Provides recommendations for 

offshore wind turbine design to 

prevent failures. 

Offshore wind 

turbines 

Improved FMEA based on 

extensive data analysis 

Specialist knowledge 

integration 

Presented work Performance analysis and ranking 

of different components of a wind 

turbine plant. 

Wind turbine plant Generalized trapezoidal 

fuzzy number 

Lambda-tau 

methodology  

and ranking 
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Based on the literature review it is evident that, despite a decent progress made in reliability analysis, 

through different approaches, for complex systems such as wind turbines, there is still a need of combining 

the fuzzy logic with the conventional reliability analysis. More work has to be done to develop these models 

and to generalize them to other industrial fields in order to provide effective reliability predictions under 

uncertainty.  

 

To clearly define the focus of the present study, the authors have summarized the related work on fuzzy 

reliability, along with the corresponding solution approaches, in Table 1. 

 

1.1 Area of Further Investigation 
The authors have conducted a critical review of previous research and found that the  

• Existing studies lack a combined analysis of both regular and preventive maintenance strategies in wind 

turbine reliability assessment. 

● limited work is reported for the modelling of wind turbine plant application through Trapezoidal Fuzzy 

Numbers (TFN). 

● Comprehensive analysis for a wind turbine plant is needed to evaluate the performance behaviour, and 

ranking of the same. 

● The Lambda-Tau methodology is underutilized in the fuzzy reliability analysis of wind turbine systems. 

 

Keeping the above point in mind here author proposed a novel study which is focused to integrate fuzzy 

modelling, performance evaluation, and both maintenance strategies for wind turbines plant using fault tree 

analysis, TFN and Lambda-Tau methodology to evaluate different reliability measures for the same. In this 

paper author introduces a new method for assessing the reliability and ranking of wind turbine plants using 

fuzzy numbers (GTFNs) and the Lambda-Tau methodology. This method offers a more reliable and 

adaptable framework for wind turbine plants compared to traditional methods. The main reason for using 

this framework is to handle the uncertainty in real data from wind turbine systems. Traditional methods use 

fixed numbers, but in real life, the data is not always exact. So, we used GTFNs with the Lambda-Tau 

methodology, To better model reliability under uncertain conditions. 

 

The paper is structured as follows: Section 2 provides a description of the wind turbine plant. Section 3 

presents the nomenclature used throughout the paper. Section 4 introduces the fault tree of the wind turbine 

plant. Section 5 outlines the proposed methodology. Section 6 discusses the computational analysis. Section 

7 explains the solution methodology, while Section 8 presents the results and discussion. Finally, Section 

9 concludes the paper by summarizing the key findings. 

 

2. Description of a Wind Turbine Plant 
A wind turbine plant is a vital technology harnessing renewable wind energy to generate electricity. 

Interconnected components seamlessly transform kinetic wind energy into electrical energy. Understanding 

each component's role optimizes performance and ensures reliability of a wind turbine plant. The Wind 

Turbine plant contains the following main components. (Refer Figure 1). 

Blades: The aerodynamically shaped blades primarily capture wind energy, efficiently converting its 

rotational kinetic energy into mechanical motion. Blade efficiency directly impacts overall output, so proper 

design enhances energy harvesting. 

Pitch system: It adjusts blade angles to control rotational speed and optimize energy capture. By altering 

pitch, it handles varying winds, ensuring efficient, safe operation. 

Hub: It connects blades to the main shaft, playing a crucial role in transmitting the mechanical energy to 

the gearbox.  

Gearbox: The gearbox is vital for increasing the rotational speed from the low-speed shaft, which is 
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attached to the blades, to the high-speed shaft, which is connected to the generator. It contains two main 

subcomponents as bearing and gears. Bearings take the load lessen friction and make sure the internal parts 

spin smoothly and last longer. Gears amplify the leisurely rhythms of the spinning blades to the quick paces 

compelling the generator. In synchronizing speed and torque, they are the key to transforming one kind of 

motion into another, converting the sweeping rotations atop into the pulsing currents that flow from the 

stalk. 

Brake: The brake in a wind turbine is a mechanical component which is connected to the high-speed shaft 

that helps reduce rotational speed or stop the turbine in emergencies. Wind turbines are designed not to 

operate above certain wind speeds to prevent damage from strong winds and excessive loads. A disc brake 

can be activated in three ways: mechanically, electrically, or hydraulically. This allows the rotor to be 

stopped safely during emergencies, maintenance, or when it exceeds a set speed threshold. 

 

 
 

Figure 1. Structure of a wind turbine. 
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Generator: A wind turbine's generator transforms the rotor's mechanical energy into electrical energy. The 

most common types of generators used are induction generators (IGs), doubly fed induction generators 

(DFIGs), and permanent magnet synchronous generators (PMSGs). Permanent magnet generators are more 

efficient and require less maintenance compared to induction generators, but they are also more expensive. 

Most wind turbines use either a permanent magnet generator or an induction generator for power generation. 

Control system: The control system is the brain of the wind turbine. It constantly checks the turbine's 

condition to ensure everything is working properly. The controller adjusts the pitch of the blades and the 

direction of the yaw system to capture the most power from the wind. This helps the turbine operate 

efficiently and safely. 

Yaw system: The yaw system rotates the turbine to face the wind direction, optimizing energy capture. It 

consists of two main subcomponents which are yaw driver and yaw motor. Yaw driver rotates the entire 

turbine nacelle to align it with the wind direction, ensuring optimal energy capture while yaw motor 

provides the necessary force to rotate the yaw system.  

Transformer: In a wind turbine, transformers adjust the electrical voltage. They take in AC power at a 

certain voltage and adjust it according to their requirements. In order to lower power losses during long-

distance transmission, a step-up transformer increases voltage. Transformers decrease the voltage when 

power enters a community, ensuring that homes and other structures are safe. This guarantees that everyone 

can use the electricity efficiently. 

Tower: A wind turbine's tower generally consists of tubular or lattice-shaped galvanized steel, though some 

parts may also be built of concrete. It supports the rotor, nacelle, blades, and other wind turbine equipment. 

Tower heights are typically equivalent to the rotor's diameter, guaranteeing that the turbine can capture the 

best wind speeds for producing electricity. 

 

2.1 Common Faults in Wind Turbine Plant 
Wind turbine plant is made up of different parts and each of these parts can experience some faults which 

in turn have an impact on the performance of the turbine as well as the amount of power generated. Listed 

below are some of the possible faults of each component, their source, and effects on the operation of the 

system. 

Blades: Failure of blades is caused by fatigue of the used material, severe weather conditions, and 

manufacturing imperfections. When blades fail, the rotor ends up being off balance and this means that the 

efficiency is lowered and if the failure is huge then there could be severe structural damage. 

Pitch system: Some of the difficulties occurring in the pitch system are as a result of hydraulic faults, 

electrical issues or mechanical damage. If the pitch system does not respond, the blades cannot change the 

angle of the power that they deliver and this means that less power is being transferred. 

Hub: Fatigue due to varying stresses in material and poor fastening during assembly often results to 

formation of cracks in the turbine hubs, which is an indication of mechanical divisions. If the blades detach 

from such failures, the rotor and other internal parts will receive many damages to break energy production. 

Gearbox: Gearbox failure in wind turbines can be caused by multiple factors. High loads from changing 

wind speeds, direction shifts, and turbulence put stress on gearbox components. Continuous use leads to 

wear and tear on subcomponents, such as gears and bearings. A lack of proper lubrication can result in 

overheating and damage to these components. Poor maintenance can allow small issues to escalate into 

major problems, eventually leading to gearbox failure. 

Brakes: Some of the brake malfunctions caused by wearing reducing friction pads, hydraulic leaks draining 

line pressure, or mechanical defects in sliding parts occur frequently.  

Generator: Some electrical faults interrupt the flow of current, other faults allow current to flow through 

an insulation, and high temperatures beyond the tolerance level often lead to the breakdown of a generator. 

