
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 9, No. 1, 163-187, 2024 

https://doi.org/10.33889/IJMEMS.2024.9.1.009 
 

 

163 | https://www.ijmems.in 

Maximum Entropy Solution for 𝑴𝑿/G/1 Priority Reiterate G-queue 

Under Working Breakdown and Working Vacation 

 
Nisha 

Department of Mathematics, Amity Institute of Applied Sciences, 

Amity University, Noida, Uttar Pradesh, India. 

E-mail: nisha6@s.amity.edu 

 

Shweta Upadhyaya 
Department of Mathematics, Amity Institute of Applied Sciences, 

Amity University, Noida, Uttar Pradesh, India. 

Corresponding author: shwetau28@gmail.com 

 

Chandra Shekhar 
Department of Mathematics,  

Birla Institute of Technology & Science, Pilani, Rajasthan, India. 

E-mail: chandrashekhar@pilani.bits-pilani.ac.in 

 
(Received on June 5, 2023; Revised on September 14, 2023 & November 21, 2023; Accepted on December 3, 2023) 

 

 

 

Abstract 

The maximum entropy principle has grown progressively more pertinent to queueing systems. The principle of maximum entropy 

(PME) presents an impartial framework as a promising method to examine complex queuing processes. This principle can be 

employed to assess the most appropriate probability distributions for queueing scenarios in a variety of widespread industrial issues. 

The aspects of general service bulk arrival retrial G-queue including working vacation, state-dependent arrival, priority users, and 

working breakdown are all explored in this article. Real-world applications for this kind of waiting line include computer systems, 

industrial companies, packet-switching networks, and communication facilities, etc. The adverse users (or negative arrivals) can 

make an appearance when the server (operator) is preoccupied with a positive user. Consumer’s arrival patterns follow the Poisson 

distribution. Priority consumers and regular (ordinary) consumers are the two groups of consumers that are considered in this 

investigation. Priority consumers do not have to wait in line and are granted a special right of prevention that allows them to receive 

services before ordinary consumers. Initially, we have estimated performance metrics including orbit size and long-run probabilities 

in this research work. The maximum entropy approach is then used to give a comparative perusal between the system’s exact and 

estimated waiting times. Apart from that a bi-objective optimization model is developed to diminish both consumers waiting times 

and estimated costs simultaneously. It is manageable to establish an effective balance between the standard of service and operating 

expenses using the analytical strategy that has been provided. 

 

Keywords- Retrial G- queue, State-dependent arrival, Working vacation, Working breakdown, Maximum entropy approach, Bi-

objective optimization. 

 

 

 

1. Introduction 
Plenty of researchers have been studying queueing networks using a combination of positive and negative 

consumers over the past 20 years. Gelenbe (1991a) proposed the G-queues, often known as the queueing 

system with negative consumers (deleterious user). Positive consumers (favourable user) join a queue and 

gets service just like regular consumers on the queueing network. If a negative consumer encounters an 

empty queue (waiting line) then it will dissipate and if it does not, it will decrease the number of favourable 

consumers in queue by one. Deleterious users have no access to the service. Users who are favourable when 

they depart one queue to join another can either turn negative or stay positive. Typically, a deleterious user 

pulls away a favourable user and breaks down the machinery. As an example, deleterious users are 
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expressed as synchronous signals virus on an external framework throughout the communications process. 

In this, disruptive viruses that impact computers can corrupt the content of the file and harm the process by 

which the computer functions. Owing to their widespread use in neural networks, communication networks, 

computers and production systems, G-queues have generated a great deal of interest. A number of systems 

can be expressed through G-networks. The analogy with neural networks in the article of Gelenbe (1989) 

served as the inspiration for the initial model in Gelenbe (1991a) where each queue signifies as a neuron 

and clients indicate excitation (positive) or inhibition (negative) signals. The signals in biophysical neurons 

can also appear as random trains of impulses with a constant size, resembling consumers moving through 

a queuing system. In Gelenbe and Tucci (1991b), a G-network application to doubly redundant systems is 

described. Favourable consumers can be viewed as resource requests whereas deleterious consumers can 

be thought of as decisions to reject such requests in many resource systems. In this application, work is set 

up on two different processors and is subsequently cancelled at one of the processors if the work is 

successfully finished at the other one. Additional applications have also been established such as specific 

networking issues by Henderson et al. (1994). 

 

Shannon (1948) first established the idea of entropy in his pioneering publications on communication 

theory. Entropy is a fundamental quantity related to a random variable in information theory. The maximum 

entropy principle (MEP) permits the selection of the best probability distribution or the one with the greatest 

entropy amidst a variety of probability distributions that represent the knowledge of state at that time. As 

demonstrated by Kapur (1989), numerous disciplines including statistical mechanics, business, marketing, 

economics, statistical thermodynamics, finance and insurance, operations research and reliability theory 

have benefited from the maximum entropy principle. The maximum entropy concept has been applied 

extensively in Operations Research, specifically in queueing framework to evaluate probability distribution 

for various processes in steady-state. The problem domain must be identified before the maximum entropy 

concept can be applied. This means that in cases including systems (framework) that are physical, all the 

parameters associated with the constraints must be recognised together with the various states in which the 

framework may exist. For instance, it is presumed that energy, electric charge and other associated 

parameters related to the framework are known in advance. Mechanics are frequently required for this task. 

In this phase, it is not presumed which specific state is actually occupied instead it is considered that we do 

not know and cannot know this with assurance, leading us to focus on the possibility that each of the states 

is occupied. 

 

The fact is that there is hardly any reliable server (operator) in reality. Indeed, the servers may experience 

prolonged and unpredicted malfunctions while assisting a client. For instance, in production processes a 

machine may malfunction as a result of issues with the machine or the work. As a consequence of this, 

there will be a period of delay while the servers are being fixed. Several authors have looked at framework 

with a repairable server (authentic operator) as a reliability model and queueing model. Computer networks 

and technologies have been utilised since the half of the twentieth century in a variety of fields involving 

telephone communication, flexible producing goods, supply-chain systems and e-commerce. Typically, 

these frameworks function under circumstances that are unpredictable and the difference between the 

variable service capacity and random service demand generates the congestion frequently. Consequently, 

it is more vital nowadays to conduct studies on the performance indices of these technological devices. 

There are real-life situations in which the failure of an operator may not prevent the service of a client 

entirely. For illustration, the performance of the computer system may be slowed down due to the presence 

of a virus in the framework. The computer system might still be able to complete multiple functions 

although quite slowly. However, the basic presumption in each of the queueing systems with server failures 

that have been examined so far is that a server failure entirely reduces the service of the system. The 

machine replacement problem serves as an additional example. When a machine is in use, it may abruptly 
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malfunction. It is quickly swapped out by another backup device preferably one that operates more slowly. 

As soon as the malfunctioning device is fixed, it is put back in operation. Server failures have a significant 

impact on performance metrics of unreliable queuing systems which is well known. For this reason, 

numerous studies on unreliable (unauthentic) waiting line framework have been conducted over the years. 

We acknowledge to Thiruvengadam (1963), Mitrany and Avi-Itzhak (1968), and references therein as the 

initial studies on this topic. However, in real-world circumstances the system requires to have a backup 

(standby) server just in case the primary server is supposed to fail. While the primary server is being fixed, 

the backup server provides services to clients. The service rate of the substitute server differs from (probably 

lower than) that of the primary server. The primary server rejoins the system and is made accessible as 

shortly the repair is finished. This is the idea of the working breakdown (working malfunction) which was 

initially proposed by Kalidass and Kasturi (2012). The system can handle any emergencies that may arise 

during the repair period by permitting the substitute server to deliver services, and efficiency of framework 

is maximised. Additionally, the cost of waiting consumers or jobs is reduced and issues regarding 

consumers diminish who must wait for the main server to get repaired while the working malfunction 

service occurs. As a result, a working malfunction service is a more suitable repair policy to waiting 

framework that are unreliable. For further study go through the references Yang et al. (2002), Ke et al. 

(2009), Dimitriou and Langaris (2010), Choudhury and Tadj (2011), Choudhury and Ke (2012), Dimitriou 

(2013) and recent references include Vijayalakshmi et al. (2021), Seenivasan and Abinaya (2022), Liu et 

al. (2023). 

 

Distinct classes of consumers exist in a priority queueing system, and each class is treated differently from 

the others in terms of priority. The consumer category may influence both the service discipline and the 

service time distribution. Additionally, the priority discipline that is employed may be non-preemptive or 

preemptive. The client receiving assistance (service) is permitted to finish generally despite the fact that a 

higher priority client joins the waiting line in the middle of the service of the clients which is referred to as 

non-preemptive discipline. When a higher priority customer appears, the service to the existing customer 

will be interrupted in the preemptive situation. The assistance to the consumers whose assistance was 

disrupted is resumed from the point when it was discontinued whenever the priority discipline is 

preemptive. In assessment of computer framework, communication networks and the modelling, priority 

queues are crucial strategies. Jobs in a computer network can be categorised into various classes. This 

provides quality of service (QoS) support. As an example, an obvious discrepancy between audio, video 

and data packets could be apparent and various classes might need different services. In these situations, 

service discipline is frequently implemented at networks that handle jobs based on their priority. An 

unreliable server with bulk arrival reiterate waiting framework which have two kinds of subscribers that 

possess non-preemptive priority had been investigated by Jain and Bhargava (2008). Non-preemptive 

services controlled by an exponential timer and repeated leisure had been looked by Katayama and 

Kobayashi (2007). The reader may use these articles for carrying out comprehensive research for priority 

queue, which are Liu et al. (2009), Liu and Gao (2011), Wu and Lian (2013), Gao (2015) and Rajadurai et 

al. (2016). 

