**
Ali Muhammad Ali Rushdi **
Department of Electrical and Computer Engineering, King Abdulaziz University, P. O. Box 80204, Jeddah 21589, Saudi Arabia.

**
Waleed Ahmad **
Department of Electrical and Computer Engineering, King Abdulaziz University, P. O. Box 80204, Jeddah 21589, Saudi Arabia.

DOI https://dx.doi.org/10.33889/IJMEMS.2018.3.4-029

**Abstract**

A task frequently encountered in digital circuit design is the solution of a two-valued Boolean equation of the form h(X,Y,Z)=1, where h: B_2^(k+m+n)→ B_2 and X,Y, and Z are binary vectors of lengths k, m, and n, representing inputs, intermediary values, and outputs, respectively. The resultant of the suppression of the variables Y from this equation could be written in the form g(X,Z)=1 where g: B_2^(k+n)→ B_2. Typically, one needs to solve for Z in terms of X, and hence it is unavoidable to resort to ‘big’ Boolean algebras which are finite (atomic) Boolean algebras larger than the two-valued Boolean algebra. This is done by reinterpreting the aforementioned g(X,Z) as g(Z): B_(2^K)^n→ B_(2^K ), where B_(2^K ) is the free Boolean algebra FB(X_1,X_2…….X_k ), which has K= 2^k atoms, and 2^K elemnets. This paper describes how to unify many digital specifications into a single Boolean equation, suppress unwanted intermediary variables Y, and solve the equation g(Z)=1 for outputs Z (in terms of inputs X) in the absence of any information about Y. The paper uses a novel method for obtaining the parametric general solutions of the ‘big’ Boolean equation g(Z)=1. The parameters used do not belong to B_(2^K ) but they belong to the two-valued Boolean algebra B_2, also known as the switching algebra or propositional algebra. To achieve this, we have to use distinct independent parameters for each asserted atom in the Boole-Shannon expansion of g(Z). The concepts and methods introduced herein are demonsrated via several detailed examples, which cover the most prominent type among basic problems of digital circuit design.

**Keywords-** Digital design, Suppression of variables, ‘Big’ Boolean algebras, Boolean-equation solving, Parametric solutions.

**Citation**

Rushdi, A. M. A., & Ahmad, W. (2018). Digital Circuit Design Utilizing Equation Solving over ‘Big’ Boolean Algebras. *International Journal of Mathematical, Engineering and Management Sciences*, *3*(4), 404-428. https://dx.doi.org/10.33889/IJMEMS.2018.3.4-029.