A troubled generator is one that results in loss of output.  

Control system: Discrepancies in a control system can be due to software issues, problem with sensor, or 
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communication issues. In the event that the control system is not functioning as expected, there is a 

possibility that the turbine will not be operating as it should, or not operate at all, thus, cutting down on 

production and putting pressure on other components. 

Yaw system: Mechanical wear on the yaw driver/motor often leads to yaw system failures. Problems 

associated with the yaw motor or driver cause improper wind-alignment as well as inefficiency and 

additional structural stress due to the improper alignment of the wind. 

Transformer: Common root-causes of transformers comprise of insulation breakdowns, overheating, and 

electrical troubles. An inadequate transformer reduces the efficiency of conversion to the grid level, thus 

the turbine system’s performance is affected. 

Tower: Despite such rarity, tower failures can arise from structural fatigue, problems with the foundation 

or adverse weather conditions. This would result into the complete destruction of the wind turbine since the 

tower would collapse leading to high level of harm and risks.  

 

Any of these malfunctions can significantly affect the performance of a turbine, reduce efficiency, increase 

maintenance costs and even pose a risk to safety. 

 

3. Nomenclature 
Table 2 provides the definitions of the symbols, which retain their conventional meanings and are 

consistently used throughout the paper. 

 
Table 2. Nomenclature. 

 

Symbols Description 

Ω  Level of confidence 

ωmin  lowest of all ω 

λComponent  Failure rate of each component 

τComponent  Repair time of each component 

λWT  Failure rate of wind turbine 

τWT  Repair time of wind turbine 

𝑅𝑊𝑇  Reliability of wind turbine 

MTTF Mean time to failure 

MTTR Mean time to repair 

MTBF Mean time between failures 

𝐴𝑊𝑇  Availability of the wind turbine system 

𝑀𝑊𝑇  Maintainability of the wind turbine system 

ENOF Expected number of failures 

𝜆𝐵𝐿/𝜆𝑃𝑆/𝜆𝐻/𝜆𝐵𝐸/𝜆𝐺/𝜆𝐵𝑅𝜆𝐺𝐸 

/𝜆𝐶𝑆/𝜆𝑌𝐷/𝜆𝑌𝑀/𝜆𝑇𝑅/𝜆𝑇𝑂 

Failure rate of blade/ Pitch system/ Hub/ Bearing/ Gear/ Brake/ Generator/ Control system/ Yaw 

Driver/ Yaw motor/ Transformer/ Tower 

𝜆𝐵𝐿/𝜆𝑃𝑆/𝜆𝐻/𝜆𝐵𝐸/𝜆𝐺/𝜆𝐵𝑅𝜆𝐺𝐸  

/𝜆𝐶𝑆/𝜆𝑌𝐷/𝜆𝑌𝑀/𝜆𝑇𝑅/𝜆𝑇𝑂  

Repair time of blade/ Pitch system/ Hub/ Bearing/ Gear/ Brake/ Generator/ Control system/ Yaw 

driver/ Yaw motor/ Transformer/ Tower 

 
 

4. Fault Tree for Wind Turbine Plant  
The main components of a wind turbine plant are the Blade, Pitch system, Hub, and Gearbox, which 

includes the subcomponents Bearing and Gear, along with the Brake, Generator, Control system, and Yaw 

system, which consists of the subcomponents Yaw driver and Yaw motor, as well as the Transformer and 

Tower. All these components are interconnected in a series system, meaning the failure of any single 

component leads to the failure of the entire system. Considering their interconnection in the overall 

performance of a wind turbine plant (WTP), the author has developed a fault tree for the wind turbine 

system, as shown in Figure 2. 
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Figure 2. Fault tree diagram of WTP. 

 

 

5. Proposed Methodology 
In this study, Generalized Trapezoidal Fuzzy Numbers (GTFNs) are used to model uncertainty in failure 

and repair data because it is modest to apply and easy to understand. Our main aim was to handle uncertainty 

in failure and repair data of the wind turbine system without making the model too complicated. Methods 

like intuitionistic fuzzy, neuromorphic fuzzy, or picture fuzzy involve extra parameters, which were not 

necessary for our study. GTFNs allowed us to manage uncertainty effectively and perform reliability and 

ranking analysis in an easier way.  

 

5.1 Generalized Trapezoidal Fuzzy Number 

A fuzzy number 𝐹̃ =⟨(𝛿1, 𝛿2, 𝛿3, 𝛿4;𝜔), 𝛿𝑖 ∈ 𝑅⟩ is said to be the generalized trapezoidal fuzzy number if the 

following properties are satisfied by the membership function.  

• 𝐹̃ is continuous function. 

• 𝐹̃ is zero for all 𝑥 ∈ (−∞, 𝛿1) ∪ (𝛿4, ∞). 
• 𝐹̃ is strictictly increasing on [𝛿1, 𝛿2] and strictictly decreasing on [𝛿3, 𝛿4]. 
• 𝜇𝐹̃(𝑥) = 𝜔 for all 𝑥 ∈ [𝛿2, 𝛿3] where 0 < 𝜔 ≤ 1. 

 

If 𝜔 = 1, then it is a normal fuzzy number otherwise generalized trapezoidal fuzzy number.  
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With the membership function as, its graphical representation is given in Figure 3. 

𝜇𝐹̃(𝑥) =

{
 
 

 
 (

𝑥−𝛿1

𝛿2−𝛿1
)𝜔 ; 𝛿1 ≤ 𝑥 < 𝛿2

𝜔 ; 𝛿2 ≤ 𝑥 < 𝛿3

(
𝛿4−𝑥

𝛿4−𝛿3
)𝜔 ; 𝛿3 ≤ 𝑥 < 𝛿4

0  ;          otherwise 

  

 

 

 
 

Figure 3. Generalized Trapezoidal fuzzy number. 

 

 

5.2 Alpha-Cut 

The alpha-cut of the generalized trapezoidal fuzzy number 𝐹̃ =(𝛿1, 𝛿2, 𝛿3, 𝛿4;𝜔) is the closed interval. 

𝐹̃ = [𝐹̃(𝛼)
(𝐿)
, 𝐹̃(𝛼)

(𝑅)
] = [𝛿1 +

𝛼

𝜔
(𝛿2 − 𝛿1) , 𝛿4 −

𝛼

𝜔
(𝛿4 − 𝛿3)]  𝛼 ∈ [0, 𝜔]                                                      (1) 

 

Its graphical representation is given in Figure 4. 

 

 
 

Figure 4. Pictorial representation of alpha-cut of GTFN. 
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5.3 Fuzzy Arithmetic Operations for Generalized Trapezoidal Fuzzy Number  
In this section, we discuss four operations (addition, subtraction, multiplication, and division) for two 

generalized trapezoidal fuzzy numbers using the alpha-cut method (interval method) (Mukherjee et al., 

2023). 

 

Suppose 𝐹1̃ =(𝛿1, 𝛿2, 𝛿3, 𝛿4;𝜔1) and 𝐹2̃ =(𝜂1, 𝜂2, 𝜂3, 𝜂4;𝜔2) be two generalized trapezoidal fuzzy numbers 

with different levels of satisfaction 𝜔1 and 𝜔2 where 0 ≤ 𝜔1 < 𝜔2 ≤ 1 then 𝜔-cut of the fuzzy number 𝐹̃1 

and 𝐹̃2 Transforms into new generalized trapezoidal fuzzy numbers 𝐹̃1
∗
 and 𝐹̃2

∗
 as follows 

 

𝐹1̃
∗
 = (𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4;𝜔1) = (𝛿1, 𝛿2, 𝛿2, 𝛿4;𝜔1) = 𝐹1̃ and 𝐹2̃

∗
 = (𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4;𝜔2) 

 

where, 𝛿2
∗ = 𝛿1 +𝜔𝑚𝑖𝑛 (

𝛿2−𝛿1

𝜔1
) = 𝛿2 and 𝛿3

∗ = 𝛿3 −𝜔𝑚𝑖𝑛 (
𝛿3−𝛿2

𝜔1
) = 𝛿2, 

𝜂2
∗ = 𝜂1 +𝜔𝑚𝑖𝑛 (

𝜂2−𝜂1

𝜔1
) , 𝜂3

∗ = 𝜂4 −𝜔𝑚𝑖𝑛 (
𝜂4−𝜂3

𝜔1
). 