 

1.1 Literature Review 
The major goal of our analysis is to maximize entropy outcomes and provide a comparative analysis amidst 

the system’s exact (precise) and approximative (imminent) predicted waiting times. The queue size 

distribution of several waiting line frameworks has been acquired by certain researchers applying maximum 

entropy principle (MEP). The MEP was employed by Wang et al. (2002) to investigate the M/G/1 waiting 

line framework in various systems. Additionally, Wang et al. (2007) performed an analysis of 𝑀𝑋/𝑀/1 

model involving maximum entropy concept of a waiting line framework with vacations. Furthermore, 

Wang and Huang (2009) conducted a comparison amidst the precise analytical results and approximate 
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results using the maximum entropy approach. Using the entropy concept, Wang et al. (2011) carried out a 

performance analysis of the N-policy queue. Jain and Upadhyaya (2012) employed MEP for a discrete time 

unreliable server queue with working vacation (working leisure). Maximum entropy theory was used by 

Jain and Upadhyaya (2012) to give results of estimated waiting time for a bulk reiterate waiting line 

framework under N-policy. The relationship between maximum entropy method and queueing theory has 

been very thoroughly and clearly explained by Parkash and Mukesh (2016). Further, Chauhan (2018) has 

performed a comparative analysis using MEP for the 𝑀𝑋/(𝐺1, 𝐺2)/1 framework with two levels of 

services. Nithya and Haridass (2020b) conducted a stochastic modelling and the maximum entropy analysis 

of the 𝑀𝑋/𝐺/1 queuing system with vacation interruption, balking and startup. In the assessment of a bulk 

waiting framework with malfunction, regulated arrival, and numerous vacations, further Nithya and 

Haridass (2020a) looked at optimisation of costs and the highest level of entropy analysis. Bounkhel et al. 

(2020) have conducted an entropy analysis of a flexible Markovian waiting line with server malfunction. 

Upadhyaya et al. (2022) used particle swarm optimization technique to obtain the optimal costs of a reiterate 

G-queueing framework with working malfunction and working leisure including batch arrival. Moreover, 

Malik et al. (2021b) have looked into maximum entropy findings and optimization results for 𝑀𝑋/𝐺/1 

reiterate G-queue with delayed repair. 

 

We confront various queueing situations every day where clients must wait for service and it is not prompt. 

In the past two decades, there has been a lot of relevant research on the subject of reiterate queues in 

queueing theory. Several investigators have made significant contributions by focusing on the reiterate 

queues concept. Arrivals who observe the operator busy enter the reiterate group (orbit) to attempt again 

for their inquires in arbitrary fashion and at various intervals. This is a characteristic of reiterate queueing 

systems. As an illustration, in the Internet Protocol, Transmission Control Protocol (TCP) is used to 

retransmit missing messages or packets. Several studies have been conducted on reiterate queues during the 

last several decades. These mathematical models are used in application areas in the performance evaluation 

of a wide range of systems in data distributed networks, industrial engineering, communication fields and 

traffic management on high-speed networks. For deep knowledge, see the book written by Falin and 

Templeton (1997) and the references by Yang and Templeton (1987). Many authors have made significant 

contributions in this domain. Both Upadhyaya (2014) and Rajadurai et al. (2018b) used the supplementary 

variable technique to generate all of the favourable performance indices for only one operator reiterate 

framework. In the aforementioned paper, a bulk arriving structure with a modified vacation policy was put 

into consideration, whereas in the subsequent paper, the idea of server malfunction, repair and numerous 

vacation policies was considered. The outcomes for a non-continuous reiterate model with geometric advent 

including J-vacation policy were later calculated by Upadhyaya (2018). Malik et al. (2021a) have thrown 

light on the cost analysis of a Geo/G/1 reiterate model with the help of particle swarm optimization and 

genetic algorithm techniques. 

 

In G-queues, a deleterious user can only join when the operator is already full of a favourable user, which 

causes them to exit the system and disrupts service. A virus invading a computer system is a pretty common 

example. Such crowds can be seen at places like banks, hospitals, and shopping centres. Gelenbe (1991a) 

first proposed this concept. Discrete time reiterate G-queue with stochastic decomposition law was 

determined by Wang and Zhang (2009) after they added deleterious users to the reiterate queue. Wu and 

Yin (2011) investigated only one server reiterate queue with unfavourable users and non-exhaustive random 

vacations susceptible to operator failures and maintenance. Reliability estimates and queueing measures for 

a bulk advent G-queue under general reiterate times, malfunction, and single vacation policy have been 

provided by Yang et al. (2013). Li and Zhang (2017) explored an M/G/1 reiterate G-queue with general 

reiterate times and working malfunction. Only one operator reiterate G-queue involving second phase 

assistance was recently explored by Upadhyaya (2020) who also discussed its use in local network 
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environments. For further references reader may go through Demircioglu et al. (2021), Muthusamy et al. 

(2022) and Manoharan and Subathra (2023). 

 

Working vacation (WV) is a type of vacation (leisure) policy in which operator sustains to run at a minimal 

level of service rather than entirely ceasing operations during the vacation period. Several useful systems 

including network services, web services, file transfer services, and mail services, among others can be 

used with this waiting line model. It was first applied on an M/M/1 waiting line framework by Servi and 

Finn (2002). The server cannot resume normal operation during the working leisure until the vacation time 

is over. Also, even during working leisure period, the server has the option to stop the leisure and switch to 

the typical busy state if there are consumers at the instant when the service is completed. The term vacation 

interruption refers to this type of policy. Servi and Finn (2002) gave M/M/1/WV waiting line which was 

transformed into an M/G/1/WV waiting line by Wu and Takagi (2006). An M/M/1 waiting line with 

working leisure was used by Liu et al. (2007) to derive the results of stochastic decomposition. Zhang and 

Xu (2008) investigated an M/M/1 waiting line with numerous working leisure and the N-policy using a 

quasi-birth- and-death (QBD) process and a matrix-geometric solution approach. Rajadurai et al. (2015) 

and Rajadurai et al. (2016) created reiterate queueing models with the idea of working leisure and vacation 

interruption in cases of malfunction. We can consult a thorough analysis of Zhang and Liu (2015) and Gao 

et al. (2014) for more details. Recently, Rajadurai et al. (2018a) conducted research on a reiterate waiting 

line with only one server, working leisure and interruption of vacation. It is a frequent misconception that 

the attendant (or server) will stop assisting anytime the queue with server failure. Kim and Lee (2014) 

explored the M/G/1 waiting line framework in the context of catastrophes (disasters) and failures. Readers 

may refer to Upadhyaya and Kushwaha (2020) and Agarwal et al. (2021) for a thorough evaluation of the 

literature review. 

 

The majority of research on optimal design of queueing model emphasizing on a single objective problem 

with an expenditure or profit function as the goal of optimisation is given by Tadj and Choudhury (2005). 

Nevertheless, the simultaneous optimisation of many objective functions is a requirement for many real-

world optimisation issues (Song and Roy-Chowdhury, 2008). The process of making judgements requires 

careful evaluation of many factors, especially when objective must be met with a finite amount of resources. 

There is currently few research on multiple objective models used in queueing framework (e.g., Berman et 

al., 2006; Liou, 2015; Vahdani and Mohammadi, 2015; Tavakkoli-Moghaddam et al., 2017). A bi-objective 

hierarchical hub location issue with the goal of simultaneously minimising total cost and total travel time 

was recently proposed by Khodemani-Yazdi et al. (2019). Chaleshtori et al. (2020) employed a bi-objective 

optimisation method to a multi-layer location-allocation problem with jockeying. In recent years, a bi-

objective analysis and performance evaluation for F-Policy queue with alternating service rates has been 

done by Wu et al. (2023). 

 

1.2 Research Gap and Contributions 

The review of the literature mentioned above indicates that there are considerable research gaps with regard 

to the G-queue and maximum entropy approach. The goal of this endeavour seeks to bridge that gap and 

the present effort is focused on delivering performance evaluation by minimising the cost for state-

dependent, batch advent reiterates G- queue with working malfunction and working leisure with priority 

users. By including the idea of priority users with working malfunction in single working leisure with 

arrivals in batches, we have done generalization of the work of both Rajadurai et al. (2016) and Rajadurai 

(2018). As far as the author is aware, there is no work that combines reiterate G-queue with working 

malfunction, working leisure with priority users using the method of supplementary variable technique. 
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In this study, we use the Maximum Entropy Principle to analyse the queueing characteristics of the batch 

advent (arrival) reiterate G-queueing model by including numerous eminent aspects such as priority 

consumers, state-dependent, working malfunction and working leisure. The probability of various states is 

determined using SVT (Supplementary Variable Technique), and approximate results of the expected 

system size and waiting time are also derived. By employing the MEP, a comparative investigation is 

executed between the precise (exact) results and imminent (approximate) results. Some numeral results also 

have been given to validate our model. A bi-objective optimization is also carried out to estimate the 

expected cost and queue length. The mathematical findings and queuing analysis of the model offer a 

particular and intriguing applications in the computer processing framework and in working of BusStop 

Service model, as described in section 3 later. Managers who are capable of designing a system with 

economic management can benefit from our concept. 

 

The whole article is segmented into the subsequent sections. Section 2 covers the explanation of model and 

practical implications are provided in sections 3. Section 4 further provides steady state response and 

boundary conditions. In section 5, we procure the probability generating functions for system state and 

solutions of the steady state equations. After this, the derivation of system performance metrics and average 

system size is done in section 6. Analysis of the maximum entropy strategy is addressed to stimulate our 

model with the real world in section 7. Section 8 sets out appropriate numerical results. Section 9 includes 

the bi-objective optimization which is used for calculating the expected cost and queue length. The 

conclusion and potential outcomes have been outlined in section 10. 

 

2. Justification of the Model 
This article entails working malfunction and working leisure with priority clients on only one server 

𝑀𝑋/G/1 framework (system) where clients arrive in batches. Let 𝒩(𝑡) be the total number of clients present 

overall at time t. The following is the description of the model in more detail: 

 

Arriving Schedule- Relying on the operator (or server), In accordance with the compound Poisson process 

arrival happens in batches as shown below. 

• ð0= for server (operator) functioning in regular service status or when they are not being used. 

• ð1= for server (operator) being loaded with priority clients and also for ordinary clients. 

• ð2= for server (operator) being engaged with working malfunction and on working leisure. 

 

Further, P (X = k) = 𝒟k the probability distribution of bulk size with ∑ 𝒟∞
𝑘=1 k= 1, and X is defined as a 

random variable to reflect the bulk size. As well, we take into account the random variable 𝔜(𝑡) defined 

as: 

                                       0, while the operator is not active and under both working leisure 

                                            and working disruption state. 

 

                                       1, each time the operator is dormant and perform normal service. 

 

                                       2, if an operator is requested by a priority consumer without restricting 

                   𝔜(𝑡)=              a regular consumer at time ′t′ within a normal service period. 

                                        

                                       3, if an operator is dealing with an ordinary consumer and in normal 

                                           service period at a time ′t′. 

 

                                       4, while the operator is dispersed and at a time ′t′ in lower service 

                                           period. 
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Retrial (reiterate) schedule- The client visits a retry group called orbit while the server is overloaded, 

inoperable, or on working leisure. Clients from the orbit continue to want service until they receive it. We 

presume that the only client who is permitted to access to the server (operator) is the one at the front of the 

line. Moreover, let the inter reiterate time be determined by a random variable ℜ with distribution ℜ(t) and 

its Laplace Stieltjes Transform (LST) ℜ*(ϑ). 

 

Regular (normal) service schedule- During typical peak seasons, the service times follow a general 

distribution. It is represented by the random variable 𝒰b using the distribution function (d.f) 𝒰b (t) and 

L.S.T 𝒰b
*(ϑ). 

 

Working breakdown (working malfunction) and Working vacation (working leisure) schedule- In the 

circumstances that the framework has no consumers, the operator departs for a working leisure. The 

operator does not fully stop providing service during this form of vacation; instead, it provides service at a 

rate that is significantly reduced. The exponential distribution with parameter ’ς’ is supposed to follow by 

this period. If a server notices that the framework is vacant after a working leisure period is over, it will 

either wait for a new consumer with possibility ‘p’ or prolong its leisure with possibility q; q = 1 − p. Even 

though, if there are consumers at the completion of a working leisure, a vacation interruption may occur, in 

which case the server quickly switches back to its active status. The server adheres to a general distribution 

with random variable 𝒰w and distribution function 𝒰w (t) while it is on working leisure. The first and second 

moments are bw and (bw)2 correspondingly, and the corresponding LST is 𝒰*w (ϑ). 

 

The hazard rates for the server’s various states, including reiterate, busy (with priority and ordinary clients), 

working leisure are as specified. 

 

𝔯(𝑠)= 
𝑑 ℜ(𝑠)

1−ℜ(𝑠)
 ;                     𝜔𝑏(𝑠) =

𝑑𝒰𝑏(𝑠)

1−𝒰𝑏(𝑠)
 ;                     𝜔𝓅(𝑠) =

𝑑𝒰𝓅(𝑠)

1−𝒰𝓅(𝑠)
 ;                    𝜔𝑤(𝑠) =

𝑑𝒰𝑤(𝑠)

1−𝒰𝑤(𝑠)
  

 

Let us use the abbreviations ℜ0(𝑡) , 𝒰𝓅(𝑡), 𝒰𝑏(𝑡) and 𝒰𝑤(𝑡) to indicate the lapsed reiterate time, lapsed 

service time, lapsed time of priority clients, lapsed time of working leisure respectively. To acquire the 

bivariate Markov Process {𝔜(𝑡),𝒩(𝑡); 𝑡 ≥ 0}, where state of operator is represented by {𝔜(𝑡)} as 

mentioned before. 

 

Other underlying presumptions of the model include: 

𝒟′(1)=E(X), 𝒟′′(1)=E(X2) 

 

The limiting possibilities of the server’s various states are provided by 𝒬0(𝑡) = P̂ {𝔜(𝑡) = 0,𝒩(𝑡) = 0 } 

and P̂0(t) = P̂ {𝔜(𝑡) = 1,𝒩(𝑡) = 0 }. 

Let 𝒬0 = 𝑙𝑖𝑚𝑡→∞ 𝒬0(𝑡)  and P̂0= 𝑙𝑖𝑚𝑡→∞ P̂0(𝑡). 

 

Notations Description 
 

Symbols Description 

𝛽 Arrival rate of priority consumer 

𝜗 ͠ Vacation rate 

𝛼͠͠ Negative consumer advent rate 

μ1 Regular assistance rate 

μ2 Lower assistance rate during working malfunction and working leisure 

ς Working malfunction rate 
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𝛾͠͠ Parameter used in Laplace transform for reiterate using exponential distribution. 

P̂0(t) Possibility that the framework is dormant (idle) at time ‘t’. 

𝒬0(𝑡) Possibility that the framework is dormant (idle) at time ‘t’ and the operator is working malfunction and 

working leisure. (Lower speed service). 

ℜ(g, t) Possibility that there are altogether n consumers in the orbit and that the observed consumer's passing 

reiterate time occurs between g and g+ dg at time t. 

Φ1,n(g, t) Possibility that there are altogether n consumers in the orbit and that the observed priority consumer's 

passing normal service time occurs between g and g+ dg at time t. 

Φ𝑏,𝑛(g, t) Possibility that there are altogether n consumers in the orbit and that the observed consumer's passing 

normal service time occurs between g and g+ dg at time t. 

ℬn (g, t) Possibility that there are altogether n consumers in the orbit and that the observed consumer's passing 

lower speed service time occurs between g and g+ dg at time t. 
 

 

3. Practical Application 
The telecommunication industry can be benefited greatly from this research. For an illustration, the wireless 

body sensor network (WBSN), which enables service delivery to consumers utilising an internet platform 

has recently piqued the interest of the BusStop Service system. A system that seeks to promote public 

transportation in urban area is proposed by the BusStop service. The task of gathering and storing 

information regarding public transportation and disseminating it to users falls under the purview of the 

BusStop service. The BusStop service is built on the features that cellular phone provide network. USSD 

(Unstructured Supplementary Data) messages are used by the BusStop to activate the service. When 

necessary, the service finds the subscriber and generates a response that includes the subscriber’s position. 

The user receives a response through SMS (Short Message Service) in the last step. The system’s primary 

purpose is to notify users about the timetable of selected lines, the routes of certain lines, and the number 

of lines that operate close to their location. Based on the executed tasks displayed in Figure 1, the BusStop 

service is divided into three sections. 

 

(i) End Users: Cellular phones are employed by end users to communicate with the service over the 

UTRAN/GERAN (UMTS Terrestrial Radio Access Network /GSM EDGE Radio Access Network) access 

network. 

 

(ii) BusStop Service: The logic of the service is carried out via a Web application that is run on an 

application server. A JDBC (Java Database Connectivity) library serves to facilitate the communication 

between application and database. Information on public transportation is saved to a database. In order to 

ensure interaction between the operator and the user and to identify users, the web application makes use 

of Telco 2.0 APIs (Application Programming Interface). 

 

(iii) GMS/UMTS Operator (Global System for Mobile Communication/ The Universal Mobile 

Telecommunications System): Using interfaces exposed in Internet Telco 2.0, this operator connects the end 

user to the BusStop service. Let us just presume that a BusStop framework provides its service and a variety 

of other services over the cellular phone, allowing a consumer to call and acquire the routes, schedules, and 

the position of the stoppage for themselves (ordinary consumers using text message). A controller (one 

server) is on duty to answer all incoming calls on this BusStop framework. 

 

Whenever consumers use voice message (as voice messages have priority over the other via cellular phone) 

then this type of consumers is called ’priority consumers’. When a consumer calls, there is a chance that 

the line will be busy. If that happens, the consumer may call again after some time has passed (reiterate). 

While the controller is inspecting other sectors of the BusStop framework, he lacks the ability to answer 
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calls (in leisure mode). In these circumstances, the operator controller (substitute server) typically serves 

but relatively more slowly than usual (working leisure). It is possible for a customer to lose service during 

a phone call owing to an improper signal, poor network coverage, or malware attack (negative consumers). 

During rush hours like weekends, we can see a large influx of calls, in which case the controller will need 

to work more quickly or the waiting line may become congested (state dependent situation). The 

aforementioned condition is a great fit for our model under examination. As a result, the system manager 

will be benefited immensely from all the results and findings offered in our work. In section 8, a numerical 

instance is offered to support the scenario that was just described. 

 

 
 

Figure 1. Working of bus stop service system. 

 

 

This paradigm is also relevant to health industries, car parking structures, simple mail transfer protocol 

(SMTP), and other areas. 