 

5.3.1 Addition  

Suppose 𝐹1̃
∗
 =(𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4;𝜔1) and 𝐹2̃

∗
 =(𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4;𝜔2) then addition of two generalized trapezoidal 

fuzzy numbers with two distinct confidence level generates a generalized trapezoidal fuzzy number and 

defined by  

 

𝐹1̃
∗
+ 𝐹2̃

∗
= (𝛿1 + 𝜂1, 𝛿2

∗ + 𝜂2
∗ , 𝛿3

∗ + 𝜂3
∗ , , 𝛿4 + 𝜂4;𝜔1). 

 

5.3.2 Subtraction  

Suppose 𝐹1̃
∗
 = (𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4;𝜔1) and  𝐹2̃

∗
 = (𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4;𝜔2) then subtraction of two generalized 

trapezoidal fuzzy numbers with two distinct confidence level generates a generalized trapezoidal fuzzy 

number and defined by  

 

𝐹1̃
∗
− 𝐹2̃

∗
= (𝛿1 − 𝜂4, 𝛿2

∗ − 𝜂3
∗ , 𝛿3

∗ − 𝜂2
∗ , , 𝛿4 − 𝜂3;𝜔1). 

 

5.3.3 Multiplication  

Suppose 𝐹1̃
∗
 = (𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4;𝜔1) and  𝐹2̃

∗
 = (𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4;𝜔2) then multiplication of two generalized 

trapezoidal fuzzy numbers with two distinct confidence level generates a generalized trapezoidal fuzzy 

number and defined by  

 

𝐹1̃
∗
× 𝐹2̃

∗
= (𝛿1 × 𝜂1, 𝛿2

∗ × 𝜂2
∗ , 𝛿3

∗ × 𝜂3
∗ , , 𝛿4 × 𝜂4;𝜔1), if 𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4, 𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4 are all positive real 

numbers. 

 

5.3.4 Division  

Suppose 𝐹1̃
∗
 = (𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4;𝜔1) and  𝐹2̃

∗
 = (𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4;𝜔2) then division of two generalized trapezoidal 

fuzzy numbers with two distinct confidence level generates a generalized trapezoidal fuzzy number and 

defined by  

 
𝐹1̃
∗

𝐹2̃
∗ = (

𝛿1

𝜂4
,
𝛿2

𝜂3
∗ ,
𝛿3

𝜂2
∗ ,
𝛿4

𝜂1
, 𝜔1), if 𝛿1, 𝛿2

∗, 𝛿3
∗, 𝛿4, 𝜂1, 𝜂2

∗ , 𝜂3
∗ , 𝜂4 are all nonzero positive real numbers. 
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5.4 Defuzzification 
Defuzzification is the process which converts the fuzzified values back into a crisp value. In certain 

scenarios, the output of a fuzzy process needs to be represented as a precise single value rather than a fuzzy 

set. Defuzzification transforms a fuzzy quantity into a specific value, much like fuzzification converts a 

precise value into a fuzzy set. There are different ways to defuzzify data. Some common methods include 

the mean area method, weighted average method, maximum membership degree, and centroid method. The 

best method depends on the problem and its specific requirements, like accuracy, computational efficiency, 

and easier for understanding. The centroid method is the most common and useful for real-world problems 

because it finds a balanced result by averaging all possible values in the fuzzy set. 

 

Defuzzification of a generalized trapezoidal fuzzy number 𝐹1̃ = (𝛿1, 𝛿2, 𝛿3, 𝛿4;𝜔1) is denoted by 𝑑∗and is 

defined by 𝑑∗ =
𝛿1+𝛿2+𝛿3+𝛿4

4
. 

 

5.5 Ranking of the Component of the Wind Turbine System 
Ranking is one of the system’s performance measures, which give insight about the critical component of 

the system in terms of their significant contribution in overall performance of the system. It is a 

comprehensive approach which help us to rank the different component of a complex system in which they 

needed the attention from maintenance team. This method was implemented by Tanaka et al. (1983) to rank 

the different parts of the system depending on their impact on the system's overall performance. Later on, 

(Dhiman and Kumar, 2020; Kumar and Dhiman, 2023) extend this method to various industrial system 

using Right triangular generalized fuzzy number. The method has been extended for wind turbines in the 

present study using generalized trapezoidal fuzzy numbers. 

 

Failure rate of wind turbine system 𝜆𝑊𝑇 is defined as a generalized trapezoidal fuzzy number as:  

 

𝜆𝑊𝑇 = 𝜆𝑊𝑇(𝜆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡,𝜏𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) = (𝜆𝑥1, 𝜆𝑥2, 𝜆𝑥3, 𝜆𝑥4) represents the fuzzy value of the failure rate 

of the wind turbine system. 

 

𝜆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑡 = (𝜆𝑐1, 𝜆𝑐2, 𝜆𝑐3, 𝜆𝑐4) represents the fuzzy value of the failure rate of component of the wind 

turbine system. 

𝑉(𝜆𝑊𝑇 , 𝜆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) = (𝜆𝑥1 − 𝜆𝑐1, 𝜆𝑥2 − 𝜆𝑐2, 𝜆𝑥3 − 𝜆𝑐3, 𝜆𝑥4 − 𝜆𝑐4)                                                        (2) 

 

This expression indicates the magnitude of the wind turbine system improvement. 

𝑅(𝜆𝑊𝑇 , 𝜆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1) > 𝑅(𝜆𝑊𝑇 , 𝜆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2)                                                                                            (3) 

 

5.6 Research Framework 
To visualize the steps involved in this study, a research framework diagram is provided below in Figure 5. 

The diagram provides an overview of the process, process start with the modelling of the Wind Turbine 

Plant (WTP), followed by the use of Generalized Trapezoidal Fuzzy Numbers (GTFNs) for the fuzzification 

process. After that, the centroid method will be used for defuzzification, the application of the Lambda-Tau 

methodology to assess different reliability and performance measures, and ending with the ranking of the 

WTP components. 
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Figure 5. Research framework diagram. 

 

 

6. Computational Analysis  

6.1 Data Acquisition 
Author have gone through the various literature for understanding the nature of different components failure 

rate and the failure/repair data rate for each component were taken from the Santos et al. (2014) along with 

some expert opinions. Following Table 3 provides an overview of the recorded values for each component. 

 
Table 3. Crisp values of the failure and repair rate of components. 

 

Components Failure rate per year Failure rate per hour (𝝀) Repair time in hours (𝝉) 

Blade 1.48 0.0001689 8 

Pitch system 0.08 0.0000091 5 

Hub 0.185 0.0000211 4 

Gearbox bearing 0.07 0.0000080 6 

Gearbox gear 0.05 0.0000057 8 

Brake 0.04 0.0000046 2 

Generator 0.08 0.0000091 4 

Control system 0.24 0.0000274 4 

Yaw system yaw driver 0.02 0.0000023 4 

Yaw system yaw motor 0.03 0.0000034 5 

Transformer 0.02 0.0000023 5 

Tower 0.19 0.0000217 8 

 

 

6.2 Component wise Fuzzified Data  
To convert component failure rate and repair rate from crisp to fuzzy using GTFN, there is no specific 

criterion; it depends on the uncertainty and variability in the data. Typically, tolerance levels are chosen 

based on expert opinions or historical failure data. For a Wind Turbine Plant, the tolerance level can range 

from 10% to 30%. For a moderate level of variability in data, this paper considers a 15% tolerance level. 

 

The data is fuzzified in this stage by using a 15% bilateral tolerance on both sides.  
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At this stage fuzzified values of 𝜆 and 𝜏 are represented as ( 𝜆 −  15%, 𝜆, 𝜆 +  15%) and ( 𝜏 −  15%, 𝜏, 𝜏 +
 15%) respectively and the crisp parameters are transformed into fuzzy parameters using the conversion 

method mentioned above, and some weight has been assigned as shown in Table 4. 

 
Table 4. Fuzzified values of the parameters of components. 

 

Failure rate(𝜆) (in hrs.) Repair time ( 𝜏) (in hrs.) Weightage 𝝎𝒎𝒊𝒏 

𝜆𝐵𝐿 = (0.000144, 0.000169, 0.000194, 0.8)  𝜏𝐵𝐿 = (6.8, 8, 9.2, 0.8)  0.8 

𝜆𝑃𝑆 = (0.000008,0.000009, 0.000011, 0.85)  𝜏𝑃𝑆 = (4.25, 5, 5.75, 0.85)  0.85 

𝜆𝐻 = (0.000018,0.000021, 0.000024, 0.9)  𝜏𝐻 = (3.4, 4, 4.6, 0.9)  0.9 

𝜆𝐺𝐵 = (0.000007, 0.000008, 0.000009, 0.8)  𝜏𝐺𝐵 = (5.1, 6, 6.9, 0.8)  0.8 

𝜆𝐺 = (0.000005, 0.000006 ,0.000007, 0.8)  𝜏𝐺 = (6.8, 8, 9.2, 0.8)  0.8 

𝜆𝐵𝑅 = (0.000004, 0.000005, 0.000005, 0.85)  𝜏𝐵𝑅 = (1.7, 2, 2.3, 0.85)  0.85 

𝜆𝐺𝐸 = (0.000008, 0.000009, 0.000011,0.85)  𝜏𝐺𝐸 = (3.4, 4, 4.6, 0.85)  0.85 

𝜆𝐶𝑆 = (0.000023, 0.000027, 0.000032,0.85)  𝜏𝐶𝑆 = (3.4, 4, 4.6, 0.85)  0.85 

𝜆𝑌𝐷 = (0.000002, 0.000002, 0.000003, 0.85)  𝜏𝑌𝐷 = (3.4, 4, 4.6, 0.85)  0.85 

𝜆𝑌𝑀 = (0.000003, 0.000003, 0.000004,0.8)  𝜏𝑌𝑀 = (4.25, 5, 5.75, 0.8)  0.8 

𝜆𝑇𝑅 = (0.000002, 0.000002,0.000003, 0.85)  𝜏𝑇𝑅 = (4.25, 5, 5.75, 0.85)  0.85 

𝜆𝑇𝑂 = (0.000018, 0.000022, 0.000025, 0.9)  𝜏𝑇𝑂 = (6.8, 8, 9.2, 0.9)  0.9 

 

 

6.3 Conversion of the Data to Same Degree of Confidence  
In Table 4, different values of confidence levels (𝜔) are assigned to each component because they represent 

the degree of membership or the level of certainty in the fuzzy data associated with that component's failure 

and repair rates. This variation arises because of various reasons like component specific uncertainty, expert 

opinions or the accuracy of the data collection process. To maintain data consistency and ensure uniformity 

across calculations, a uniform confidence level is used. This makes it easier to interpret and compare 

reliability indices.  

 

To maintain the flatness of the data, generalizing it is essential after fuzzifying it. Generalization helps to 

convert all the fuzzy values up to same satisfaction level. This process is given as, 

𝜔𝑚𝑖𝑛 = min(0.8,0.85,0.9,0.8,0.8,0.85,0.85,0.85,0.85,0.8,0.85.0.9) = 0.80. 

 

Table 5 shows the generalize values for each parameter. The data in the following Table 5 has been 

modified to maintain its flatness. With a same degree of confidence, all the parameters are transformed. 

Now, arithmetic operations can be applied to these failure and repair rates to perform various analysis. 

 
Table 5. Values of the component parameters with the same degree of confidence. 

 

Failure rate(𝜆) (in hrs.) Repair time ( 𝜏) (in hrs.) Weightage  𝒎𝒊𝒏 

𝜆𝐵𝐿
∗ = (0.000144, 0.000169, 0.000194,0.000194,0.8)  𝜏𝐵𝐿

∗ = (6.80, 8, 9.20,9.20, 0.8)  0.80 

𝜆𝑃𝑆
∗ = (0.000008,0.000009, 0.000011,0.000011, 0.85)  𝜏𝑃𝑆

∗ = (4.25, 4.96, 5.04,5.75, 0.85)  0.80 

𝜆𝐻
∗ = (0.000018,0.000021, 0.000024,0.000024, 0.9)  𝜏𝐻

∗ = (3.4, 3.93, 4.70,4.60, 0.9)  0.80 

𝜆𝐺𝐵
∗ = (0.000007, 0.000008, 0.000009,0.000009,0.8)  𝜏𝐺𝐵

∗ = (5.10, 6, 6, 6.90, 0.8)  0.80 

𝜆𝐺
∗ = (0.000005, 0.000006 ,0.000007, 0.000007, 0.8)  𝜏𝐺

∗ = (6.80, 8, 8, 9.20, 0.8)  0.80 

𝜆𝐵𝑅
∗ = (0.000004, 0.000005, 0.000005,0.000005, 0.85)  𝜏𝐵𝑅

∗ = (1.70, 1.98, 2.02, 2.30, 0.85)  0.80 

𝜆𝐺𝐸
∗ = (0.000008, 0.000009, 0.000011,0.000011, 0.85)  𝜏𝐺𝐸

∗ = (3.4, 3.96, 4.04, 4.60, 0.85)  0.80 

𝜆𝐶𝑆
∗ = (0.000023, 0.000027, 0.000032,0.000032, 0.85)  𝜏𝐶𝑆

∗ = (3.4, 3.96, 4.04, 4.60, 0.85)  0.80 

𝜆𝑌𝐷
∗ = (0.000002, 0.000002, 0.000003,0.000003, 0.85)  𝜏𝑌𝐷

∗ = (3.4, 3.96, 4.04, 4.60, 0.85)  0.80 

𝜆𝑌𝑀
∗ = (0.000003, 0.000003, 0.000004,0.000004, 0.8)  𝜏𝑌𝑀

∗ = (4.25, 5, 5, 5.75, 0.8)  0.80 

𝜆𝑇𝑅
∗ = (0.000002, 0.000002,0.000003,0.000003, 0.85)  𝜏𝑇𝑅

∗ = (4.25, 4.96, 5.04 , 5.75, 0.85)  0.80 

𝜆𝑇𝑂
∗ = (0.000018, 0.000022, 0.000025,0.000025, 0.9)  𝜏𝑇𝑂

∗ = (6.8, 7.87, 8.13 , 9.20, 0.9)  0.80 
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7. Solution Methodology  
Knezevic and Odoom (2001) applied AND-OR logic gates to define the failure rate and repair time 

expressions, as shown in Table 6. 

 
Table 6. Basic expression of the Lambda-Tau methodology. 

 

Logic gate 
AND OR 

𝜆𝐴𝑁𝐷 𝜏𝐴𝑁𝐷 𝜆𝑂𝑅 𝜏𝑂𝑅 

Expressions ∏𝜆𝐽

𝑛

𝑗=1

[∑ ∏ 𝜏𝑗

𝑛

𝑗=1,𝑖≠𝑗

𝑛

𝑖=1

] 
∏ 𝜏𝑖
𝑛
𝑖=1

∑ ∏ 𝜏𝑖
𝑛
𝑖=1,

𝑛
𝑗=1

 ∑𝜆𝑖

𝑛

𝑖=1

 

 
(∑ 𝜆𝑖

𝑛
𝑖=1 𝜏𝑖)

∑ 𝜆𝑖
𝑛
𝑖=1

 

 

Built on the above expressions, the failure rate and repair time of the Wind Turbine are defined as shown 

in the following equations. 