 

4. Steady State Equations 
The equations that regulate the dynamics of the framework are attained by implementing the supplementary 

variable technique and they are as follows: 

(ð0+�̃�)P̂0= 𝜍 ℬ0                                                                                                                                                                                                                              (1) 

(ð0 +�̃� + 𝜗 ͠ + 𝜍) ℬ0 = 𝜗  ℬ0 + ∫ Φ
∞

0 b,0 (g) 𝜔b (g) dg + ∫ ℬ
∞

0 0 (g) 𝜔 (g) dg + ∫ Φ
∞

0 1,0 (g) 𝜔p (g) dg +(𝛼͠ ͠ + �̃�) 

∫ Φ
∞

0 b, n (g) dg + 𝛼͠ ͠ ∫ Φ
∞

0 1, n (g) dg, n≥0                                                                                                      (2) 

𝑑

𝑑g
ℜn(g) + (ð0+ �̃�+ 𝔯(g)) ℜn(g)=0, n≥1                                                                                                        (3) 

𝑑

𝑑g
 Φ1,0(g) + (ð1+𝛼͠ ͠+𝜔p(g)) Φ1,0(g)=0                                                                                                           (4) 

𝑑

𝑑g
Φ1,n(g) + (ð1+ 𝛼͠ ͠+𝜔p(g))Φ1,n(g) = ð1∑ 𝒟𝑛

𝑘=1 kΦ1,n-k(g), n≥ 1                                                                   (5) 
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𝜕

𝜕s
Φb, n(s) + (ð1+�̃� + 𝛼͠ ͠+𝜔b(s))Φb,0(s) = 0                                                                                                    (6) 

𝜕

𝜕s
 Φb, n (s) +( ð1 + �̃� + 𝛼͠ ͠ + 𝜔b(s)) Φb, n (s) = ð1 ∑ 𝒟𝑛

𝑘=1 k Φb, n-k (s), n≥1                                                     (7) 

𝑑

𝑑𝑔
 ℬ0 (g) + (ð2 + 𝜗 ͠ + 𝜍 + 𝜔w (g)) ℬ0 (g)=0, n=0                                                                                          (8) 

𝑑

𝑑𝑔
 ℬn (g) +( ð2 + 𝜗 ͠ + 𝜍 + 𝜔w (g)) ℬn (g)= ð2 ∑ 𝒟𝑛

𝑘=1 k ℬn-k (g), n≥1                                                            (9) 

 

At g=0 and s=0 the following boundary conditions apply: 

ℜn (0) = ∫ Φ
∞

0 1, n (g) 𝜔p (g) dg + ∫ Φ
∞

0 b, n (g) 𝜔b(g) dg + ∫ ℬ
∞

0 n (g) 𝜔w (g) dg, n≥1                                 (10) 

Φ1, n (g) = �̃� ∫ ℜ
∞

0 n (g) dg, n≥1                                                                                                                 (11) 

Φb, 0 (0) = ∫ ℜ
∞

0 1 (g) 𝔯 (g) dg+ (𝜗 ͠ + 𝜍) ∫ ℬ
∞

0 0 (g) dg +( ð0 + �̃�) P̂0                                                                                              (12) 

Φb, n (0) = ∫ ℜ
∞

0 n+1 (g) 𝔯 (g) dg + ð0 ∫ ℜ
∞

0 n (g) dg + (𝜗 ͠ + 𝜍) ∫ ℬ
∞

0 n (g)dg, n≥1                                        (13) 

ℬn (0) ={ 
(ð0 + �̃�) = ℬ0, n = 0

0, 𝑛 ≥ 1
                                                                                                                (14) 

 

Here is the normalizing condition: 

P̂0 + ℬ0+∫ ℜ
∞

0 n (g) dg +∑  ∞
𝑛=0 [ ∫ Φ

∞

0 1, n (g) dg + ∫ Φ
∞

0 b, n (g) dg + ∫ ℬ
∞

0
 (g) dg] = 1                                (15) 

 

5. Probability Generating Functions for System State and Solution of the Steady State 

Equations 
The steady state solution of the equations given above is determined using the generating function 

technique. In a probability theory, the partial generating function of a discrete random variable is defined 

as the power series representation of the probability mass function of the random variable. We define 

generating functions of system state that are listed below for |𝓆| ≤ 1: 

 

ℜ(g, 𝓆) =∑ ℜ∞
𝑛=1 n(g) 𝓆n,                      ℜ(0, 𝓆) =∑ ℜ∞

𝑛=1 n(0) 𝓆n,                       Φ1 (g, 𝓆)= ∑ Φ1,n
∞
𝑛=1  (g) 𝓆n 

Φ1 (0, 𝓆)= ∑ Φ1,n
∞
𝑛=1  (0) 𝓆n,                Φb (g, 𝓆)= ∑ Φb,n

∞
𝑛=1  (g) 𝓆n                 Φb (0, 𝓆)= ∑ Φb,n

∞
𝑛=1  (0) 𝓆n 

ℬ(g, 𝓆) =∑ ℬ∞
𝑛=1 n(g) 𝓆n,                      ℬ(0, 𝓆) =∑ ℬ∞

𝑛=1 n(0) 𝓆n. 

 

In this section, we establish a PGF expression for the number of consumers in the priority reiterate 

disruptive advent waiting list framework with working leisure, working disruption and in orbit at arbitrary 

interval. 

 

Theorem 5.1 It refers to the partial generating functions at random defined intervals whenever the operator 

is dormant during the reiterate time, on working leisure and working malfunction with normal service, 

congested due to priority consumers and normal service, loaded due to ordinary consumers and normal 

service, and absorbed due to lower-speed service periods, which are given as, 

ℜ (𝑔, 𝓆) =  ℜ(0, 𝓆) [1- ℜ(g)] 𝑒−(ð0 + �̃�)                                                                                                   (16) 

Φ1 (g, 𝓆)= Φ1 (0, 𝓆) [1-𝒱𝓅(g)] 𝑒−𝒰𝑝(𝓆)𝑔                                                                                                   (17) 

Φb (s, 𝓆)= Φb (0, 𝓆) [1-𝒱𝑏(s)] 𝑒−𝒰𝑏(𝓆)𝑠                                                                                                    (18) 

ℬ (g, 𝓆)= ℬ(0, 𝓆) [1-𝒱𝑤(g)] 𝑒−𝒰𝑤(𝓆)𝑔                                                                                                       (19) 
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𝒰𝑝(𝓆)= ð1 (1-𝒟(𝓆)) + �͠�͠; 𝒰𝑏(𝓆)= ð1 (1-𝒟(𝓆)) + �͠�͠ +  �̃� ; 𝒰𝑤(𝓆)=  ð2 (1-𝒟(𝓆)) + 𝜗 ͠ + 𝜍, 

Φb (0, 𝓆) =
ℜ(0,𝓆) 

𝓆
 [ℜ∗(ð0 + �̃�)+ ð0 𝓆 ℜ̅*( ð0 + �̃�)]+ (ð0 + �̃�) ℬ0 ℋ(𝓆)+(ð0 + �̃�) P̂0                                        (20) 

ℋ(𝓆) = 
(�͠�+𝜍)(1−𝒱𝑤

∗ (𝒰𝑤(𝓆)))

𝒰𝑤(𝓆)
; ℰ(𝓆) = 𝒱𝑏

∗𝒰𝑏(𝓆)+ 𝒮(𝓆)                                                                              (21) 

 

𝒮(𝓆) =  (�͠�͠ + �̃�) 𝒱𝑏
∗̅̅̅̅ (𝒰𝑏(𝓆)) and also 𝒢(𝓆) = 𝒱𝓅

∗(𝒰𝑝(𝓆))+ �͠�͠ 𝒱𝓅
∗̅̅̅̅  ( 𝒰𝑝(𝓆)), 

ℜ(0, 𝓆)= Φ1 (0, 𝓆) 𝒢(𝓆) + Φb (0, 𝓆) ℰ(𝓆)+ (ð0 + �̃�) ℬ0 𝒱𝑤
∗ ( 𝒰𝑤(𝓆))- (ð0 + �̃�) ℬ0 - 𝜍 ℬ0                               (22) 

Φ1 (0, 𝓆)= �̃� ℜ(0, 𝓆) ℜ̅*( ð0 + �̃�) 𝒱∗̅̅̅̅ (�͠�͠)                                                                                                    (23) 

ℬ(0, 𝓆)= (ð0 + �̃�) ℬ0                                                                                                                                  (24) 

 

Proof: We obtain the above equations from Equations (16) to (24) by multiplying equations (2) to (14) by 

the appropriate power of 𝓆 and adding over ‘n’ as well as solving equations (1) and (10). 

 

Theorem 5.2 For each of the following periods: inactive in the reiterate period with working leisure and 

working malfunction, operator is dormant in normal service period, disperse with priority users with normal 

service period, engaged with ordinary users with normal service period, operator is bustling with lower 

speed service, the marginal probability generating functions, respectively are found as, 
 

ℜ(𝓆)=
𝑁𝑢𝑚 (𝓆)

𝐷𝑒𝑛𝑜 (𝓆)
                                                                                                                                            (25) 

Φ1(𝓆)= �̃� 𝒱𝓅
∗̅̅̅̅ (�͠�͠ ) 

𝑁𝑢𝑚 (𝓆)

𝐷𝑒𝑛𝑜(𝓆)
                                                                                                                          (26) 

Φb (𝓆)= Φ b (0, 𝓆) 𝒱𝑏
∗̅̅̅̅ (𝒰𝑏(𝓆))                                                                                                                  (27) 

ℬ(𝓆) = ℬ(0, 𝓆) 𝒱𝑤
∗̅̅ ̅̅  (𝒰𝑤(𝓆))                                                                                                                      (28) 

𝑁𝑢𝑚 (𝓆) = 𝓆 ℬ0 ℜ̅*( ð0 + �̃�){( (ð0 + �̃�) ℋ(𝓆)+ 𝜍) ℰ(𝓆)+ (ð0 + �̃�)(𝒱𝑤
∗̅̅ ̅̅ (𝒰𝑤(𝓆))-1)- 𝜍}                           (29) 

𝐷𝑒𝑛𝑜 (𝓆) =  𝓆 − 𝓆 �̃� ℜ̅*( ð0 + �̃�) 𝒢(𝓆)-{ ℜ∗(ð0 + �̃�)+ ð0 𝓆 ℜ̅*( ð0 + �̃�)} ℰ(𝓆). 

𝑁𝑢𝑚′(1)= ℬ0 (1- ℜ∗(ð0 + �̃�) 𝒟′(1) {(1-𝒱𝑤
∗  (𝜗 ͠ + 𝜍))[- ð1+ 

𝜕2

 𝜗 ͠ + 𝜍
 ] - 

 𝜍

 ð0 + �̃�
 ð1 }. 

𝐷𝑒𝑛𝑜'(1) = (1+ℜ∗(ð0 + �̃�) ð1 𝒟′(1)+ ℜ̅*( ð0 + �̃�)( ð0 ð1 𝒟′(1)- ð0+�̃� ð1 𝒟′(1)- �̃�))). 

𝑁𝑢𝑚𝑏
′ (1)= First ' × 𝒱𝑏

∗̅̅̅̅  (ð0 + �̃�). 

First ' = ℬ0 { [ ( (ð0 + �̃�) ð2 𝒟′(1) 𝒱𝑤
∗  (𝜗 ͠ + 𝜍)+ 𝒱𝑤

∗̅̅ ̅̅ ((𝜗 ͠ + 𝜍)+( ð0+ 𝜍)(1- 𝒱𝑤
∗  (𝜗 ͠ + 𝜍)+ 𝜍)- ð2 𝒟′(1) (ð0 + �̃�) 

((𝒱𝑤
∗ )′ (𝜗 ͠ + �̃�) ℜ∗(ð0 + �̃�)+ ð0 ℜ̅*( ð0 + �̃�)+ ð0 ((ð0 + �̃�) ℜ̅*( ð0 + �̃�)( 𝒱𝑤

∗ ((𝜗 ͠ + 𝜍) − 1) −  𝜍)]- �̃� ℜ̅*( ð0 + 

�̃�){(ð0 + �̃�) (1-𝒱𝑤
∗ (𝜗 ͠ + 𝜍)+ 𝜍)- ð1 𝒟′(1) ((ð0 + �̃�)(1-𝒱𝑤

∗ (𝜗 ͠ + 𝜍)+ 𝜍)+ ð2 𝒟′(1) (ð0 + �̃�) ((𝒱𝑤
∗ )′(𝜗 ͠ + 𝜍)+ 

𝒱𝑤
∗̅̅ ̅̅ ((𝜗 ͠ + 𝜍))}                                                                                                                                              (30) 

 

Proof: On integrating the equations with respect to ′𝑔′ from (15) to (22) and considering that the partial 

generating function can be expressed as follows: ℜ (𝑔) = ∫ ℜ (𝑔, 𝓆) 
∞

0
d𝑔, Φ1(𝓆)=∫  Φ1 (𝑔, 𝓆) 

∞

0
d𝑔,

Φb (𝓆)= ∫ Φb (𝑔, 𝓆)
∞

0
 d𝑔, ℬ(𝓆) =∫ ℬ(𝑔, 𝓆) d𝑔,

∞

0
 we set 𝓆 =1 in Equations (23) to (29) and we use the L' 

Hospital rule where necessary, Utilising the normalizing condition, we acquire [P̂0 + ℬ0+ ℜ (1) +Φ1(1) + 

Φb (1)+ ℬ (1) ] = 1, which allows us to evaluate the possibility that the operator is stagnant (idle) while  the 

consumer is not exist in the orbit. 

 

 



Nisha et al.: Maximum Entropy Solution for 𝑀𝑋/G/1 Priority Reiterate G-queue… 
 

 

174 | Vol. 9, No. 1, 2024 

6. System Performance Metrices 
The following performance metrics will be established using the probability generating function of the 

queue length. We initially calculated the long run probabilities under various service provider consideration 

conditions with objective to estimate the operating of a queueing framework in steady state, from which we 

then extracted other significant performance indicators. 

 

6.1 Steady State Possibilities 
(i) Let ℜ be the steady state possibility of the operator being stagnant (dormant) during reiterate time, then 

ℜ = ℜ(1) =
ℬ0 (1− ℜ∗(ð0 + �̃�) 𝒟′(1) {(1−𝒱𝑤

∗  (𝜗 ͠ + 𝜍))[− ð1+ 
𝜕2

 𝜗 ͠ + 𝜍
 ] − 

 𝜍

 ð0 + �̃�
 ð1 }

(1+ℜ∗(ð0 + �̃�) ð1 𝒟′(1)+ ℜ̅∗( ð0 + �̃�)( ð0 ð1 𝒟′(1)− ð0+�̃� ð1 𝒟′(1)− �̃�)))
                                             (31) 

 

(ii) Let Φ1 be the steady state possibility of the operator being engaged with a priority consumer and in a 

normal service period at a time, then 

Φ1 = Φ1(1) = 𝛽 ̃𝒱𝓅
∗̅̅̅̅ (�͠�͠ )  × 

ℬ0 (1− ℜ∗(ð0 + �̃�) 𝒟′(1) {(1−𝒱𝑤
∗  (𝜗 ͠ + 𝜍))[− ð1+ 

𝜕2
 𝜗 ͠ + 𝜍

 ] − 
 𝜍

 ð0 + �̃�
 ð1 }

(1+ℜ∗(ð0 + �̃�) ð1 𝒟′(1)+ ℜ̅∗( ð0 + �̃�)( ð0 ð1 𝒟′(1)− ð0+�̃� ð1 𝒟′(1)− �̃�)))
                     (32) 

 

(iii) Let Φb be the steady state possibility of the operator being engaged with an ordinary consumer and in 

normal service period at a time, then 

Φb = Φb (1) =
𝑁𝑢𝑚𝑏

′ (1)

𝐷𝑒𝑛𝑜′(1)
 × 𝒱𝑏

∗̅̅̅̅ (𝒰𝑏 (𝓆))                                                                                                         (33) 

 

where, 𝑁𝑢𝑚𝑏
′ (1)= First ' × 𝒱𝑏

∗̅̅̅̅  (ð0 + �̃�) 
 

First ' = ℬ0 { [ ( (ð0 + �̃�) ð2 𝒟′(1) 𝒱𝑤
∗  (𝜗 ͠ + 𝜍)+ 𝒱𝑤

∗̅̅ ̅̅ ((𝜗 ͠ + 𝜍)+( ð0+ 𝜍)(1- 𝒱𝑤
∗  (𝜗 ͠ + 𝜍)+ 𝜍)- ð2 𝒟′(1) (ð0 + �̃�) 

((𝒱𝑤
∗ )′ (𝜗 ͠ + �̃�) ℜ∗(ð0 + �̃�)+ ð0 ℜ̅*( ð0 + �̃�)+ ð0 ((ð0 + �̃�) ℜ̅*( ð0 + �̃�)( 𝒱𝑤

∗ ((𝜗 ͠ + 𝜍) − 1) −  𝜍)]- �̃� ℜ̅*( ð0 + �̃�) 
{(ð0 + �̃�) (1-𝒱𝑤

∗ (𝜗 ͠ + 𝜍)+ 𝜍)- ð1 𝒟′(1) ((ð0 + �̃�)(1-𝒱𝑤
∗ (𝜗 ͠ + 𝜍)+ 𝜍)+ ð2 𝒟′(1) (ð0 + �̃�) ((𝒱𝑤

∗ )′(𝜗 ͠ + 𝜍)+ 

𝒱𝑤
∗̅̅ ̅̅ ((𝜗 ͠ + 𝜍))}                                                                                                                                              (34) 

 

where, 

𝐷𝑒𝑛𝑜'(1) = (1+ℜ∗(ð0 + �̃�) ð1 𝒟′(1)+ ℜ̅*( ð0 + �̃�)( ð0 ð1 𝒟′(1)- ð0+�̃� ð1 𝒟′(1)- �̃�))) 
 

(iv) Let ℬ be the steady state possibility of the operator being engaged during lower speed service period 

at time, then 

ℬ = ℬ(1) = (ð0 + �̃�) ℬ0 {
1−ℬ𝑤

∗ (�͠�+𝜍)

(�͠�+𝜍)
}                                                                                                                   (35) 

 

(v) Let ℬw v be the steady state possibility of the operator being on working malfunction and working leisure, 

then 

ℬw v = ℬ + ℬ0 = 
ℬ0((�͠�+𝜍)+(ð0+�̃�)(1−𝒱𝑤

∗ (�͠�+𝜍)))

(�͠�+𝜍)
                                                                                            (36) 

 

(vi) Let 𝒯f be the stationary possibility of the operator being failure, then 

𝒯f = (𝛼͠ ͠ + �̃�) Φb (1) = (𝛼͠ ͠ + �̃�) 
𝑁𝑢𝑚𝑏

′ (1)

𝐷𝑒𝑛𝑜′(1)
 × 𝒱𝑏

∗̅̅̅̅ (𝒰𝑏 (𝓆))  

= (�͠�͠ + �̃�) 
ℬ0 (( ð0 + �̃�)ð2 𝒟′(1) (𝒱𝑤

∗ (�͠�+𝜍) +𝒱𝑤
∗̅̅ ̅̅ (𝜗 ͠ + 𝜍))+𝒜+ℒ+ℐ+ℱ )

(1+ℜ∗(ð0 + �̃�) ð1 𝒟′(1)+ ℜ̅∗( ð0 + �̃�)( ð0 ð1 𝒟′(1)− ð0+�̃� ð1 𝒟′(1)− �̃�)))
                                                  (37) 
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where, 𝒜 = (ð0 + �̃�) (1-𝒱𝑤
∗ (𝜗 ͠ + 𝜍)+ 𝜍), 

 

ℒ = ð2 𝒟1
′  (1) (ð0 + �̃�) (𝒱𝑤

∗ )′ ( 𝜗 ͠ + �̃�)) ℜ∗(ð0 + �̃�) + ð0 ℜ̅*( ð0 + �̃�), 
𝒥 = ð0 (ð0 + �̃�) ℜ̅*( ð0 + �̃�) [ (𝒱𝑤

∗ (𝜗͠ + 𝜍) − 1) – 𝜍)], and   

ℱ = -�̃� ℜ̅*( ð0 + �̃�) {(ð0 + �̃�)(1 − 𝒱𝑤
∗ (𝜗͠ + 𝜍)) − ð1𝒟

′(1)(ð0 + �̃�)(1 − 𝒱𝑤
∗ (𝜗͠ + 𝜍) + 𝜍) +

ð2𝒟
′(1)(ð0 + �̃�)(𝒱𝑤

′∗(𝜗͠ + 𝜍) + 𝒱𝑤
∗̅̅ ̅̅ (𝜗͠ + 𝜍))}. 