𝜆𝑊𝑇 = 𝜆𝐵𝐿 + 𝜆𝑃𝑆 + 𝜆𝐻 + 𝜆𝐵𝐸 + 𝜆𝐺 + 𝜆𝐵𝑅 + 𝜆𝐺𝐸 + 𝜆𝐶𝑆 + 𝜆𝑌𝐷 + 𝜆𝑌𝑀 + 𝜆𝑇𝑅 + 𝜆𝑇𝑂                                 (4) 

𝜏𝑊𝑇 =
(
𝜆𝐵𝐿𝜏𝐵𝐿+𝜆𝑃𝑆𝜏𝑃𝑆+𝜆𝐻𝜏𝐻+𝜆𝐵𝐸𝜏𝐵𝐸+𝜆𝐺𝜏𝐺+𝜆𝐵𝑅𝜏𝐵𝑅+

𝜆𝐺𝐸𝜏𝐺𝐸+𝜆𝐶𝑆𝜏𝐶𝑆+𝜆𝑌𝐷𝜏𝑌𝐷+𝜆𝑌𝑀𝜏𝑌𝑀+𝜆𝑇𝑅𝜏+𝜆𝑇𝑂𝜏𝑇𝑂
)

𝜆𝑊𝑇
                                                                                    (5) 

 

By applying the arithmetic operations described in Sections 5.3.3 and 5.3.4, and using the data presented in 

Table 5 with Equations (4) and (5), the resulting values are obtained and presented in Table 7 below. 

 
Table 7. Fuzzy values of the failure rate and repair time of the wind turbine. 

 

Parameter Fuzzy Value 

Failure rate of wind turbine (𝜆𝑊𝑇) (0.000241, 0.000282,0.000326, 0.000326)  

Repair time of wind turbine (𝜏𝑊𝑇) (4.300490,5.913704,7.931495,10.650124)  
 
 

8. Results and Discussion  

8.1 Reliability Analysis of Wind Turbine System 
In this section, author discusses the performance of the wind turbine plant. Using the data presented in 

Table 7, various reliability metrics, such as Mean Time to Failure (MTTF), Mean Time to Repair (MTTR), 

Mean Time Between Failures (MTBF), reliability, maintainability, availability, and the Expected Number 

of Failures (ENOF), are calculated using the expressions provided in Table 8 for the wind turbine. Table 

9 shows the numerical values for these reliability metrics. Each reliability parameter is calculated with 80% 

confidence level. These values are expressed as generalized trapezoidal fuzzy numbers, with a confidence 

level of 0.80 and a tolerance of 15%. Table 8 presents the expressions for reliability indices as proposed 

by Tanaka et al. (1983).  

 
Table 8. Expression for reliability indices.  

 

Parameter Expression 

MTTF MTTF𝑊𝑇 =
1

𝜆𝑊𝑇
  

MTTR MTTR𝑊𝑇  =  
1

𝜇𝑊𝑇
= 𝜏𝑊𝑇  

MTBF MTBF𝑊𝑇 =
1

𝜆𝑊𝑇
+ 𝜏𝑊𝑇  

Reliability  𝑅𝑊𝑇 = 𝑒
−𝜆𝑊𝑇 𝑡  

Unreliability  𝑈𝑊𝑇 = 1 − 𝑒
−𝜆𝑊𝑇 𝑡  

Maintainability 𝑀𝑊𝑇 = 1 − 𝑒
−𝜇𝑊𝑇 𝑡  

Availability 𝐴𝑊𝑇 =
𝜇𝑊𝑇

(𝜇𝑊𝑇+𝜆𝑊𝑇)
+

𝜆𝑊𝑇

(𝜇𝑊𝑇+𝜆𝑊𝑇)
𝑒−(𝜇𝑊𝑇+𝜆𝑊𝑇)𝑡  

ENOF (expected number of failure) 𝜇𝑊𝑇𝜆𝑊𝑇 𝑡

(𝜇𝑊𝑇+𝜆𝑊𝑇)
+

𝜆𝑊𝑇
2

(𝜇𝑊𝑇+𝜆𝑊𝑇)2
[1 − 𝑒−(𝜇𝑊𝑇+𝜆𝑊𝑇)𝑡]  
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Table 9. Reliability indices fuzzified and defuzzified values. 
 

Parameter Fuzzified values Defuzzied values 

MTTF (3065.3486, 3065.3486, 3540.4668, 4147.2364)  3454.6001 

MTTR (4.3005, 5.9137, 7.9315, 10.6501)  7.1990 

MTBF (3069.6491, 3071.2623, 3548.3983, 4157.8865)  3461.7991 

Reliability  (0.999674, 0.999674, 0.999718, 0.999759)  0.9997 

Unreliability  (0.000241, 0.000282, 0.000326, 0.000326)  0.0003 

Maintainability (0.0896 ,0.1185, 0.1556, 0.2075)  0.1428 

Availability (0.9997, 0.9997, 0.9997, 0.9998)  0.9997 

ENOF (expected number of failure) (0.0002, 0.0002, 0.0002, 0.0003)  0.0003 

 

 

The system’s reliability is extremely high, with a defuzzied value of 0.9997, while unreliability is minimal 

at 0.0003. The maintainability is moderate at 14.28%, implying that repairs are achievable but not 

instantaneous. The availability is almost perfect at 99.97%, meaning the system remains operational most 

of the time. Lastly, the expected number of failures (ENOF) is very low at 0.0003, indicating a negligible 

chance of failure over time. Overall, the system is highly reliable, maintainable, and available for 

continuous operation.  

 

Using the data presented in Table 5 and Equation (1), the Failure rate, Repair time, MTTF, MTTR, MTBF, 

Reliability, Maintainability, availability, and ENOF for alpha cuts from 0 to 0.8 are calculated and listed in 

Table 10, Table 11, and Table 12 respectively. 

 

The fuzzy values of the parameters Failure rate (Figure 6), Repair time (Figure 7), MTTF (Figure 8), 

MTTR (Figure 9), MTBF (Figure 10), Reliability (Figure 11), Maintainability (Figure 12), Availability 

(Figure 13), and ENOF (Figure 14) are represented as GTFNs up to maximum confidence level 0.80. 

Figures 8 to 13 represent the performance measures of the wind turbine plant corresponding to membership 

degrees varying from 0 to 0.8. From the Figures 8 to 13, it is observed that for each parameter, as the 

membership degree increases from 0 to 0.8, the left cut (least value) increases, and the right cut (greatest 

value) decreases. 

 

 
Table 10. Alpha cut range of failure rate, repair time and MTTF. 

 

Degree of membership (𝜶) 
Failure rate (per hours) Repair time (per hours) MTTF 

Least Greatest Least Greatest Least Greatest 

0 0.000241124 0.000326227 4.300489896 10.65012428 3065.348613 4147.236359 

0.05 0.000243707 0.000326227 4.401315757 10.48020996 3065.348613 4109.313262 

0.1 0.00024629 0.000326227 4.502141617 10.31029564 3065.348613 4071.390165 

0.15 0.000248873 0.000326227 4.602967478 10.14038132 3065.348613 4033.467068 

0.2 0.000251455 0.000326227 4.703793339 9.970467002 3065.348613 3995.543972 

0.25 0.000254038 0.000326227 4.804619200 9.800552684 3065.348613 3957.620875 

0.3 0.000256621 0.000326227 4.905445061 9.630638366 3065.348613 3919.697778 

0.35 0.000259204 0.000326227 5.006270921 9.460724048 3065.348613 3881.774681 

0.4 0.000261787 0.000326227 5.107096782 9.29080973 3065.348613 3843.851584 

0.45 0.000264369 0.000326227 5.207922643 9.120895412 3065.348613 3805.928487 

0.5 0.000266952 0.000326227 5.308748504 8.950981094 3065.348613 3768.00539 

0.55 0.000269535 0.000326227 5.409574365 8.781066775 3065.348613 3730.082293 

0.6 0.000272118 0.000326227 5.510400225 8.611152457 3065.348613 3692.159196 

0.75 0.000279866 0.000326227 5.812877808 8.101409503 3065.348613 3578.389905 

0.8 0.000282449 0.000326227 5.913703669 7.931495185 3065.348613 3540.466808 
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Table 11. Alpha cut range of MTTR, MTBF and reliability. 
 