 

6.2 Average System Size 
Theorem 6.1 The average number of consumers in the orbit and the precise anticipated waiting time which 

together make up the average queue length ′ℒ0’ is provided by, 
 

ℒ0 = lim
𝓂=1

𝒦0
′(𝓂) = 𝒦0

′(1) = ℜ′(1) + Φ1
′ (1) + Φ𝑏

′ + ℬ′(1) 

where, ℜ′(1) =
𝔑𝓇
′′(1)

𝒟𝓇
′′(1)

; ℜ𝓇
′′(1)= 

(1−ℜ∗(ð0+�̃�))

(ð0+�̃�)
 (𝔊′′ + 𝔊′); 

𝔊′ =  − ð1𝒟
′(1)(ð0 + �̃�)(1 − 𝒱𝑤

∗ (𝜗͠ + 𝜍) + 𝜍)+ (ð0 + �̃�) ð2 𝒟′(1) ((𝒱𝑤
∗ )′(𝜗 ͠ + 𝜍)+ 𝒱𝑤

∗̅̅ ̅̅ (𝜗 ͠ + 𝜍))- ð2 𝒟′(1) 

𝒱𝑤
′∗(𝜗͠ + 𝜍), 

𝔊′′ = − ð1𝒟
′(1)𝒱𝑏

∗′
′

(𝛼͠ ͠ + �̃�) – ð1𝒟
′′(1)𝒱𝑏

′∗ (�͠�͠ + �̃� + 𝒮′(1)) ((ð0 + �̃�)ℋ(1) + 𝜍) + 2(− ð1𝒟
′(1), 

𝒱𝑤
∗′(𝛼͠ ͠ + �̃�) + 𝒮′(1))+(ð0 + �̃�)ℋ′(1)+(ð0 + �̃�)ℋ′′(1)(𝒱𝑏

∗′
′

(𝛼͠ ͠ + �̃�)+𝒮(1))+(ð0 + �̃�)𝒱𝑤
∗′′(𝜗͠ + 𝜍)( ð2 

(𝒟′(1))
2
- ð2 𝒟′′(1)𝒱∗′′(𝜗͠ + 𝜍), 

𝒟𝓇
′′(1) = −(ℜ∗(ð0 + �̃�) + ð0 ℜ̅*( ð0 + �̃�)+ℰ’’ (1)-2 ð0 ℜ̅*( ð0 + �̃�ℰ′(1))- �̃� ℜ̅*( ð0 + �̃�( 𝒢’’ (1) +𝒢′(1)) 

 

where ℰ′(1) = -ð1𝒟
′(1), 

ℰ '' (1) = 𝒱𝑏
∗′′(𝛼͠ ͠ + �̃�) ( ð1𝒟

′(1))2 - ð1 𝒟′′(1) 𝒱𝑏
∗′(𝛼͠ ͠ + �̃�)+ (𝛼͠ ͠ + �̃�)[ ( ð1𝒟

′(1))2 𝒱𝑏
∗′
′̅̅ ̅̅ ̅
((𝛼͠ ͠ + �̃�)- ð1, 

𝒟′′(1)𝒱𝑏
∗′̅̅ ̅̅

 (𝛼͠ ͠ + �̃�), 

𝒢′(1) = ð1𝒟
′(1), 

𝒢'' (1) = ( ð1𝒟
′(1))2 - ð1 𝒟′′(1)), 

ℬ′(1) = (ð0 + �̃�) ℬ0 {
ð2𝒟1

′(1)(�͠�+𝜍)𝒰w
∗′(�͠�+𝜍)+ð2𝒟1

′(1)(1−𝒰w
∗ (�͠�+𝜍))

((�͠�+𝜍))
2 }, 

Φ𝑏
′ (1)= 

𝒟𝓇
′′(1) 𝑁𝑢𝑚𝑏

′ (1)

2(𝐷𝑒𝑛𝑜′(1))
2 , Φ1

′ (1) =
𝛽 ̃ 𝑉𝑏

∗̅̅̅̅ (𝛼͠)͠ 𝑁𝑢𝑚′(1)

𝐷𝑒𝑛𝑜′(1)
, 

 ℒ𝑞 = lim
𝓂=1

𝒦𝑞
′(𝓂) = 𝒦𝑞

′(1) = 𝒦0
′(1) + Φ1(1) + Φb (1) +ℬ(1). 

 

Corollary 6.2 The average amount of time a consumer stays in the queueing framework and in the orbit, 

respectively is calculated by utilizing Little’s formula 

𝒲𝑠 =
ℒ𝑞

𝜕
, 𝒲0 =

ℒ0

𝜕
. 

 

Corollary 6.3 The availability of the service provider and the frequency of failures are the system’s 

reliability measurements for the steady state and consequently, are provided by: 

 

Proof: 𝔘𝓈 = = 1 − 𝒯f and 𝔉𝓈 = = 𝛼͠ ͠ [ Φ1(1) +  Φb (1) + ℬ(1) + ℬw v (1)]. 
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7. Maximum Entropy Concept 
Jaynes (1957) proposed the maximum entropy approach. Entropy usually pertains to how a framework or 

a probabilistic distribution varies. It occurs frequently that we are incapable of estimating a suitable 

distribution in probabilistic analysis. The information about the waiting line length, steady state 

possibilities, etc. that is provided in queueing systems can be viewed of as constraints in obtaining 

maximum entropy results. Nonetheless, there are numerous distributions that satisfy them. With the facts 

at hand, we arrive at the best distribution for them using this strategy. The ideal probability distribution is 

one that optimises the entropy function. 

 

7.1 Formation of Entropy Function 
Given that ’n’ is the total number of users in the framework, consider 𝔓1(n), 𝔓2(n), 𝔓3(n), 𝔓4(n) that 

reflect the possibilities that the server (operator) is in the reiterate period, disperse period with priority 

consumer, disperse with ordinary consumer, engaged with lower speed period, respectively.  

 

We construct the entropy function ′𝔍′ as per El-Affendi and Kouvatsos (1983) work as, 

𝔍 = −∑ 𝔓1(n) log𝔓1(n) − ∑ 𝔓2(n) log𝔓2(n) − ∑ 𝔓3(n) log𝔓3(n) −
∞
𝑛=1

∞
𝑛=1

∞
𝑛=1

∑ 𝔓4(n) log𝔓4(n)
∞
𝑛=1                                                                                                                              (38) 

 

With the list of constraints listed below, we will estimate the steady state probabilities as 
∑ 𝔓1(n) =
∞
𝑛=1 𝔈1                                                                                                                                                                                (39) 

∑ 𝔓2(n) =
∞
𝑛=1  𝔈2                                                                                                                                                                               (40) 

∑ 𝔓3(n)
∞
𝑛=1 = 𝔈3                                                                                                                                       (41) 

∑ 𝔓4(n) =
∞
𝑛=1  𝔈4                                                                                                                                       (42) 

∑ 𝑛[𝔓1(n) + 𝔓2(n) + 𝔓3(n) + 𝔓4(n)] =
∞
𝑛=1  𝔈5                                                                                       (43) 

where 𝔈1=ℜ, 𝔈2= Φ1 , 𝔈3 = Φb, 𝔈4= ℬ, 𝔈5= ℒq. 

 

Therefore, in order to maximise the entropy function subject to the constraints (39)-(43), the Lagrange’s 

function is constructed by us i.e., 𝔍 (𝔓1(n), 𝔓2(n), 𝔓3(n), 𝔓4(n)) using Lagrange multipliers 𝜃̆ 1, 𝜃̆ 2, 𝜃̆ 3, 𝜃̆ 4, 

𝜃̆ 5 as 

 

𝔍(𝔓1(n), 𝔓2(n), 𝔓3(n)) = −∑ 𝔓1(n) log𝔓1(n) − ∑ 𝔓2(n) log𝔓2(n) − ∑ 𝔓3(n) log𝔓3(n) −
∞
𝑛=1

∞
𝑛=1

∞
𝑛=1

∑ 𝔓4(n) log𝔓4(n)
∞
𝑛=1  - 𝜃̆ 1 (∑ 𝔓1(n) −

∞
𝑛=1 𝔈1)- 𝜃̆ 2 (∑ 𝔓2(n) −

∞
𝑛=1  𝔈2)- 𝜃̆ 3 (∑ 𝔓3(n)

∞
𝑛=1 − 𝔈3)- 𝜃̆ 4 

(∑ 𝔓4(n) −
∞
𝑛=1 𝔈4) - 𝜃̆ 5 (∑ 𝑛[𝔓1(n) + 𝔓2(n) + 𝔓3(n) + 𝔓4(n)] −

∞
𝑛=1  𝔈5)                                            (44) 

 

After formulating the maximum entropy model and using the maximum entropy approach we will develop 

the steady state probabilities. We will also estimate the average expected amount of time that the consumer 

waits in queue. 

 

Lemma 1: The approximate steady state possibilities and the maximum entropy solution, subject to 

constraints, are determined by 

𝔓1(n)= 𝜎͠ ℜ 
(𝔈5−�͠�)n−1

(𝔈5)n
 , 𝔓2(n)= 𝜎͠ Φ1 

(𝔈5−�͠�)n−1

(𝔈5)n
 , 𝔓3(n)= 𝜎͠ Φb 

(𝔈5−�͠�)n−1

(𝔈5)n
, 𝔓4(n)= 𝜎͠ ℬ 

(𝔈5−𝜎͠)n−1

(𝔈5)n
, 

 

where, 𝜎͠ = ℜ +Φ1 +  Φb + ℬ. 
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Proof: We get the requisite results by partially differentiating Lagrange’s function ′𝔍′ with regard to 𝔓1(n), 

𝔓2(n), 𝔓3(n), 𝔓4(n) correspondingly and further equate the outcome to ’0’. Also subsequently 

manipulating the equations we obtain the required results therein. 