Degree of membership (𝜶) 
MTTR MTBF Reliability 

Least Greatest Least Greatest Least Greatest 

0 4.300489896 10.65012428 3069.649103 4157.886484 0.999673826 0.999758905 

0.05 4.401315757 10.48020996 3069.749929 4119.793472 0.999673826 0.999756323 

0.1 4.502141617 10.31029564 3069.850755 4081.700461 0.999673826 0.99975374 

0.15 4.602967478 10.14038132 3069.951581 4043.60745 0.999673826 0.999751158 

0.2 4.703793339 9.970467002 3070.052407 4005.514439 0.999673826 0.999748576 

0.25 4.8046192 9.800552684 3070.153233 3967.421427 0.999673826 0.999745994 

0.3 4.905445061 9.630638366 3070.254058 3929.328416 0.999673826 0.999743412 

0.35 5.006270921 9.460724048 3070.354884 3891.235405 0.999673826 0.99974083 

0.4 5.107096782 9.29080973 3070.45571 3853.142393 0.999673826 0.999738248 

0.45 5.207922643 9.120895412 3070.556536 3815.049382 0.999673826 0.999735666 

0.5 5.308748504 8.950981094 3070.657362 3776.956371 0.999673826 0.999733084 

0.55 5.409574365 8.781066775 3070.758188 3738.86336 0.999673826 0.999730502 

0.6 5.510400225 8.611152457 3070.859014 3700.770348 0.999673826 0.99972792 

0.75 5.812877808 8.101409503 3071.161491 3586.491315 0.999673826 0.999720173 

0.8 5.913703669 7.931495185 3071.262317 3548.398303 0.999673826 0.999717591 

 

 

Table 12. Alpha cut range of maintainability, availability and ENOF. 
 

Degree of membership (𝜶) 
Maintainability Availability ENOF 

Least Greatest Least Greatest Least Greatest 

0 0.089622216 0.207475332 0.999708971 0.999769877 0.000241097 0.000326176 

0.05 0.091424287 0.20423153 0.999708405 0.999767676 0.00024368 0.000326176 

0.1 0.093226358 0.200987729 0.999707838 0.999765476 0.000246262 0.000326176 

0.15 0.095028429 0.197743927 0.999707272 0.999763275 0.000248844 0.000326176 

0.2 0.096830501 0.194500125 0.999706706 0.999761075 0.000251426 0.000326176 

0.25 0.098632572 0.191256323 0.99970614 0.999758874 0.000254008 0.000326176 

0.3 0.100434643 0.188012521 0.999705574 0.999756674 0.00025659 0.000326176 

0.35 0.102236714 0.184768719 0.999705007 0.999754473 0.000259172 0.000326176 

0.4 0.104038786 0.181524917 0.999704441 0.999752273 0.000261754 0.000326176 

0.45 0.105840857 0.178281115 0.999703875 0.999750072 0.000264336 0.000326176 

0.5 0.107642928 0.175037314 0.999703309 0.999747872 0.000266918 0.000326176 

0.55 0.109445000 0.171793512 0.999702743 0.999745671 0.000269500 0.000326176 

0.6 0.111247071 0.16854971 0.999702176 0.99974347 0.000272083 0.000326176 

0.75 0.116653285 0.158818304 0.999700478 0.999736869 0.000279829 0.000326176 

0.8 0.118455356 0.155574502 0.999699912 0.999734668 0.000282411 0.000326176 

 

 

In Tables 10, 11, and 12, the various Reliability indices are given at different satisfaction levels. The MTTF 

lies within the interval (3065.3486, 3540.4668) with a confidence level of 0.8. Below this confidence level, 

the lower value of each alpha cut remains constant, while the upper value increases, as shown in Figure 5. 

A similar pattern is observed for the other parameters. The MTTR lies within the interval (5.9137, 7.9315) 

with a confidence level of 0.8, as displayed in Figure 9. The MTBF falls within the interval (3071.2623, 

3548.3983) at a 0.8 confidence level, where, below this level, the lower value approximately remains fixed 

and the upper value increases, as shown in Figure 10. The reliability lies within the interval (0.999673, 

0.999717) at a confidence level of 0.8 as shown in Figure 11. Maintainability is in the interval (0.118455, 

0.155574), with a confidence level of 0.8 as shown in Figure 12, while availability falls within (0.999670, 

0.999735), with a confidence level of 0.8 as shown in Figure 13. The ENOF lies in the interval (0.000282, 

0.000326) with a confidence level of 0.8, where, below this level, the upper value of each alpha cut remains 

fixed while the lower value increases, as illustrated in Figure 14. Overall, the system remains highly 

reliable, with only slight variations in the reliability and availability as confidence level changes. 
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Figure 6. Failure rate of wind turbine. Figure 7. Repair time of wind turbine. 

 

 

 

 
  

 

Figure 8. MTTF of wind turbine. Figure 9. MTTR of wind turbine. 

 

 

 

 
 

 
 

Figure 10. MTBF of wind turbine. Figure 11. Reliability of wind turbine. 
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Figure 12. Maintainability of wind turbine. Figure 13. Availability of wind turbine. 
 

 

 

 
 

Figure 14. ENOF of wind turbine. 

 

8.2 Ranking of the Component of the Wind Turbine System 
After various reliability parameters have been determined, the authors proceed on to determine the ranking 

using section 5.5. The component rankings are shown in the following Table 13. 

 
Table 13. Ranking to identify the wind turbine system's critical component. 

 

Components 𝑽(𝝀𝑾𝑻, 𝝀𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕,)  𝑹(𝝀𝑾𝑻, 𝝀𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 ) Rankings 

Blade (0.000098,0.000113,0.000132,0.000132)  0.000474886 10 

Pitch system (0.000233,0.000273,0.000316,0.000316)  0.001138208 6 

Hub (0.000223,0.000262,0.000302,0.000302)  0.001088737 7 

Gearbox: Bearing (0.000234,0.000274,0.000317,0.000317)  0.001142865 5 

Gearbox: Gear (0.000236,0.000277,0.000320,0.000320)  0.00115234 4 

Brake (0.000237,0.000278,0.000321,0.000321)  0.001157118 3 

Generator (0.000233,0.000273,0.000316,0.000316)  0.001138208 6 

Control system (0.000218,0.000255,0.000295,0.000295)  0.001062571 9 

Yaw system: Yaw driver (0.000239,0.000280,0.000324,0.000324)  0.001166573 1 

Yaw system: Yaw motor (0.000238,0.000279,0.000322,0.000322)  0.001161845 2 

Transformer (0.000239,0.000280,0.000324.0.000324)  0.001166573 1 

Tower (0.000223,0.000223,0.000301,0.000301)  0.001086377 8 
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According to the Table 13, the component Blade has the lowest rank of 10, whereas the subcomponent 

Yaw Driver of the component Yaw system and the component Transformer have the greatest rank of 1. It 

suggests that the Subcomponent Yaw Driver from the Yaw system and the Transformer are the two most 

significant parts of the systems, with the Blade as the least essential. Based on the component ranking, 

experts can plan and prioritize their maintenance strategy. It is best to take care of the most important parts 

of the system first, like the transformer and yaw driver, to reduce the probability of system failures. 