 

Lemma 2: According to maximum entropy technique, the average expected amount of time that the clients 

wait in the line is 

𝓣𝓪 = ∑ { 
1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)} 𝔓1(n) + ∑ {

𝜂

𝛽0
͠  +

1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)} 𝔓2(n) + ∑ {

𝜂

𝛽0
͠  +

1

2𝛽0
͠ 

∞
𝑛=1 (

𝐸(𝑋2)

𝐸(𝑋)
 −

 1)}𝔓3(n)+∑ {
𝜂(bw)2

𝛽0
͠ (bw)

 +
1

2𝛽0
͠ 

∞
𝑛=1 (

𝐸(𝑋2)

𝐸(𝑋)
−  1)} 𝔓4(n)                                                                                   (45) 

 

Proof: Assume a specific consumer, let’s say 𝔚 , who is in queue behind ’n’ other people. Currently, the 

server could be inactive, busy with priority consumer, engaged with ordinary consumer and busy at lower 

speed service. 

 

(a) Stagnant (Idle) state: The consumer will find this case to be especially accessible. The operator may 

deliver service whatever they would like. Hence, the group of arriving consumers receives immediate 

service. This suggests that the estimated waiting time will roughly correspond to the service time of the 

consumer prior to consumer 𝔚. 

𝒲 ͠
1 =∑ { 

1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)} . 

 

(b) Busy state with priority and ordinary consumers: In this scenario, the server is already dispersed; thus, 

the group of incoming consumers joins the orbit. First, the ’n’ customers in front of them in line receive 

service, and then the consumers in front of the randomly chosen customer 𝔚 do as well. Hence, the average 

anticipated waiting time is 

𝒲 ͠
2 =∑ {

𝜂

𝛽0
͠  +

1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)}, 

 

and, 

𝒲 ͠
3 =∑ {

𝜂

𝛽0
͠  +

1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)}. 

 

(c) Working leisure and Working malfunction state: The client 𝔚 is awaiting the completion of the working 

leisure time. Consumers who already in the orbit are attended first when the server resumes operating in its 

normally busy state. The clients before M then receive their services after that, 

𝒲 ͠
4 =∑ {

𝜂(bw)
2

𝛽0
͠ (bw)

 +
1

2𝛽0
͠ 

∞
𝑛=1  (

𝐸(𝑋2)

𝐸(𝑋)
 −  1)}. 

 

We get the needed outcome by adding the waiting times for each of the four situations mentioned above as 

given in Equation (45). 

 

8. Sensitivity Analysis with Simulation of Practical Application 

Sensitivity analysis helps to examine how changes in the input values for a specific variable influence 

various finding of the mathematical model. It enables people to make appropriate judgements about 

businesses, economy or their investments and enables decision-makers to know exactly what changes may 

be made in their respective system to improve the grade of service. Extremely complex models may make 

it difficult to assess the inputs. By doing sensitivity analysis, users can find out more about which factors 

are not so much important and can be removed from the model because they are not relevant. 
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8.1 Simulating Practical Application 
To estimate the impact of the parameters that are included in our methodology on the performance 

measures, numerical examples are absolutely vital. Any response of a model in a specific circumstance can 

be anticipated by performing a numerical analysis on it. 

 

The Problem 
In this particular segment, we have highlighted how the recommended framework can really be used in 

actual-life circumstances involving congestion in the BusStop framework as discussed in section 3. The 

BusStop service is accountable for collecting, maintaining, and delivering users with details regarding 

public transportation. The system described in this part facilitates and regulates the management 

mechanism. BusStop framework offers its service as well as a number of other facilities over the cell phone, 

enabling a consumer to call and investigate for themselves the routes, schedules and location of the 

stoppage. The request for information is sent by mobile users (or consumers), and BusStop framework 

handles it using a web-based user interface. This BusStop framework functions as only single server. Our 

ultimate ambition is to assess certain sensitive system parameters in order to calculate the cost of the 

BusStop framework. 

 

The Solution 
In order to illustrate the problem discussed above, we explicitly use the case from Section 3, i.e., by 

executing a numerical simulation how various eventualities are handled by the BusStop framework. 

Consumer asks to access the bus route at a rate of ð2= 0.99/min, which we receive affirmatively. The 

controller interacts to the consumers at a rate of u1= 3.5/min. The controller gives clients first priority 

through voice messages, therefore voice messages come at a rate of �̃�=0.13/min. Although the BusStop 

framework takes working leisure, the controller works less quickly at a rate of u2= 3.2 per minute. The 

BusStop framework (server) is typically thought of as always being reachable. Unfortunately, in many 

circumstances that occur in real practice, the controller has failure that causes service interruptions. We will 

employ a working distortion with rate ς= 0.07. The application server could crumble at any moment when 

the regularly busy controller is running due to disasters. We utilise this technology in our laptops and 

smartphones that makes it possible for viruses to enter the system. Here, the consumer rate is negative and 

equals 0.05. These are some potential outcomes: ℜ = 0.2185, Φ1= 0.1578, Φb= 0.2320, ℬ =0.1779, P̂0 = 

0.0044, 𝒲𝑠= 21.2925, TC=526.3166 $. 

 

 

8.2 Impact of System Parameters on Average Queue Length and Long Run Chance 
We have also looked into several more numerical outcomes. These findings demonstrate the potential 

influence of various variables on system performance indicators. The outcome below is demonstrated using 

MATLAB R2022a software and we have done sensitivity analysis by plotting the graphs through MS 

EXCEL. 
 

 

Table 1. Impact of reduced service (lower service) rate u2 on system performance measures, when ð0 =3.2, ð1= 0.25, 

ð2= 1.9, 𝛼͠͠ =0.10, u1=3.5, 𝜗 ͠ =0.012, ς=0.05, 𝛽=0.15. 
 

L.W.S (u2) P̂0 ℜ Φ1 Φb ℬw v 𝒯f ℬ 

3.3 0.0022 0.2591 0.1554 0.2871 0.2962 0.0287 0.1478 

3.4 0.0023 0.2579 0.1547 0.2858 0.2993 0.0286 0.1472 

3.5 0.0023 0.2567 0.1540 0.2846 0.3023 0.0285 0.1465 

3.6 0.0024 0.2555 0.1533 0.2834 0.3054 0.0283 0.1459 

3.7 0.0024 0.2532 0.1526 0.2821 0.3084 0.0282 0.1453 
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Table 2. Impact of vacation rate 𝜗 ͠ on system performance measures, when ð0 =3.2, ð1=0.25, ð2=1.9 𝛼͠͠ =0.10, 

u1=3.5, u2 =3.2, ς=0.05. 
 

V.R (𝝑 )͠ P̂0 ℜ Φ1 Φb ℬw v 𝒯f ℬ 

0.013 0.0022 0.2602 0.1561 0.2884 0.2931 0.0288 0.1485 

0.018 0.0022 0.2601 0.1560 0.2884 0.2933 0.0288 0.1485 

0.023 0.0022 0.2599 0.1559 0.2884 0.2936 0.0288 0.1485 

0.028 0.0022 0.2598 0.1559 0.2884 0.2938 0.0288 0.1485 

0.033 0.0022 0.2596 0.1558 0.2884 0.2940 0.0288 0.1485 

 

 

Table 3. Impact of negative (adverse) arrival rate 𝛼͠͠ on system performance measures, when ð0 =3.2, ð1=0.25 ð2=1.9 

u1=3.5, u2=3.2, 𝜗 ͠ =0.012, ς=0.05, 𝛽=0.15. 
 

N.A.R (𝜶͠͠ ) P̂0 ℜ Φ1 Φb ℬw v 𝒯f ℬ 

0.12 0.0022 0.2637 0.1465 0.2906 0.2969 0.0349 0.1504 

0.14 0.0022 0.2668 0.1380 0.2925 0.3004 0.0409 0.1522 

0.16 0.0022 0.2697 0.1305 0.2940 0.3036 0.0470 0.1538 

0.18 0.0022 0.2722 0.1237 0.2953 0.3065 0.0532 0.1553 

0.20 0.0022 0.2746 0.1177 0.2063 0.3092 0.0593 0.1566 

 

 

Table 4. Impact of priority rate 𝛽 on system performance measures, when ð0 =3.2, ð1=0.25 ð2=1.9 u1=3.5, u2=3.2, 

𝜗 ͠ =0.012, ς=0.05. 
 

P.R (�̃�) P̂0 ℜ Φ1 Φb ℬw v 𝒯f ℬ 

0.16 0.0021 0.2594 0.1596 0.2866 0.2923 0.0287 0.1483 

0.21 0.0021 0.2559 0.1733 0.2791 0.2896 0.0279 0.1480 

0.26 0.0020 0.2536 0.1831 0.2731 0.2882 0.0273 0.1483 

0.31 0.0020 0.2520 0.1905 0.2679 0.2876 0.0268 0.1491 

0.36 0.0019 0.2508 0.1963 0.2634 0.2875 0.0263 0.1501 

 

 

From all the aforementioned tables we will conclude the few remarks which are listed below: 

 

For Tables 1, 2, and 3, the value of probabilities enhances as we upsurge the value of any of these rates i.e., 

lower service rates, vacation rates, negative arrival rates and priority rates. Such probabilities include 

operator in indolent (or idle) periods, priority user absorbed with normal service periods, engaged with 

ordinary users in normal service period. Consequently, as we enhance the value of reduced service rates, 

vacation rates, negative arrival (advent) rates, and priority rates, the steady state possibility for operator in 

reiterate phase for Tables 1, 2, and 4 is amplified. The operator is in a failure state, which is amplified for 

Tables 1, 4 as we raise the value of lower service rates, vacation rates, negative arrival rates, and priority 

rates. Additionally, for Table 4, the possibilities for operator are dormant, indulge with priority users with 

normal service period is declined as we increase the values of any u2, 𝜗 ͠, �͠�͠ or �̃�. Finally, the chances for 

operator being failure is augmented due to upgrading the value of parameters same as before. 

 

In addition, we highlight how the queue length of the customers fluctuates based on various criteria using 

Figures 2, 3, 4, 5. The suggested attribute values are ð0 = 0.3.2; ð1 = 0.19; ð2 = 0.99; 𝜗 ͠ = 0.01; ς = 0.05; �̃� 

=0.12; u1 = 3.5; u2 = 3.2; �͠�͠ = 0.14; �͠�͠ = 0.12. We conclude that Figures 2, 3 and 4, 5 display the anticipated 

queue length curve by altering for various values of (a) ð1 (b) ς (c) 𝜗 ͠ (d) �̃�. 
 

We also predict the entire set of figures which reflect a significant drop in queue length, proving that our 

technique is applicable and consistent in the actual world as well. 
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Note: μ2 represents the lower service rate during working leisure and working malfunction and μ1 represents 

regular service rate. 

 

                        
 

          Figure 2. μ1 V s ð1 by fluctuating ð1.                         Figure 3. μ1 V s ς by fluctuating ς. 
 

 

                    
 

           Figure 4. μ2 V s 𝜗 ͠  by fluctuating 𝜗 ͠.                   Figure 5. u2 V s 𝛽 by fluctuating 𝛽. 
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8.3 Comparable Analysis Amidst Precise (Exact) Waiting Time and Imminent 

(Approximate) Waiting Time 
We demonstrate a correlative analysis in the subsequent tables that includes the precise and imminent 

(approximative) waiting times (𝓣𝓼 and 𝓣𝓪, respectively) of our developed model as well as the absolute 

percentage error (APE) specified by APE= [( 𝓣𝓼 − 𝓣𝓪 ) / 𝓣𝓼 ] × 100. We assign the defaults settings as ð0 

= 0.5, ð1 =0.6, ð2 = 0.7 for Case-1. Also, for Case-2 we select the values ð0 = 0.42, ð1 = 0.63, ð2 = 0.81. 

 
Table 5. Impact of ς, β˘, and α˘ on 𝒯𝓈  and 𝒯𝒶 for various values of ð0, ð1, ð2. 

 

Case-1    Case-2    

(ς) 𝓣𝓼 𝓣𝓪 APE (ς) 𝓣𝓼 𝓣𝓪 APE 

0.14 110.11 106.84 2.9714 0.16 121.79 118.95 2.3324 

0.15 107.93 97.99 9.2117 0.17 121.7938 118.9530 2.3324 

0.16 106.51 90.77 14.7792 0.18 119.21 104.94 11.9696 

�̃� 𝓣𝓼 𝓣𝓪 APE �̃� 𝓣𝓼 𝓣𝓪 APE 

0.15 104.63 99.07 5.3181 0.175 119.40 111.34 6.7472 

0.16 102.89 92.89 9.7249 0.185 117.94 111.56 5.4110 

0.17 102.00 93.33 8.4921 0.195 116.53 111.78 4.0809 

𝜶͠͠ 𝓣𝓼 𝓣𝓪 APE 𝜶͠͠ 𝓣𝓼 𝓣𝓪 APE 

0.07 112.27 107.47 4.2720 0.10 118.78 114.28 3.7909 

0.08 110.46 105.51 4.4829 0.11 117.59 112.96 3.9407 

0.09 108.95 103.85 4.6772 0.12 116.53 111.78 4.0809 

 
Table 6. Impact of ς, 𝛽 , 𝛼͠͠ and on 𝒯𝓈 and 𝒯𝒶for various values of ð0, ð1, ð2. 

 

Case-1    Case-2    

μ2 𝓣𝓼  𝓣𝓪 APE μ2 𝓣𝓼 𝓣𝓪 APE 

2.50 108.95 103.85 4.6772 2.65 134.96 125.33 7.1311 

2.55 110.90 101.90 7.4329 2.70 136.45 123.38 9.5737 

2.60 111.23 100.03 10.0734 2.75 137.97 121.53 11.9180 

�͠�͠ 𝓣𝓼 𝓣𝓪 APE �͠�͠ 𝓣𝓼 𝓣𝓪 APE 

0.11 110.05 99.07 99778 0.14 127.25 122.45 3.7771 

0.12 108.90 98.14 9.8845 0.15 125.79 121.28 3.5870 

0.13 107.78 97.23 9.7932 0.16 124.38 120.15 3.4012 

μ1 𝓣𝓼 𝓣𝓪 APE μ1 𝓣𝓼 𝓣𝓪 APE 

3.6 108.04 100.31 7.1555 3.3 132.81 119.31 10.1589 

3.7 108.29 103.40 4.5165 3.4 133.16 123.34 7.3723 

3.8 108.53 106.49 1.8763 3.5 133.49 127.37 4.5844 

 

We acknowledge from Tables 5 and 6 that the waiting time for the consumers in waiting framework is 

inversely proportional to ς, �̃�, �͠�͠ , �͠�͠ for Case-1 and for the remaining parameters i.e., u2, u1 it is completely 

the reverse. Additionally, Case 2 follows the same trend with respect to precise waiting time and imminent 

waiting time. Nevertheless, APE is significantly lower in Case 2 than that in Case 1 in relative terms. We 

can infer from the numerical analysis outlined above that the outcomes are consistent with actual situations 

that are seen in cyber cafes and other service systems. 
 

9. Bi-Objective Optimization: Joint Optimal Values of Expected Cost of the Framework and 

Expected Waiting Time of Consumers in System 
Multi-Objective optimization aims to discover an effective solution that balances two functions so that the 

system generates the lowest cost and minimize the waiting times of the consumers simultaneously for a 

particular queueing system. Administrators are able to accomplish the best design over a wide range by the 

help of this technique. In this portion, we determine an optimisation problem with two objectives in which 

anticipated cost function TC* and anticipated waiting time 𝒲𝓈
∗ in the waiting line must both be optimised 

simultaneously over the domain D. Assume the subsequent bi-objective optimization. 
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(B͠, P͠) (T C*,ℒ𝓈
∗) = min (T C, 𝒲𝑠), 

 

where D: {( ð, 𝜗 ͠): ð ∈ (0.2, 1.7), 𝜗 ͠ ∈ (0.65, 0.75)} ⊂ R2. 

 

The Multi-Objective Genetic Algorithm (MOGA) has been employed to identify a worthwhile solution to 

the problem. The satisfactory result found using MOGA is shown in Figure 6 where it can be observed that 

the minimal cost and minimal user waiting time are TC=32.62$ and 𝒲𝑠=0.7514 mins for the pareto rates 

(ð, 𝜗 ͠) = (0.2, 0.65). By altering the working malfunction rate i.e., ‘ς’, we have found Pareto optimal 

solutions in Table 7 for various values of joining probabilities for distinct cost sets. Also, in Table 8 we 

have also find the Pareto optimal solution for various values of joining probabilities values values for 

different cost sets by modifying the priority rate i.e., ′�̃�'. 

 
Table 7. Pareto optimal solutions for various values of joining probabilities for different cost sets by varying ’ς’ i.e., 

working malfunction rate. 
 

Parameters Join optimal parameters and joint 

optimal objective functions 

Cost Set A Cost Set B Cost Set B 

ς=0.07 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.8955, 0.6008); 
(0.7521, 36.2911) 

(0.6007, 0.6004); 
(0.7532, 28.6003) 

(0.5917, 0.6001); 
(0.7529, 28.3700) 

ς=0.09 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.7567, 0.6001); 

(0.7514, 32.62550) 

(0.2791, 0.6000); 

(0.7749, 20.8989) 

(0.2012, 0.6003); 

(0.7933, 19.6079) 

ς=0.11 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.2863, 0.6001); 
(0.7738, 21.0463) 

(0.2320, 0.6017); 
(0.7877, 20.0308) 

(0.2641, 0.6017); 
(0.7804, 20.6108) 

 

Table 8. Pareto optimal solutions for various values of joining probabilities for different cost sets by varying 𝛽 i.e., 

priority rate. 
 

Parameters Join optimal parameters and 
joint optimal objective functions 

Cost Set A Cost Set B Cost Set C 

�̃�=0.11 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.2641, 0.6017); 

(0.7804, 20.6108) 

(0.2320, 0.6017); 

(0.7877, 20.0380) 

(0.2791, 0.6000); 

(0.7749, 20.8989) 

�̃�=0.14 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.2791, 0.6000); 
(0.7749, 20.8989) 

(0.2320, 0.6017); 
(0.7877, 20.0380) 

(0.8955, 0.6008); 
(0.7521, 36.2911) 

�̃�=0.15 (ð, 𝜗 ͠); 
(TC, 𝒲𝓈) 

(0.7567, 0.6001); 

(0.7514, 32.6255) 

(0.8955, 0.6008); 

(0.7521, 36.2911) 

(0.6007, 0.6004); 

(0.7532, 28.6003) 

 

 
 

Figure 6. Waiting time vs total expected cost. 
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10. Conclusion 
The whole inquiry includes a bi-objective optimization and maximum entropy findings of bulk general 

service reiterate priority G-queue with state dependent arrivals, working malfunction and working leisure. 

Performance metrics that can regulate and diminish queue size, such as steady state possibilities and the 

system’s average queue size are addressed. Our major objective is to offer a correlative analysis that 

corresponds to the exact and approximative anticipated waiting times for the proposed model with the 

intention that executive of the framework and managers can shorten the amount of time that users spend 

and also successively raises the quality of service provided by their corresponding organizations. The 

waiting faced in manufacturing sector, communication networks, supermarkets, industrial sector and other 

fields can also be reduced using this proposed framework. Fundamentally, it is nearly impossible to 

construct a framework in which the server never malfunctions or disengages in all these enormous sectors. 

In order to better utilise resources, this inquiry is pertinent to and supportive of those regions where a server 

(operator) can be sluggish. This model is created in a way that aids in preventing the daily congestion issues 

that networking and communication platforms confront. The good illustration and the numerical simulation 

covered in this work show how the outcomes are supported in actual rush hours. The inclusion of ideas 

such as optional services, multiple vacations, etc. could further enhance this study by including optional 

service or bulk service. However, doing so would make the model more arduous and sophisticated and 

would need a significant amount of computing effort. 
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