 

The advantages of using GTFNs over traditional methods. GTFNs help to represent uncertainty more 

accurately, making the reliability results closer to real conditions. They also support better decision-making 

by considering different confidence levels, which improves maintenance planning. Unlike traditional 

methods, our approach includes both routine and preventive maintenance, helping to reduce system 

downtime. In addition, our method ranks the components based on their reliability impact, making it easier 

for maintenance teams to focus on the most important parts. 

 

9. Conclusions  
Proposed study focused on the investigation of a wind turbine system by incorporating the concept of fuzzy 

reliability through generalized trapezoidal fuzzy numbers (GTFNs). Using the available data and assuming 

that preventative and routine maintenance are carried out, the authors obtained the different performance 

measures of wind turbine plant. Analysis has been done on reliability parameters such as MTTF, MTTR, 

MTBF, reliability, availability, maintainability, and ENOF. In order to describe the data in a fuzzy 

environment, the authors also provide a generalized trapezoidal membership function, which is helpful in 

addressing the uncertainty problem. With a 0.80 confidence level and a 15% bilateral tolerance, all the 

parameters are summarized and depicted with the help of graphs. 

 

The different reliability indices have been calculated (refer Tables 9, 10, 11, and 12 and corresponding 

Figures 6 to 14). The rankings of the different wind turbine plant components are shown in the Table 13. 

The higher-ranked component is the most important, while a lower-ranked component is the least important. 

The highest ranked component in the total framework scheme needs more attention than the other 

components. The obtained result shows that the highest rank components are Yaw Driver and 

Transformer, while the Blade is the least rank component of wind turbine. The ranking of the 

components play crucial role in overall performance of a system and the maintenance team must plan 

maintenance strategy as per components ranking to optimize the perform of the system. Also, to prevent a 

system from breakdown redundancy can be used for the sensitive components. This leads to lower repair 

costs and less downtime, which improves the overall performance and profit of the wind turbine plant. 

 

From a commercial point of view, this method can be useful for wind farm operators and manufacturers to 

improve system design and maintenance. It also supports better planning and investment decisions in wind 

energy projects. 

 

Compared to earlier studies that used crisp values or basic fuzzy methods, our method offers a more flexible 

and realistic way to assess system performance. Our findings show an improvement over earlier reliability 

analyses of WTP, as the GTFN-based modelling provides enhanced sensitivity to data variability and better 

supports decision-making under uncertainty. 

 

 This study uses Generalized Trapezoidal Fuzzy Numbers (GTFNs) to assess the reliability of a wind turbine 

plant. While the method handles uncertainty well, it has a few limitations. The fuzzy parameters are based 

on expert opinion, which may cause some subjectivity. Also, when the system becomes larger, the 

calculations can get more complicated. Another limitation is that the study focuses only on static reliability 
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and does not consider changes that happen over time. 

 

This work can be extended in the future by applying the same approach to other type of renewable energy 

systems like geothermal power plants, nuclear power plants. It can also be used with real-time data to 

improve accuracy. In this paper, we have used GTFNs for fuzzification. In future work, we plan to explore 

more complex fuzzy environments like intuitionistic fuzzy or Neuromorphic fuzzy or picture fuzzy 

environment to further improve the study. 

 

 
Conflict of Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

 

Acknowledgments 

The authors appreciate the valuable suggestions from anonymous reviewers, which have significantly enhanced the clarity and 

articulation of the manuscript. 

 

AI Disclosure 

The author(s) declare that no assistance is taken from generative AI to write this article. 

 

 

 

References 

Aikhuele, D.O. (2018). Intuitionistic fuzzy model for reliability management in wind turbine system. Applied 

Computing and Informatics, 16(1/2), 181-194. https://doi.org/10.1016/j.aci.2018.05.003. 

Akhtar, I., & Kirmani, S. (2020). An application of fuzzy fault tree analysis for reliability evaluation of wind energy 

system. IETE Journal of Research, 68(6), 4265-4278. https://doi.org/10.1080/03772063.2020.1791741. 

Ali, K., Rana, Z., Niaz, A., & Liang, C. (2023). Fault tree analysis for reliability analysis of wind turbines considering 

the imperfect repair effect. European Journal of Theoretical and Applied Sciences, 1(4), 682-691. 

https://doi.org/10.59324/ejtas.2023.1(4).62. 

Asghari, J., Mohammad, M.P., & Oskouyi, F.S. (2015). Improving dynamic fault tree method for complex system 

reliability analysis: case study of a wind turbine. In ASME International Mechanical Engineering Congress and 

Exposition (pp. 1-9). American Society of Mechanical Engineers. Houston, Texas, USA. 

https://doi.org/10.1115/imece2015-51307. 

Benhamida, H., Benmamoun, Z., Agarwal, V., Raouf, Y., & Kaul, A. (2025). Aligning ESG ratings and SDGs in the 

MENA region: challenges and insights through a fuzzy delphi multi-criteria approach. International Journal of 

Mathematical, Engineering and Management Sciences, 10(2), 389-419.  

Chachra, A., Ram, M. & Kumar, A. (2024). A pythagorean fuzzy approach to consecutive k-out-of-r-from-n system 

reliability modelling. International Journal of System Assurance Engineering and Management. 

https://doi.org/10.1007/s13198-024-02435-3. 

Dhiman, P., & Kumar, A. (2020). RAM assessment of the repairable industrial structure with genuine human-mistake 

working conditions with generalized fuzzy numbers. International Journal of Quality and Reliability 

Management, 38(7), 1614-1627. https://doi.org/10.1108/ijqrm-12-2019-0370.  

Forghani-Elahabad, M. (2021). Exact reliability evaluation of multistate flow networks. In: Kumar, A., Ram, M. (eds) 

Systems Reliability Engineering: Modeling and Performance Improvement. De Gruyter, Berlin, Boston, pp. 1-

24. https://doi.org/10.1515/9783110617375-001. 

Forghani-Elahabad, M. (2022). Operations research. CRC Press, Boca Raton, Florida. ISBN: 9781003156291. 

https://doi.org/10.1201/9781003156291-3. 

https://doi.org/10.1016/j.aci.2018.05.003
https://doi.org/10.1080/03772063.2020.1791741
https://doi.org/10.59324/ejtas.2023.1(4).62
https://doi.org/10.1115/imece2015-51307
https://doi.org/10.1108/IJQRM-12-2019-0370
https://doi.org/10.1515/9783110617375-001
http://dx.doi.org/10.1201/9781003156291-3


Kumar & Yelam: Estimating Reliability and Ranking of Wind Turbine Plant under Fuzzy … 
 

 

1583 | Vol. 10, No. 5, 2025 

Forghani-Elahabad, M., & Mahdavi-Amiri, N. (2013). A simple algorithm to find all minimal path vectors to demand 

level d in a stochastic-flow network. In 5-th Iranian Conference on Applied Mathematics. Bu-Ali Sina University, 

Hamedan, Iran. https://doi.org/10.13140/rg.2.1.1892.9044. 

Gaidai, O., Yakimov, V., Wang, F., Sun, J., & Wang, K. (2024). Bivariate reliability analysis for floating wind 

turbines. International Journal of Low-Carbon Technologies, 19, 63-72. https://doi.org/10.1093/ijlct/ctad108. 

Gao, P., Xie, L., Hu, W., Liu, C., & Feng, J. (2018). Dynamic fuzzy reliability analysis of multistate systems based 

on universal generating function. Mathematical Problems in Engineering, 2018(1), 6524629. 

https://doi.org/10.1155/2018/6524629. 

Garg, H., Rani, M., & Sharma, S.P. (2012). Fuzzy RAM analysis of the screening unit in a paper industry by utilizing 

uncertain data. Journal of Quality and Reliability Engineering, 2012(1), 203842. 

https://doi.org/10.1155/2012/203842. 

Ghoushchi, S.J., Jalalat, S.M., Bonab, S.R., Ghiaci, A.M., Haseli, G., & Tomaskova, H. (2022). Evaluation of wind 

turbine failure modes using the developed SWARA-CoCoSo methods based on the spherical fuzzy environment. 

IEEE Access, 10, 86750-86764. https://doi.org/10.1109/access.2022.3199359. 

Hosseini, E., Behzadfar, N., Hashemi, M., Moazzami, M., & Dehghani, M. (2022). Control of pitch angle in wind 

turbine based on doubly fed induction generator using fuzzy logic method. Journal of Renewable Energy and 

Environment, 9(2), 1-7. https://doi.org/10.30501/jree.2021.293546.1226. 

Huang, T., Xiahou, T., Li, Y.F., Qian, H.M., Liu, Y., & Huang, H.Z. (2021). Reliability assessment of wind turbine 

generators by fuzzy universal generating function. Eksploatacja i Niezawodnosc, 23(2), 308-314. 

https://doi.org/10.17531/ein.2021.2.10. 

Joshi, T., Goyal, N., & Ram, M. (2022). An approach to analyze reliability indices in peer-to-peer communication 

systems. Cybernetics and Systems, 53(8), 716-733. https://doi.org/10.1080/01969722.2022.2047273. 

Kang, J., Sun, L., & Soares, C.G. (2019). Fault tree analysis of floating offshore wind turbines. Renewable Energy, 

133, 1455-1467. https://doi.org/10.1016/j.renene.2018.08.097. 

Khajuria, R., Komal, & Yazdani, M. (2025). Novel intuitionistic fuzzy fault tree analysis for effective infectious 

medical waste management. International Journal of Mathematical, Engineering and Management Sciences, 

10(2), 350-367. https://doi.org/10.33889/ijmems.2025.10.2.018. 

Kharola, S., Kumar, A., Goyal, N., & Ram, M. (2022, October). Fuzzy reliability modeling of a smart waste bin using 

triangular intuitionistic fuzzy set. In 2022 10th International Conference on Reliability, Infocom Technologies 

and Optimization (Trends and Future Directions) (pp. 1-4). IEEE. Noida, India. 

https://doi.org/10.1109/icrito56286.2022.9964951. 

Knezevic, J., & Odoom, E.R. (2001). Reliability modelling of repairable systems using petri nets and fuzzy Lambda-

Tau methodology. Reliability Engineering & System Safety, 73(1), 1-17. https://doi.org/10.1016/s0951-

8320(01)00017-5. 

Kumar, A., & Dhiman, P. (2020). Reliability range through upgraded operation with trapezoidal fuzzy number. Fuzzy 

Information and Engineering, 12(4), 452-463. https://doi.org/10.1080/16168658.2021.1918039. 

Kumar, A., & Dhiman, P. (2023). Performance analysis of “injection moulding machine” under fuzzy environment 

through contemporary arithmetic operations on right triangular generalized fuzzy numbers (RTrGFN). Journal of 

Intelligent and Fuzzy Systems, 45(3), 4427-4445. https://doi.org/10.3233/jifs-224022. 

Li, H., Teixeira, A.P., & Soares, C.G. (2022). An improved failure mode and effect analysis of floating offshore wind 

turbines. Journal of Marine Science and Engineering, 10(11), 1616. https://doi.org/10.3390/jmse10111616. 

Li, Y., Zhu, C., Chen, X., & Tan, J. (2020). Fatigue reliability analysis of wind turbine drivetrain considering strength 

degradation and load sharing using survival signature and FTA. Energies, 13(8), 2108. 

https://doi.org/10.3390/en13082108.  

http://dx.doi.org/10.13140/RG.2.1.1892.9044
https://doi.org/10.1093/ijlct/ctad108
https://doi.org/10.1155/2018/6524629
https://doi.org/10.1155/2012/203842
https://doi.org/10.1109/access.2022.3199359
https://doi.org/10.30501/jree.2021.293546.1226
https://doi.org/10.17531/EIN.2021.2.10
https://doi.org/10.1080/01969722.2022.2047273
https://doi.org/10.1016/j.renene.2018.08.097
https://doi.org/10.33889/IJMEMS.2025.10.2.018
https://doi.org/10.1109/ICRITO56286.2022.9964951
https://doi.org/10.1016/S0951-8320(01)00017-5
https://doi.org/10.1016/S0951-8320(01)00017-5
https://doi.org/10.1080/16168658.2021.1918039
https://doi.org/10.3390/jmse10111616
https://doi.org/10.3390/en13082108


Kumar & Yelam: Estimating Reliability and Ranking of Wind Turbine Plant under Fuzzy … 
 

 

1584 | Vol. 10, No. 5, 2025 

Liu, Z., He, Z., Tu, L., Liu, X., Liu, H., & Liang, J. (2023). A fatigue reliability assessment approach for wind turbine 

blades based on continuous time Bayesian network and FEA. Quality and Reliability Engineering International, 

39(5), 1603-1621. https://doi.org/10.1002/qre.3262. 

Mukherjee, A.K., Gazi, K.H., Salahshour, S., Ghosh, A., & Mondal, S.P. (2023). A brief analysis and interpretation 

on arithmetic operations of fuzzy numbers. Results in Control and Optimization, 13, 100312. 

https://doi.org/10.1016/j.rico.2023.100312. 

Parthasarathy, P., & Narayanan, S.K. (2014). Effect of hydrothermal carbonization reaction parameters on. 

Environmental Progress & Sustainable Energy, 33(3), 676-680.  

Ram, M., Kharola, S. & Goyal, N. (2024a). Reliability and sensitivity analysis of a maintainable energy system under 

priority repair. OPSEARCH. https://doi.org/10.1007/s12597-024-00868-9. 

Ram, M., Tyagi, S., & Kumar, A. (2024b). Reliability evaluation of a programmable logic controller-based system. 

International Journal of System Assurance Engineering and Management, 15(8), 3620-3628. 

https://doi.org/10.1007/s13198-023-02022-y. 

Rezamand, M., Carriveau, R., Ting, D.S.K., Davison, M., & Davis, J.J. (2019). Aggregate reliability analysis of wind 

turbine generators. IET Renewable Power Generation, 13(11), 1902-1910. https://doi.org/10.1049/iet-

rpg.2018.5909. 

Santos, F.P., Teixeira, A.P., & Soares, C.G. (2014). Safety and reliability: methodology and applications. CRC Press. 

Poland. ISBN: 9780429226823. https://doi.org/10.1201/b17399-164. 

Tanaka, H., Fan, L.T., Lai, F.S., & Toguchi, K. (1983). Fault-tree analysis by fuzzy probability. IEEE Transactions 

on Reliability, 32(5), 453-457. https://doi.org/10.1109/tr.1983.5221727.  

Xiao, C., Liu, Z., Zhang, T., & Zhang, L. (2019). On fault prediction for wind turbine pitch system using radar chart 

and support vector machine approach. Energies, 12(14), 2993. https://doi.org/10.3390/en12142693. 

Zhu, Y., Zhu, C., Song, C., Li, Y., Chen, X., & Yong, B. (2019). Improvement of reliability and wind power generation 

based on wind turbine real-time condition assessment. International Journal of Electrical Power and Energy 

Systems, 113, 344-354. https://doi.org/10.1016/j.ijepes.2019.05.027. 

 
 

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0) 

license at https://creativecommons.org/licenses/by/4.0/ 

 

 
Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps 

and institutional affiliations. 
 

 

 

https://doi.org/10.1002/qre.3262
https://doi.org/10.1016/j.rico.2023.100312
https://doi.org/10.1007/s12597-024-00868-9
https://doi.org/10.1007/s13198-023-02022-y
https://doi.org/10.1049/iet-rpg.2018.5909
https://doi.org/10.1049/iet-rpg.2018.5909
https://doi.org/10.1201/b17399-164
https://doi.org/10.1109/TR.1983.5221727
https://doi.org/10.3390/en12142693
https://doi.org/10.1016/j.ijepes.2019.05.027

